Продолжая тему самодельной Люстры Чижевского, предлагаем еще один вариант преобразователя. Конструкция была опубликована С.БИРЮКОВ, г. Москва. Журнал "Радио", № 2, 1997 г. Как известно, аэроионизатор состоит из высоковольтного источника постоянного напряжения отрицательной полярности и собственно "люстры" - "излучателя" аэроионов. Рассмотрим источник высокого напряжения ионизатора, схема которого приведена на рисунке ниже. Работает источник так. Положительная полуволна напряжения сети через диоды VD2, VD3 и резисторы R5, R6 заряжает конденсаторы С1 и С2. Транзистор VT1 открыт и насыщен, a VT2 - закрыт. Когда положительная полуволна заканчивается, транзистор VT1 закрывается, a VT2 открывается. Конденсатор С1 разряжается через резистор R4 и управляющий переход тринистора VS1. Тринистор включается, и конденсатор С2 разряжается на первичную обмотку трансформатора Т1. В колебательном контуре, состоящем из конденсатора С2 и обмотки трансформатора, возникают затухающие колебания. Импульсы высокого напряжения, возникающие на вторичной обмотке, поступают на умножитель, выполненный на диодных столбах VD6-VD11 и конденсаторах СЗ-С8. Отрицательное напряжение около 30 кВ с выхода умножителя подается через токоограничительные резисторы R7-R9 на "люстру". В источнике использованы в основном резисторы МЛТ, R7-R9 - С2-29 (подойдут и МЛТ с таким же суммарным сопротивлением), R6 - СПОЕ-1 или любой другой мощностью не менее 1 Вт. Конденсаторы - К42У-2 на напряжение 630 В (С1) и 160 В (С2) и КВИ-3 на напряжение 10 кВ (СЗ-С8). На месте С1 и С2 можно использовать конденсаторы на напряжение не менее 400 и 160 В соответственно. Конденсаторы СЗ-С8 - любые другие на напряжение не менее 10 кВ и емкостью не менее 300 пФ. Диод VD1 - любой маломощный кремниевый, VD2 и VD3, VD4 - любые на рабочее напряжение не менее 400 В. Диод VD5 - любой из серии КД202 на напряжение не менее 200 В или другой аналогичный. Высоковольтные столбы могут быть КЦ110А, КЦ105Д, КЦ117А, КЦ118В или другие на напряжение не менее 10 кВ. Тринистор - серий КУ201 или КУ202 на напряжение не менее 200 В. Транзистор VT1 может быть заменен практически любым структуры n-p-n малой или средней мощности, например, серий КТ312, КТ315, КТ3102, КТ603, КТ608; VT2 - любой той же структуры средней или большой мощности с допустимым напряжением коллектор-эмиттер не менее 300 В, например, КТ850Б, КТ854А, КТ940А. В качестве трансформатора Т1 использована автомобильная катушка зажигания Б-115, но подойдет и любая другая автомобильная или мотоциклетная катушка. Провод МГШВ-0,75 к "люстре" выведен из корпуса через изолятор, выточенный из фторопласта, но можно использовать любую толстостенную трубку из изоляционного материала. В отличие от, "люстру" целесообразно изготавливать в следующем порядке. Вначале в качестве игл нужно заготовить соответствующее число канцелярских булавок с колечком. Далее необходимо изготовить кольцо диаметром 80 см, согнув его из металлической трубки диаметром 5...20 мм и соединив концы трубки встык с помощью отрезка металлического стержня подходящего диаметра и заклепок. Вырезать из гофрированного картона круг, свободно проходящий в кольцо. Круг разметить сеткой со стороной квадратов 40 мм и в узлы сетки воткнуть иглы, после чего через колечки игл протянуть луженую медную проволоку в двух направлениях и пропаять колечки. Круг вставить в кольцо и концы проволоки намотать на него, витки желательно пропаять. Аккуратно снять картонный круг, немного растянуть сетку для получения нужного прогиба - "люстра" готова. Устанавливают "люстру" на расстоянии не менее 80 см от потолка, стен, осветительных приборов и 120 см от места нахождения людей в комнате. Целесообразно расположить ее над кроватью, закрепив на двух туго натянутых между стенами комнаты лесках диаметром 1 мм. Лески удобно натянуть треугольником - два крючка для ее крепления устанавливают на стене, к которой "люстра" ближе, один - на противоположной стене. Саму "люстру" крепят к леске небольшими проволочными крючками. В данном варианте люстру делать не стал - ограничился такой вот компактной конструкцией излучателя ионов. Перед первым включением устройства переменный резистор R6 следует установить в нижнее по схеме положение. Включив источник с подключенной к нему "люстрой", плавно увеличивают напряжение, подаваемое на нее, поворачивая ось резистора R6. После появления запаха озона уменьшают напряжение до его исчезновения. Если в источнике высокого напряжения наблюдается коронирование, определите в темноте его место и замажьте расплавленным парафином (конечно, при обесточенном источнике). Ионизатор собрал и испытал Феска. Форум по ионизаторам elwo.ru Сегодня, как ни когда ранее, ионизаторы воздуха востребованы и применяются в самых разных производственных отраслях. Их применение настолько распространилось, что на прилавках магазинов можно найти ионизаторы для помещения и даже автомобиля. Насыщенность воздуха достигается при помощи отрицательных ионов кислорода. Вот они то и убивают большое количество бактерий и прочих воздушных паразитов. Получение горного воздуха не такое уж и трудное дело, как может показаться на первый взгляд. Стоит отметить, что ионизатор тесно связан с высоким напряжением. Собрать такой прибор можно дома, самостоятельно. Для этого не потребуется дорогих деталей, а запчастей хватает в обычных магазинах электроники. Генератор на микросхеме 555, отлично подойдет для вашего прибора. Интегральный таймер 555, стоит всего 20-30 центов и является уникальным прибором, который идеально подойдет для вашего ионизатора. Схема прибора может функционировать как таймер и как генератор прямоугольных импульсов. Подбирая компоненты RC цепочки, можно настроить прибор весьма точно и оптимально эффективно. Что касается трансформатора, то можно его заменять любым другим подходящим для работы ионизатора. Ш сердечник обматывается заранее подготовленной намоткой. Делая обмотку сердечника используйте сразу четыре жилы. Семь — восемь витков, будет достаточно для вашего сердечника. Далее следует обмотка изоляции, которая может состоять из десяти мотков скотча. Вторичная изоляция наматывается через каждые семьдесят или восемьдесят витков. Для всей работы вам потребуется медный провод в 0.1 миллиметр, длиной примерно на 7 или 8-мь сотен витков. На выходную часть схемы устанавливаем выходной умножитель напряжения. Для него как правило используют отечественные диоды КЦ106. Конденсаторы 3кВ и выше, отлично подойдут для вашего прибора. Желательно использовать с объемом более 1000мкФ. Умножитель стоит залить смолой, для избежания замыканий и пробиваний током. Вся схема с легкостью поместится в пластиковую трубку размерами со спичечный коробок. Что касается контактов умножителя, то их стоит располагать на расстоянии не менее пяти миллиметров, в противном случае они будут создавать разряд. При отсутствии света, такое ионизирование воздуха напоминает некое фырканье, так как используются схемы высокого напряжения. Стоит отметить, что эти ионизаторы намного мощней промышленных поэтому стоит быть осторожней при их эксплуатации и соблюдать повышенные меры безопасности. Стоит так же заметить, что и напряжение весьма велико, так что выходные контакты лучше использовать с умом и ограничить это место прибора какой-нибудь защитой, иначе может ударить током. В случаях когда эти два контакта перемыкают, как правило прибор перестает функционировать. По этой причине перед началом работы следует еще раз просмотреть весь прибор на наличие недоработок,которые устранить намного легче, чем осуществлять ремонт всего прибора. И ещё хочу отметить один момент, если вы решили поменять своё лобовое стекло, избавиться от трещины или скола, и поставить новое, то хочу порекомендовать отличную автостудию. Доверьте это непростое дело профессионалам, которые занимаются этим уже не один год. xn----7sbgjfsnhxbk7a.xn--p1ai Сегодня о здоровье и о здоровом образе жизни не говорит только ленивый. Люди многое делают также для оздоровления своей среды обитания, пытаются выбирать только те продукты питания, которые не могут нанести вреда их организму. Вполне естественно, что все начали вспоминать о тех способах оздоровления, которые были массово распространены еще во времена наших родителей. К примеру, сегодня вновь стала актуальна люстра Чижевского. Своими руками ее сделать не так-то просто, но все потраченные усилия того стоят! Здесь следует сделать небольшое отступление, рассказав о том, а что это за люстра такая. В чем заключается ее польза? Что ж, раскроем этот вопрос более подробно. Профессор А. Л. Чижевский, труды которого в настоящее время практически позабыты, в свое время говорил о человеческой глупости в той ее части, в коей она касалась совершенно безалаберного отношения людей к воздуху. К тому воздуху, которым каждый из нас дышит в любую секунду своего существования. Он особенно подчеркивал роль отрицательно заряженных ионов в формировании здоровья органов дыхательной системы человека. Ученый приводил в пример тот факт, что в воздухе средних размеров лесного луга или поляны содержится вплоть до 15 000 отрицательно заряженных ионов в кубическом сантиметре! Для сравнения, в аналогичном объеме воздуха среднестатистической городской квартиры содержится не более 15-50 ионов! Разница видна невооруженным глазом. К сожалению, человек склонен недооценивать сухие факты, а потому приведем более конкретные сведения. Дело в том, что низкое содержание ионов в воздухе способствует развитию заболеваний дыхательной системы, приводит к быстрой утомляемости и низкой работоспособности. Вы никогда не замечали, что при работе на открытом воздухе вы куда меньше устаете? В частности, при работе в квартире порой достаточно выполнить пару мелких работ по дому, чтобы почувствовать себя полностью разбитым. Это и есть негативные последствия малого содержания отрицательных ионов в воздухе. Бороться с этим и помогает люстра Чижевского. Своими руками мы попробуем ее сделать. Этому посвящена данная статья. Самый важный элемент устройства - электроэффлювиальная «люстра», а также трансформатор, преобразующий напряжение. Собственно, «люстрой» в этом случае и называется сам генератор отрицательных ионов. С ее лопастей стекают отрицательно заряженные ионы, которые затем просто приклеиваются к молекулам кислорода. За счет этого последние получают не только отрицательный заряд, но и высокую скорость движения. Для основы берется металлический обод, диаметр которого должен быть не меньше метра. Через каждые четыре сантиметра на нем натягивают медные провода (оголенные) с диаметром примерно 1 мм. Они должны образовать своеобразную полусферу, которая будет несколько провисать вниз. В углах этой сферы должны быть впаяны иглы, длина которых составляет пять сантиметров, а толщина не превышает 0,5 мм. Важно! Иглы должны быть максимально качественно заточены, так как в этом случае уменьшается вероятность образования озона, который в домашних условиях чрезвычайно вреден. Кстати, именно поэтому люстра Чижевского своими руками должна изготавливаться как можно ответственнее, с точным соблюдением всех схем сборки. В противном случае вы можете получить оборудование, которое никак не будет способствовать улучшению вашего здоровья. К ободу прикреплены три медных провода, относящихся друг к другу на 120°. Диаметр – не менее 1 мм, точно в центре люстры они спаиваются вместе. Именно к этой точке следует подавать высокое напряжение. Важно! К этой же точки необходимо приделать крепление, которое будет находиться на расстоянии не менее полутора метров от потолка или потолочной балки. Напряжение должно быть не меньше 25 кВ. Только при такой его величине обеспечивается достаточная живучесть ионов, позволяющая им выполнять свои оздоровительные функции. Но самое важное в нашем повествовании - схема люстры Чижевского, без которой вы вряд ли сможете собрать что-то полезное. Сразу отметим, что в обычной квартире вы вряд ли найдете все необходимое для сборки, так что придется заскочить в магазин радиотехники. Когда идет положительный полупериод, благодаря резистору R1, диоду VD1 и трансформатору Т1, происходит полная зарядка конденсатора С1. Тринистор VS1 в этом случае обязательно блокирован, так как через его управляющий электрод ток в этот момент не проходит. Если полупериод отрицательный, диоды VD1 и VD2 блокируются. На тринисторном катоде сильно падает напряжение в сравнении с управляющим электродом. Таким образом, на катоде образуется минус, а на управляющем электроде получается плюс. Соответственно, происходит образование тока, вследствие чего тринистор открывается. В этот же самый момент происходит полная разрядка конденсатора С1, которая проходит через первичную обмотку трансформатора. Так как трансформатор используется повышающий, то во вторичной обмотке появляется импульс высокого напряжения. Вышеописанный процесс происходит в течение каждого периода напряжения. Учтите, что импульсы высокого напряжения нужно обязательно выпрямлять, так как при разрядке через первичную обмотку возникают затухающие колебания. Используют для этого выпрямитель, который собирают на диодах VD3–VD6. Именно с его выхода и поступает напряжение (не забывает ставить резистор R3) на саму «люстру». Описанная нами схема люстры Чижевского также может быть найдена в любом советском журнале для любителей радиотехники, но в любом случае полезно описать ее принцип действия. Без этого будет сложнее разобраться в некоторых нюансах сборки. Резистор R1 можно составить из трех МЛТ-2, соединенных параллельно. Сопротивление каждого – не меньше 3 кОм. Резистор R3 также составляем из них же, но здесь МЛТ-2 можно взять уже четыре штуки, причем их общее сопротивление должно составлять порядка 10…20 МОм. На R2 берем один МЛТ-2. Не следует брать дешевые разновидности всех вышеперечисленных комплектующих: такой блок питания для люстры Чижевского вполне может вызвать пожар, попросту не выдержав напряжения. Диоды VD1 и VD2 можно брать практически любые, но сила тока должна быть не меньше 300 мА, а величина обратного напряжения – не менее 400 В (на диоде VD1) и 100 В (VD2). Если же говорить о VD3–VD6, то для них можно взять КЦ201Г–КЦ201Е. Конденсатор С1 берем МБМ, который может выдержать напряжение не меньше 250 В, С2 и С5 берутся ПОВ, рассчитанные на напряжение никак не меньше 10 кВ. Кроме того, С2 должен выдерживать не меньше 15 кВ. разумеется, вполне допустимо брать любые другие конденсаторы, выдерживающие ток в 15 кВ и более. В этом случае самодельная люстра Чижевского обойдется дешевле. Как правило, многие необходимые комплектующие можно вытащить из старой радиотехники. Тринистор VS1 можно выбрать из КУ201К, КУ201Л или КУ202К–КУ202Н. Трансформатор Т1 вполне может быть сделан из классической катушки зажигания Б2Б (6 В) от любого советского мотоцикла. Впрочем, никто не запрещает взять для этой цели аналогичную деталь от автомобиля. Если у вас есть старый телевизионный трансформатор строчной разверстки ТВС-110Л6, то это очень хорошо. Его третий вывод нужно соединить с конденсатором С1, второй и четвертый выводы сопрягают с общим проводом. Высоковольтный же провод необходимо соединить с конденсатором СЗ и диодом VD3. Вот примерно так и делается люстра Чижевского своими руками. Как видите, необходимо обладать хотя бы базовыми знаниями в электронике. Не верьте тем шарлатанам в интернете, которые говорят о возможности сборки такой «люстры» из подручных материалов, так как это фактически нереально. Как же убедиться в том, что собранная с такими трудами конструкция нормально работает? Предлагаем использовать для этого самый надежный и примитивный инструмент – небольшой кусочек ваты. Даже простейшая люстра Чижевского, фото которой есть в статье, обязательно будет на него реагировать. Известно, что даже небольшой пучок волокон хлопка начнет притягиваться к люстре с расстояния примерно полуметра. Если же просто подвести руку к иголкам люстры, то уже на расстоянии 10-15 см вы ощутите явственный холодок, который будет указывать на полную исправность оборудования. Кстати, если вы решите сделать компактную версию ионизатора, то иглы можно заменить на одну металлическую пластинку с зубьями. Конечно, эффективность подобного прибора будет куда ниже, но для оздоровления воздуха около рабочего места он вполне подойдет. Запомните, что люстра Чижевского, отзывы о которой в большей части случаев свидетельствуют о ее благотворном воздействии на организм, обязательно должна находиться на расстоянии не менее полутора метров от человека. Сеансы следует проводить в течение 45-50 минут максимум. Лучше всего делать это перед сном, когда свежий ионизированный воздух поможет снять напряжение и зарядиться силами для следующего рабочего дня. Во-вторых, следует помнить о том, что душный и спертый воздух бесполезно ионизировать. Если в комнате один углекислый газ, то пользы от этого мероприятия не будет ровным счетом никакой. Кстати, ионизатор можно эффективно использовать в южных регионах, где большой проблемой является сильное запыление воздуха. В этом отношении люстра Чижевского, отзывы о которой это подтверждают, способна осаждать пыль даже при условии низкой влажности. Конечно же, мы рассказали вам только об одной конструкции ионизатора, которая вполне подойдет для использования не только в домашних, но и в промышленных условиях. В принципе, вы можете сами модернизировать схему. Следует только учитывать, что выходное напряжение должно быть никак не меньше 25 кВ. Кстати, еще раз напоминаем, что в интернете часто встречается схема (люстра Чижевского своими руками), на которой выходное напряжение на выпрямителе даже меньше 5 кВ! Уверяем вас, что никакой практической пользы такое устройство не приносит. Да, «бюджетная люстра» будет создавать некую концентрацию отрицательно заряженных ионов, но в своей массе они будут слишком тяжелыми, а потому неспособными к циркуляции в воздушном потоке помещения. Впрочем, такие приборы с успехом могут быть использованы в качестве очистителя помещения от пыли в воздухе, которая будет попросту осаждаться. В конце концов, люстра Чижевского - ионизатор воздуха, а не продвинутый его очиститель. Для этого куда лучше пользоваться обычным кондиционером. Но! Запомните еще и тот факт, что любые принципиальные изменения конструкции, которая была предложена еще самим Чижевским, строго противопоказаны. Если вы не разбираетесь в электротехнике и физиологии, то эксперименты приведут лишь к уменьшению КПД устройства, а также к выработке им недостаточного количества ионов. Вы лишь понапрасну будете сжигать электричество, ровным счетом ничего не получая взамен. Вообще, люстра Чижевского своими руками (фото которой есть в статье) изготовленная, даст прекрасную возможность сэкономить деньги на дорогостоящем медицинском оборудовании, сделать свою жизнь здоровее. fb.ru В этой статье описывается устройство автомобильного ионизатора воздуха, которое можно использовать для очистки воздуха в салоне от дыма, пыли, неприятных запахов, пыльцы растений и т.п. Схема была разработана по просьбе одного из посетителей. Раньше я собирал схему для ионизатора воздуха в доме, с использованием нескольких конденсаторов и диодов. Она работает напрямую от сети 220в. Путем добавления каскада преобразователей эту схему можно превратить в цепь автомобильного ионизатора воздуха для 12в. Этот каскад представляет собой инвертер меандра, преобразующий постоянный ток напряжением 12В в переменный ток напряжением 220В, который необходим для функционирования цепи. Основа цепи взята из конструкции генератора Кокрофта – Уолтона, в котором используются параллельные соединения множества диодов и конденсаторов высокого напряжения. Это я делал для 220 вольт. Описание работы При подключении к сети, напряжение создает в цепи эффект, который приводит к росту напряжения в цепи. На выходе его значение может достигать 4 кВт.Для обеспечения ионизирующего эффекта, благоприятно влияющего на здоровье, необходимо достигнуть напряжения около 4 кВт. Частицы пыли в воздухе изначально имеют нейтральный заряд, взаимодействуя с отрицательными ионами, они мгновенно связываются последними.Процессы взаимодействия ионов с частицами, содержащимися в воздухе, продолжаются до тех пор, пока ионы не становятся настолько тяжелыми, что уже не могут подниматься. При этом они оседают на стенах или падают на пол.Таким образом путем ионизации происходит очистка воздуха от вредных примесей. Сборка цепи На диаграмме, приведенной ниже, можно заметить, что цепь состоит из двух каскадов. Левая часть представляет собой инвертер, а секция справа от трансформатора – ионизатор.Обе составляющие перед интеграцией нужно собирать и проверять отдельно.На первый взгляд, сборка ионизатора, состоящего главным образом из конденсаторов и диодов, не представляет особой сложности, однако, вся конструкция весьма чувствительна к плохой пайке и возможным утечкам тока в местах скопления флюса. Даже небольшая погрешность при монтаже может привести к полной неработоспособности цепи. Сборку соединений следует производить с максимальной тщательностью. Убедитесь, что в них отсутствует сухой припой и отложения флюса. Ионизатор можно проверить в домашних условиях, подключив его к бытовой сети напряжением 220 В. Будьте крайне осторожны! Цепь подсоединяется напрямую к бытовой сети, что может вызвать смертельное поражение электрическим током при неосторожном прикосновении к какому-либо из элементов. Инвертор собрать лекго, так как он состоит всего из пары транзисторов и нескольких резисторов. Характеристики трансформатора следующие: 12-0-12В, 500 мА. После сборки подсоедините его к источнику постоянного тока напряжением 12 В и проверьте работу цепи. Напряжение на выходе должно достигать 220 В. Для финальной проверки выход инвертора необходимо подсоединить ко входу цепи ионизатора. Результатом должно стать высвобождение электронов на свободном конце цепи инвертора, которое будет создавать ионизирующий эффект. xn--100--j4dau4ec0ao.xn--p1ai категория материалы в категории В. КОРОВИН, г. МоскваЖурнал Радио, 2000 год, №3 Аэроионизатор "Люстра Чижевского" на протяжении многих десятилетий доказал свою способность "оздоровлять" воздух наших жилищ, насыщая их живительными отрицательными аэроионами. Об этом приборе журнал "Радио" неоднократно рассказывал на своих страницах. Отталкиваясь от идей Чижевского, многие конструкторы с переменным успехом пытаются разработать малогабаритные аэронизаторы, которые не заменяют "Люстру Чижевского", но могут создать в помещении атмосферу, в которой работается легче.Мы предлагаем вниманию читателей одну из таких конструкций, которую создал кандидат технических наук Виктор Николаевич Коровин (патент РФ № 2135227). Она прошла испытания в ожоговом центре института им. Склифосовского и получила положительное заключение, имеет гигиенический сертификат. Разработка нового аэроионизатора была предпринята с целью создать компактный домашний прибор. Но прежде, чем появилась завершенная конструкция, автором проведено немало экспериментов. Сначала они проводились с простым тринисторным высоковольтным преобразователем, от которого впоследствии пришлось отказаться по причине создаваемых им электромагнитных помех и малого КПД. В дальнейшем был изготовлен однотранзисторный преобразователь, положенный в основу описываемого аэроионизатора. Оба типа преобразователей позволяли получать на ионизирующем электроде отрицательный потенциал до 80 кВ. Для изменения напряжения на электроде использовался регулируемый автотрансформатор, с выхода которого питающее напряжение частотой 50 Гц подавалось на преобразователь. Напряжение на электроде измерялось вольтметром с магнитоэлектрическим стрелочным индикатором (ток полного отклонения стрелки 50 мкА) и добавочным резистором conpoтивлением 2 ГОм. составленным из 20 последовательно соединенных резисторов по 100 МОм каждый). Таким образом, предел измеряемого напряжения составлял 100 кВ. В экспериментах использовался электрод в виде пучка тонких заостренных на концах проводников (в форме "одуванчика"). Результаты измерений показали, что уже при потенциале 20 кВ на расстоянии 2 м от ионизирующего электрода концентрация аэроионов находится на уровне максимально допустимой санитарными нормами. Поэтому при любых больших значениях потенциала на электроде минимальное расстояние, на котором возможно длительное пребывание человека, становится еще больше. Другой важный вывод заключается в том, что концентрация легких аэроионов существенно уменьшается при удалении от электрода — примерно в 10 раз на каждом метре удаления. Этот спад обусловлен рекомбинацией (гибелью) ионов, а также их захватом различными аэрозольными частицами, загрязняющими воздух. Из-за рекомбинации среднее время существования (продолжительность "жизни") легких аэроионов весьма ограничено и практически не превышает десятка секунд. Поэтому принципиально невозможно создать в помещении равномерное распределение аэроионов, и уж тем более пытаться насытить ими воздух в нескольких помещениях, если ионизатор установлен только в одном из них. Бесполезно также пытаться запастись аэроионами впрок. После выключения прибора их концентрация быстро упадет до фонового уровня. Но польза от поработавшего прибора все равно будет проявлять себя еще долгое время в виде чистого воздуха. При необходимости насыщения аэроионами нескольких помещений нужно каждое из них оснащать ионизатором или пользоваться переносным прибором. С учетом сказанного и был разработан компактный аэроионизатор, названный автором "Корсан" (рис. 1). Высоковольтный преобразователь и коронирующий электрод в нем конструктивно объединены в одно целое посредством разъема. В качестве корпуса преобразователя применена половина пластмассовой мыльницы внешними габаритами 110x80x30 мм. в которой размещены плата однотранзисторного автогенератора с бестрансформаторным питанием от сети 220 В. диодный умножитель напряжения, токоограничивающий защитный резистор и гнездо для крепления электрода. На корпусе прибора отсутствует выключатель питания, поскольку пользоваться им невозможно из-за возникновения статического заряда на теле человека при приближении к работающему прибору. Поэтому аэроионизатор оснащен длинным (не менее 2 м) гибким шнуром питания с вилкой на конце, которой и осуществляется включение и выключение прибора. Габариты корпуса позволяют разместить в нем диодный умножитель на 40 кВ и более. Но основываясь на опыте трехлетней эксплуатации ионизатора в быту и в медицинских учреждениях, следует признать целесообразным для бытового применения выбор потенциала на электроде от 15 до 30 кВ. Электрическая схема аэроионизатора приведена на рис. 2. Переменное напряжение сети 220 В с помощью диодного моста VD1 и конденсатора С1 преобразуется в постоянное напряжение около 310 В. которым питается высоковольтный автогенератор. Он выполнен на транзисторе VT1 и трансформаторе Т1. Обмотка I и конденсатор С2 образуют колебательный контур, включенный в коллекторную цепь транзистора последовательно с резистором R2 и индикаторным светодиодом HL1. за-шунтированным резистором R3. С обмотки II через разделительный конденсатор СЗ на базу транзистора подается напряжение положительной обратной связи. Резисторы R4—R6 определяют режим автосмещения на базе. На повышающей обмотке III развивается переменное напряжение с амплитудой около 3 кВ, которое подводится к умножителю на диодах VD2—VD11 и конденсаторах С4—С13. При десяти каскадах умножения достигается отрицательный потенциал 30 кВ. При использовании восьмикаскадного умножителя на его выходе будет соответственно 24 кВ. Выход умножителя соединен с гнездом Х2 через защитный резистор R7, ограничивающий ток при случайном касании коронирующего электрода до безопасного значения. Самый ответственный элемент устройства — высоковольтный трансформатор (рис. 3). Он выполнен на одиннадцатисекционном цилиндрическом каркасе 2 с магнитопроводом 1 диаметром 8 мм из феррита М400НН. Повышающая обмотка III содержит 3300 витков провода ПЭЛШО 0.06 и равномерно уложена в секциях каркаса по 300 витков в каждой. Обмотка I содержит 300 витков ПЗЛШО 0.1 и намотана в три ря да на гильзе 4. расположенной на краю каркаса со стороны левого по схеме вывода обмотки III. Четыре витка обмотки обратной связи II намотаны проводом ПЭЛШО 0.1 поверх обмотки I и отделены от нее слоем изолирующей ленты (скотч) 3. Длина каркаса с магнитопроводом может лежать в пределах 70... 100 мм и определяется размерами корпуса. Каркас 2 и гильза 4 трансформатора могут быть склеены из 3—4 слоев бумаги, используемой для принтеров или ксероксов. Щечки для разделения секций можно изготовить из плотной бумаги толщиной 0,3...0,5 мм. Но лучше всего, конечно, выточить секционный каркас из диэлектрика (фторопласт, полистироп, оргстекло, эбонит или плотная древесина). Начало и конец обмотки III подпаивают к выводам 5, приклеенным к краям каркаса. Выводы легко выполнить из одножильного медного провода диаметром 0,4...0.5 мм. но нельзя создавать короткозамкнутых витков. Этими же выводами трансформатор крепят к плате. Выводы обмоток I и II подпаивают к плате с соблюдением указанной на схеме фазировки. Описанная конструкция допускает работу трансформатора без какой-либо специальной пропитки. Лучшие результаты будут получены, если вместо указанного на схеме биполярного транзистора КТ872А применить любой транзистор БСИТ из серий КП810. КП953 или КП948А (вывод затвора используется как база, стока — коллектор, истока — эмиттер). Диодный мост VD1 — любой, рассчитанный на выпрямленный ток не менее 100 мА и обратное напряжение не ниже 400 В; выпрямительные столбы VD2—VD11 — КЦ106Б-КЦ106Г или любые из серий КЦ117. КЦ121 — КЦ123. Конденсатор С1 — емкостью от 1 до 10 мкФ на напряжение не ниже 315 В; С2. СЗ — любого типа, но С2 на рабочее напряжение не менее 315 В; С4—С13 — К15-5 емкостью 100—470 пФ на напряжение 6,3 кВ. Светодиод — любой с видимым излучением. Резисторы R1—R6 - С2-23, С2-33. МЯТ. ОМЛТ; R7 - СЗ-14-0.5 или СЗ-14-1. При использовании исправных деталей и безошибочном монтаже аэроионизатор начинает работать сразу. Контроль работы автогенератора и измерение его основных параметров удобно проводить с помощью миллиамперметра переменного тока с пределом измерения 25—50 мА и осциллографа, позволяющего наблюдать на экране электрический сигнал с размахом не менее 600 В. Измеритель тока позволяет определять и минимизировать потребляемую от сети мощность, а осциллограф — визуально контролировать и оптимизировать работу устройства, а также косвенно определять значение постоянного напряжения на выходе умножителя. Измеритель переменного тока включают в разрыв любого сетевого провода. Но прежде, чем вставить вилку X1 в сетевую розетку, запомните, что аэроионизатор питается без разделительного трансформатора и, следовательно, любой его элемент находится под опасным для человека напряжением относительно нулевого провода. Поэтому помните о мерах безопасности и соблюдайте их! Первое включение целесообразно сделать без диодного умножителя. При отсутствии генерации (контролируют осциллографом, подключенным к коллектору транзистора) надо обратить внимание на потребляемый ток (ток покоя). Если он не превышает 1 мА, возможно, транзистор имеет пониженный коэффициент передачи тока базы, и его лучше заменить. Но можно попытаться увеличить ток покоя подбором резистора R5 с меньшим сопротивлением Если ток покоя находится в пределах 2...5 мА. а генерации нет. причиной ее отсутствия может быть неправильная фазировка выводов обмоток трансформатора. В этом случае бывает достаточно поменять местами концы любой из обмоток — I или II. Если и после этого генерация не возникает или колебания есть, но весьма малой амплитуды (транзистор работает без отсечки), придется увеличить число витков (на 1 ...2) обмотки обратной связи II. В нормально работающем генераторе (его частота 40...60 кГц) пиковое напряжение на коллекторе относительно общего провода находится в пределах 500...600 В, угол отсечки транзистора близок к 90° (транзистор насыщен в течение четверти периода), потребляемый ток не превышает 15 мА. При таком режиме в транзисторе выделяется мощность не более 1 Вт, и его можно использовать без радиатора. Следует иметь в виду, что КПД генератора связан с углом отсечки транзистора. Значение этого параметра нетрудно оптимизировать с помощью осциллографа подбором резистора R4 и напряжения на обмотке II. Чем больше напряжение (больше витков) и меньше сопротивление резистора, тем больше угол отсечки. Зависимость КПД от угла отсечки носит экстремальный характер, и оптимальный режим достигается при значениях угла 80—100°. После того, как будет закончена настройка генератора, можно измерить с помощью осциллографа амплитуду напряжения на повышающей обмотке III. Для этого проще всего воспользоваться емкостным делителем напряжения (рис. 4). Конденсатор С1 должен быть с рабочим напряжением не менее 3000 В, например КВИ, а конденсатор С2 — любого типа. Коэффициент делении такой цепочки при указанных номиналах конденсаторов и входной емкости осциллографа 100 пФ равен 100. С достаточной точностью напряжение на ионизирующем электроде (на гнезде Х2) определяется умножением амплитудного значения напряжения на повышающей обмотке III на число каскадов диодного умножителя. В завершение настройки можно испытать работу устройства с подключенным умножителем. Для этого его надо соединить с повышающей обмоткой III проводами длиной не менее 10 см и расположить на листе из хорошего диэлектрика (оргстекло, гетинакс и др.). Наилучшим способом проверки является измерение отрицательного потенциала на выходе умножителя относительно заземленного провода с помощью высоковольтного вольтметра. Но можно ограничиться и простым включением. В нормально работающем преобразователе, как правило, между выводами конденсаторов диодного умножителя происходит коронный разряд, сопровождаемый характерным шипением и запахом озона, но возможны и искровые разряды. Эксплуатировать аэроионизатор в таком виде, конечно, нельзя. Требуется как минимум герметизация умножителя диэлектрическим компаундом. Если будет принято решение о герметизации только одного умножителя, то конструкция всего ионизатора должна быть такой, чтобы расстояние между коронирующим электродом и высоковольтным блоком было не менее 1 м. В противном случае надежность аэроионизатора резко падает и он может выйти из строя уже через несколько месяцев. По корпусу высоковольтного блока через имеющиеся стыки и зазоры начинают протекать микротоки, со временем переходящие в искровые разряды, что обусловлено не только неизбежным оседанием аэрозольных частиц на его поверхности, но и их проникновением внутрь корпуса. В описываемой конструкции герметизированы все детали устройства эпоксидным клеем ЭДП. Перед заливкой узлы и элементы монтируют в диэлектрическом корпусе с толщиной стенок не менее 1,5 мм. Надо принять меры по устранению возможных протечек смолы через отверстия, используемые для крепления разъема, светодиода и ввода сетевого шнура. Для этого диаметр отверстий следует точно согласовать с соответствующими элементами. Можно воспользоваться предварительной герметизацией этих мест клеем ПВА, "Момент", БФ и др. Клей ЭДП используют в соответствии с прилагаемой к нему инструкцией. Перед смешиванием с отвердителем основу разогревают до температуры 70...90°С для повышения текучести и ускорения процесса отверждения. Но надо обязательно учитывать, что после смешения компонентов реакция отверждения происходит с выделением большого количества тепла. При объеме смолы более 50 мл может произойти саморазогрев с закипанием и отверждением в течение нескольких минут. Поэтому необходимо использовать наполнитель (кварцевый или речной песок), вводимый в уже подготовленную к заливке массу в объемном соотношении 1:1. Эксплуатация прибора возможна не ранее 24 часов после заливки корпуса. radio-uchebnik.ru Наверняка все слышали о таком изобретении как "Люстра Чижевского". Это устройство способно заряжать воздух отрицательными ионами, что очень благоприятно сказывается на здоровье. По мнению некоторых, такое устройство способно излечивать от целого ряда заболеваний. В природе воздух с подобными качествами можно встретить только в горах, но теперь есть возможность создать горный воздух у себя дома. Люстра Чижевского была изобретена 1927 году, и по сей день она активно применяется в медицине, растениеводстве, животноводстве сельском хозяйстве и так далее. Сегодня это чудо техники можно купить, но далеко не все приборы способны работать правильно. Так, например, в приобретенном приборе напряжение на электроде редко составляет более 25 кВ, а это значит, что такой ионизированный воздух вообще никак не влияет на здоровье. А если ионизатор при работе образует запах озона или окислов азота, то это и все вредно для здоровья. Рассмотрим несколько простых схем, с помощью которых можно собрать ионизатор воздуха своими руками. Материалы и инструменты:- паяльник с припоем;- высоковольтный трансформатор;- транзисторы;- стабилитроны;- диодные мосты;- резисторы;- конденсаторы;- и другие радиоэлементы. Полный перечень материалов зависит от конкретно выбранной самоделки. Процесс изготовления ионизатора: Самый безопасный ионизатор воздуха На популярном сайте электроники RADIOSKOT была представлена самая безопасная версия ионизатора воздуха. В первую очередь плюс устройства в том, что в нем отсутствуют наружные элементы, на которых есть высокое напряжение, в связи с этим снижается вероятность получить удар током при прикосновении. Еще предложенная схема создает не такой уровень радиопомех и меньше вырабатывает статического напряжения, что может приводить в негодность окружающую технику. Ну и наконец, промышленные ионизаторы часто очень сильно притягивают к себе пыль, здесь этот недостаток также постарались убрать. Схема ионизатора от RADIOSKOT.RUВ качестве основы для ионизатора используется мультивибратор, построенный на транзисторах VT1 и VT2. Частота мультивирбратора меняется с помощью подстроечного резистора R7 в пределах от 30 до 60 кГц. От мультивибратора импульсы поступают на преобразователь напряжения, его построили на двух транзисторах VT3, VT4, а также трансформаторе Т1. При изменении частоты на преобразователе, меняется выходное напряжение на выходе преобразователя. Если уменьшать частоту, выходное напряжение будет расти. Далее высокое напряжение (порядка 2.5 кВ) с вторичной обмотки трансформатора Т1 идет на вход умножителя, он собран на конденсаторах С8-С13 и диодах VD5-VD10. Ну а затем напряжение отправляется непосредственно на саму люстру, она выполнена из многожильного медного кабеля, жилы которого разветвлены зонтиком под прямым углом. Один вывод вторичной обмотки трансформатора T1 подключен к корпусу (минусу) устройства. Расстояние между электродами подбирается индивидуально. ЗащитаЧтобы предотвратить систему от возникновения между электродами и другими элементами конструкции слишком большой разности потенциалов, используются резисторы R8-R10. Чтобы не пробило вторичную обмотку трансформатора, в системе предусмотрен разрядник SG1. ПитаниеСхема питания построена на реактивном емкостном сопротивлении. Она состоит из стабилитрона VD2, конденсаторов C1,С2, диодного моста VD1 и резистора R2. Корпус и вентиляторЧтобы сделать устройство безопасным, его помещают в корпус от компьютерного блока питания. Для обеспечения циркуляции ионизированного воздуха используется компьютерный кулер, который стоит на родном месте в блоке питания. Вентилятор работает от источника питания в 12В и для него также предусмотрена отдельная схема. Ионизатор для автомобиляТакже небольшой ионизатор можно установить в автомобиле, один автор на сайте TEXNIC.RU решил поделиться такой самоделкой. Система устроена таким образом, что генерирует прямоугольные импульсы, которые затем поступают на затвор транзистора полевого типа. Он, в свою очередь, закрывается или открывается с заданной частотой. Транзистор подключен к трансформатору, вследствие этого на его первичной обмотке образуется импульсное напряжение. Что касается транзистора, то он должен быть мощным, для этих целей хорошо подходит IRF740 или IRF840. Что касается трансформатора, то здесь используется тот, который применяется в кинескопах для строчной развертки. На свободной стороне сердечника нужно намотать десять витков медного провода диаметром один миллиметр. Вторичная обмотка строчника используется родная. Высокое напряжение поступает от вторичной обмотки на выпрямитель и потом заряжает конденсатор. В качестве диода можно использовать КЦ106Г или КЦ123. Еще пару схем ионизаторов воздузхаНа сайте http://elektricvdome.ru была выложена схема создания классического ионизатора воздуха, то есть в виде люстры. Основное кольцо делается из оголенной медной проволоки диаметром 4.5 мм. Далее на это кольцо перпендикулярно натягивают более тонкую медную проволоку диаметром 0.7-1 мм. Еще для создания кольца можно использовать металлический гимнастический обруч. Чтобы на люстре сделать иглы, используются обыкновенные булавки. Их впаивают в местах пересечения проволоки. Люстра крепится с помощью трех кусков медной проволоки диаметром 0.7-1 мм, которая крепится к ободу под углом 120 градусов. Теперь лишь осталось подключить напряжение к люстре, его можно провести любым проводом, подойдет даже антенный кабель. Источник vashesamodelkino.ru
Статьи
Благоприятные свойства ионизированного воздуха известны давно. Кроме того он обладает также дезинфецирующими свойствами, которым можно найти необычное применение. Получить такой воздух можно с помощью генератор высокого напряжения импульсного типа.Предлагаю вашему вниманию статью, найденую в одном из номеров журнала "Юный техник".
Приятно в разгар зимы отведать свежих плодов — таких, словно они только что с дерева или с грядки. Как же сделать, чтобы нежные фрукты и овощи не портились?
На выставке НТТМ-81 в Москве наше внимание привлек прибор под названием ИОН-1, созданный в клубе юных техников «Заря» города Ижевска: небольшой ящичек с резиновым шлангом, заканчивающимся трубкой из оргстекла. Сконструировали и построили прибор девятиклассник Саша Кислухин и восьмиклассник Саша Акимов под руководством инженера Владимира Васильевича Цымбалова. Нам сказали, что плоды, обработанные с помощью ИОНа, не портятся в течение нескольких месяцев. Посмотрим, как действует ИОН-1.
Известно, что микроорганизмы не могут жить в атмосфере, насыщенной ионами. Вот такую ионизированную атмосферу и создает прибор. Основные его части: генератор высокого напряжения импульсного типа, центробежныйнасос и ионизационная камера. Генератор создает напряжение около 30 кВ. Насос прогоняет воздух через камеру, в которой 100 раз в секунду вспыхивает искровой разряд. Эта маленькая молния отрывает от атомов и молекул отдельные электроны, то есть создает ионы. Поток ионизированного воздуха направляется в банку, где лежат тщательно вымытые и насухо вытертые плоды. Таков принцип действия ИОНа. А теперь подробнее о его электрической схеме.
Тр — трансформатор мощностью 50 —100 Вт. С обмотки II снимается напряжение около 300 В и с помощью двухполупериодного выпрямителя превращается в пульсирующее однополярное. С обмотки III должно сниматься напряжение, необходимое для питания двигателя, вращающего крыльчатку воздухо-насоса. (Если для воздухонасоса удастся найти маломощный двигатель с номинальным напряжением 220 В, то надобность в обмотке III отпадет и схема значительно упростится.) В конструкции ижевских ребят использован двигатель ДПМ-30.
Пульсирующее однополярное напряжение поступает на обкладки неполярного накопительного конденсатора 4-мкф Одновременно повышается напряжение на управляющем электроде разрядного тиристора КУ202Н. Тиристор можно использовать без радиатора. Цепи рассчитаны так, что тиристор открывается в момент, когда на конденсаторе накопится напряжение около 250 В. При быстром разряде конденсатора через тиристор и первичную обмотку автомобильной катушки зажигания (ею может быть Б-115 или любая другая катушка зажигания на 12 В) генерируется высоковольтный импульс. Катушку можно приобрести в магазине автозапчастей. Корпус катушки зажигания нужно соединить с общим проводом — «землей». Высокое напряжение подведено к разряднику ионизационной камеры. Потенциометром 2к добиваются ровного горения высоковольтной искры.
Ионизационную камеру лучше всего изготовить из оргстекла. Резиновым шлангом она соединяется с воздухонасосом. Электроды сделайте из проволоки диаметром 1 мм и вдавите паяльником в стенки камеры. Длина искровых промежутков должна быть около 10 мм.
Внимание! Внутри прибора — высокое напряжение! Корпус ИОНа должен быть изготовлен из изолирующего материала. Категорически запрещается открывать корпус прибора или разбирать его, не отключив от сети.
Итак, ИОН готов. Обдуйте свежесорванные фрукты и овощи ионизированным воздухом в течение 15—20 мин. Теперь можете герметически закупорить банку — и до зимы!
Другую схему высоковольтного генератора Вы можете подобрать здесь . М. ЛУКИЧ
Смотрите также: Генератор озона своими руками
radiopolyus.ruИонизатор воздуха своими руками (несколько схем). Ионизатора воздуха схема
САМОДЕЛЬНЫЙ ИОНИЗАТОР
Автомобильный ионизатор воздуха своими руками — Поделки для авто
Похожие статьи:
Самодельная люстра Чижевского. Своими руками делаем домашний ионизатор воздуха
Что за люстра такая?
Для чего она нужна, практический эффект
Основные узлы
Механическая основа
Замечания по креплению
Электрические схемы и принцип работы
Некоторая важная информация
Тринисторы и трансформатор
Как проверить работоспособность конструкции
Немного сведений о правильном проведении сеансов ионотерапии
Где ее можно применять?
Как собрать схему автомобильного ионизатора воздуха
Радиосхемы. - Малогабаритный ионизатор воздуха
Малогабаритный ионизатор воздуха
Электроника в быту
Ионизатор воздуха своими руками (несколько схем)
Необычное применение ионизатора воздуха
Поделиться с друзьями: