интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

58. Полупроводниковые приемники излучения. Фотодиод, устройство, принцип действия, схема включения. Фотодиод схема включения


Фотодатчик. Часть 1 | Электроника для всех

Наверняка многим захочется присобачить к AVR фотодетектор, чтобы отслеживать хотя бы наличие или отсутствие света. Это полезно как для роботостроителей, так и для тех кто делает всякую автоматику. Итак, кратко опишу какие бывают фотодетекторы.

ФоторезисторИМХО вымирающий вид. Последний раз я его видел еще в детстве. Обычно представляет собой такой металический кругляк со стеклянным окошком, в котором видна этакая сероватая зигзагообразная дорожка. При освещении его сопротивление падает, правда незначительно, раза в три четыре.

ФототранзисторПоследнее время я на них натыкаюсь постоянно, неиссякаемый источник фототранзисторов — пятидюймовые дисководы. Последний раз я, по цене грязи, надыбал на радио барахолке штук 5 платок от дисковертов, там светотранзисторы стоят напротив дырок контроля записи и вращения дискеты. Еще сдвоенный фототранзистор (а может и фотодиод, как повезет) стоит в обычной шариковой мышке.Выглядит как обычный светодиод, только корпус прозрачный. Впрочем, светодиоды тоже такие же бывают так что перепутать кто из них кто раз плюнуть. Но это не беда, партизан легко вычисляется обычным мультиметром. Достаточно включить омметр между его эмитером и коллектором (базы у него нет) и посветить на него, как его сопротивление рухнет просто катастрофически — с десятков килоом до считанных ом. Тот который у меня в детекторе вращения шестерен в роботе меняет свое сопротивление с 100кОм до 30 Ом. Работает фототранзистор подобно обычному — держит ток, но в качестве управляющего воздействия тут не ток базы, а световой поток.

ФотодиодВнешне ничем не отличается от фототранзистора или обычного светодиода в прозрачном корпусе. Также порой встречаются древние фотодиоды в металлических корпусах. Обычно это совковые девайсы, марки ФД-чето там. Такой металлический цилиндрик с окошком в торце и торчащими из задницы проводками.

В отличии от фототранзистора, может работать в двух разных режимах. В фотогальваническом и фотодиодном.В первом, фотогальваническом, варианте фотодиод ведет себя как солнечная батарейка, то есть посветил на него — на выводах возникло слабенькое напряжение. Его можно усилить и применить =). Но куда проще работать в фотодиодном режиме. Тут мы подаем на фотодиод обратное напряжение. Поскольку он хоть и фото, но диод, то в обратную сторону напряжение не пойдет, а значит его сопротивление будет близко к обрыву, а вот если его засветить, то диод начнет очень сильно подтравливать и сопротивление его будет резко падать. Причем резко, на пару порядков, как у фототранзистора.СпектрКроме типа прибора у него еще есть рабочий спектр. Например, фотодетектор заточенный на инфракрасный спектр (а их большинство) практически не реагирует на свет зеленого или синего светодиода. Плохо реагирует на лампу дневного света, но хорошо реагирует на лампу накаливания и красный светодиод, а уж про инфракрасный и говорить нечего. Так что не удивляйся если у тебя фотодатчик плохо реагирует на свет, возможно ты со спектром ошибся.

ПодключениеТеперь пора показать как это подключить к микроконтроллеру. С фоторезистором все понятно, тут заморочек нет никаких — берешь и подцепляешь как по схеме.С фотодиодом и фототранзистором сложней. Надо определить где у него анод/катод или эмитер/коллектор. Делается это просто. Берешь мультиметр, ставишь его в режим прозвонки диодов и цепляешься на свой датчик. Мультиметр в этом режиме показывает падение напряжения на диоде/транзисторе, а падение напряжения тут в основном зависит от его сопротивления U=I*R. Берешь и засвечиваешь датчик, следя за показаниями. Если число резко уменьшилось, значит ты угадал и красный провод у тебя на катоде/коллекторе, а черный на аноде/эмитторе. Если не изменилось, поменяй выводы местами. Если не помогло, то либо детектор дохлый, либо ты пытаешься добиться реакции от светодиода (кстати, светодиоды тоже могут служить детекторами света, но там не все так просто. Впрочем, когда будет время я покажу вам это технологическое извращение).

Теперь о работе схемы, тут все элементарно. В затемненном состоянии фотодиод не пропускает ток в обратном направлении, фототранзистор тоже закрыт, а у фоторезистора сопротивление весьма высоко. Сопротивление входа близко к бесконечности, а значит на входе будет полное напряжение питания aka логическая единица. Стоит теперь засветить диод/транзистор/резистор как сопротивление резко падает, а вывод оказывается посажен наглухо на землю, ну или весьма близко к земле. Во всяком случае сопротивление будет куда ниже 10кОмного резистора, а значит напряжение резко пропадет и будет где то на уровне логического нуля. В AVR и PIC можно даже резистор не ставить, вполне хватит внутренней подтяжки. Так что DDRx=0 PORTx=1 и будет вам счастье. Ну а обратывать это как обычную кнопку. Единственная сложность может возникнуть с фоторезистором — у него не настолько резко падает сопротивление, поэтому до нуля может и не дотянуть. Но тут можно поиграть величиной подтягивающего резистора и сделать так, чтобы изменения сопротивления хватало на переход через логический уровень.

Если надо именно измерять освещенность, а не тупо ловить светло/темно, то тогда надо будет подцеплять все на АЦП и подтягивающий резистор делать переменным, для подстройки параметров.

Есть еще продвинутый тип фотодатчиков — TSOP там встроенный детектор частоты и усилитель, но о нем я напишу чуть попозже.

Фотодатчик. Часть 2. Модуляция

З.Ы.У меня тут некоторые запарки, поэтому сайт будет сильно тупить с обновлением, думаю это до конца месяца. Дальше надеюсь вернуться в прежний ритм.

easyelectronics.ru

58. Фотодиод, устройство, принцип действия, схема включения.

Фотодиодомназывают полупроводниковый фотоэлектрический прибор, в котором используется внутренний фотоэффект Устройство фотодиода аналогично устройству обычного плоскостного диода Отличие состоит в том, что его p-n-переход одной стороной обращен к стеклянному окну, через которое поступает свет, и защищен от воздействия света с другой стороны (рис. 7.4) Фотодиоды могут работать в одном из двух режимов

  • без внешнего источника электрической энергии - вентильный, фотогенераторный или фотогальванический режим,

  • с внешним источником электрической энергии - фотодиодный или фотопреобразовательный режим

Рассмотрим работу фотодиода в вентильном режиме, схема включения представлена на рис 7.5. При отсутствии светового потока на границе p-n-перехода создается контактная разность потенциалов. Через переход навстречу друг другу протекают два тока IДИФи IДР, которые уравновешивают друг друга. При освещении p-n-перехода фотоны, проходя в толщу полупроводника, сообщают части валентных электронов энергию, достаточную для перехода их в зону проводимости, т е за счет внутреннего фотоэффекта генерируются дополнительные пары электрон-дырка. Под действием контактной разности потенциалов p-n-перехода неосновные носители заряда n-области -дырки - переходят в p-область, а неосновные носители заряда p-области электроны - в n-область Дрейфовый ток получает дополнительное приращение, называемое фототоком IФДрейф неосновных носителей приводит к накоплению избыточных дырок в p-области, а электронов - в n-области Это приводит к созданию на зажимах фотодиода при разомкнутой внешней цепи разности потенциалов, называемой фото ЭДС

Фотодиоды, работающие в режиме фотогенератора, часто используются в качестве источников питания, преобразующих энергию солнечного излучения в электрическую. В фотодиодном или фотопреобразовательном режиме работы последовательно с фотодиодом включается внешний источник энергии, смещающий диод в обратном направлении. При отсутствии светового потока под действием обратного напряжения через фотодиод протекает обычный начальный обратной ток , который называют темновым. Темновой ток ограничивает минимальное значение светового потока При освещении фотодиода кванты света выбивают электроны из валентных связей полупроводника Увеличивается поток неосновных носителей заряда через p-n-переход Чем больше световой поток, падающий на фотодиод, тем выше концентрация неосновных носителей заряда вблизи обедненного слоя и тем больший фототок, определяемый напряжением внешнего источника и световым потоком, протекает через диод. Фотодиодный режим характеризуется высокой чувствительностью, большим динамическим диапазоном преобразования оптического излучения, высоким быстродействием (барьерная емкость p-n-перехода уменьшается) Недостатком фотодиодного режима работы является зависимость темнового тока (обратного тока p-n-перехода) от температуры. Если к неосвещенному фотодиоду подключить источник напряжения, значение и полярность которого можно изменять, то снятые при этом ВАХ будут иметь такой же вид, как у обычного полупроводникового диода. При освещении фотодиода существенно изменяется лишь обратная ветвь ВАХ, прямые же ветви практически совпадают. В квадранте III фотодиод работает в фотодиодном режиме, а в квадранте IV- в фотовентильном режиме, т. е. фотодиод становится источником электрической энергии Квадрант I - это нерабочая область для фотодиода, в этом квадранте p-n-переход смещен в прямом направлении. Параметрами фотодиодов являются:

  • Темновой ток IT- начальный обратный ток, протекающий через диод при отсутствии внешнего смещения и светового излучения (10 20 мкА дли германиевых и 1 2 мкА для кремниевых диодов)

  • Рабочее напряжение UP- номинальное напряжение, прикладываемое к фотодиоду в фотодиодном режиме UP=10 30 В

  • Интегральная чувствительность SИНТ, показывающая, как изменяется фототок при единичном изменении светового потока

  • Граничная частота fГР - частота, при которой интегральная чувствительность уменьшается в раз (fГР=10^6 10^12 Гц)

Рис. 1 Рис. 2

studfiles.net

Фотодиоды | Основы электроакустики

Фотодиоды представляют собой полупроводниковые диоды, в которых используется зависимость обратного тока от светового потока. 

 Такой режим работы называется фотодиодным (рис.6.9).

Вольт-амперные характеристики для фотодиодного режима приведены на рис.6.10. 

Рис.6.9. Схема включения фотодиода для работы в фотодиодном режиме 

Рис.6.10. Вольт-амперные характеристики фотодиода для фотодиодного режима 

Если светового потока нет, то через фотодиод протекает начальный ток I0, который называют темновым. Под действием светового потока ток в диоде возрастает и характеристика располагается выше. Чем больше световой поток, тем больше ток. Повышение обратного напряжения на диоде незначительно увеличивает ток. При некотором напряжении возникает электрический пробой (штриховые участки характеристик). Энергетические характеристики фотодиода линейны и мало зависят от напряжения (рис.6.11).

Интегральная чувствительность фотодиода обычно составляет десятки миллиампер на люмен. Инерционность фотодиодов невелика, они могут работать на частотах до сотен мегагерц.

Рис.6.11. Энергетические характеристики фотодиода 

Фотодиоды, работающие в режиме фотогенератора (фотогальванический режим), служат для преобразования энергии излучения в электрическую энергию. По существу, они представляют собой фотодиоды, работающие без источника внешнего напряжения и создающие собственную ЭДС под действие излучения. Схема включения диода в фотогенераторном режиме и зависимость фото-ЭДС от светового потока приведены на рис.6.12, 6.13.

Рис.6.12. Схема включения диода в фотогенераторном режиме 

Рис.6.13. Зависимость фото-ЭДС от светового потока

 

При облучении фотодиода на его выводах возникает разность потенциалов, которую называют фото-ЭДС. С увеличением светового потока фото-ЭДС растет по нелинейному закону, ее значение может достигать нескольких десятых долей вольта.

В настоящее время важное значение имеют кремниевые фотоэлементы, используемые в качестве солнечных преобразователей. Они преобразуют энергию солнечных лучей в электрическую, и ЭДС их достигает 0.5 В. Из таких элементов путем последовательного и параллельного соединения создаются солнечные батареи, которые обладают сравнительно высоким КПД (до 20%) и могут развивать мощность до нескольких киловатт. Пока энергия, вырабатываемая солнечными элементами, примерно в 50 раз дороже энергии, получаемой из угля, нефти или урана. Ожидается, что эта величина будет снижаться.

Солнечные батареи из кремниевых фотодиодов – это основные источники питания на искусственных спутниках Земли, космических кораблях, автоматических метеостанциях и др. В южных странах солнечные батареи повсеместно используются для генерации электроэнергии для бытовых нужд. Практическое применение солнечных батарей непрерывно расширяется.

audioakustika.ru

58. Полупроводниковые приемники излучения. Фотодиод, устройство, принцип действия, схема включения.

Фотоприемники - это оптоэлектронные приборы, предназначенные для преобразования энергии- оптического излучения в электрическую энергию Функции фотоприемников могут выполнять фоторезисторы, фотодиоды, фототранзисторы, фототиристоры и т. Д. Для получения максимального преобразования оптического излучения в электрический сигнал необходимо согласовывать спектральные характеристики фотоизлучателей и фотоприемников. Работа фотоприемников основана на одном из трех видов фотоэлектрических явлений:

  • внутреннем фотоэффекте изменении электропроводности вещества при его освещении,

  • внешнем фотоэффекте - испускании веществом электронов под действием света (используется в вакуумных и газонаполненных фотоэлементах),

  • фотоэффекте в запирающем слое- возникновении ЭДС на границе двух материалов под действием света

Фотодиодом называют полупроводниковый фотоэлектрический прибор, в котором используется внутренний фотоэффект Устройство фотодиода аналогично устройству обычного плоскостного диода Отличие состоит в том, что его p-n-переход одной стороной обращен к стеклянному окну, через которое поступает свет, и защищен от воздействия света с другой стороны (рис. 7.4) Фотодиоды могут работать в одном из двух режимов

  • без внешнего источника электрической энергии - вентильный, фотогенераторный или фотогальванический режим,

  • с внешним источником электрической энергии - фотодиодный или фотопреобразовательный режим

Рассмотрим работу фотодиода в вентильном режиме, схема включения представлена на рис 7.5. При отсутствии светового потока на границе p-n-перехода создается контактная разность потенциалов. Через переход навстречу друг другу протекают два тока IДИФ и IДР, которые уравновешивают друг друга. При освещении p-n-перехода фотоны, проходя в толщу полупроводника, сообщают части валентных электронов энергию, достаточную для перехода их в зону проводимости, т е за счет внутреннего фотоэффекта генерируются дополнительные пары электрон-дырка. Под действием контактной разности потенциалов p-n-перехода неосновные носители заряда n-области -дырки - переходят в p-область, а неосновные носители заряда p-области электроны - в n-область Дрейфовый ток получает дополнительное приращение, называемое фототоком IФ Дрейф неосновных носителей приводит к накоплению избыточных дырок в p-области, а электронов - в n-области Это приводит к созданию на зажимах фотодиода при разомкнутой внешней цепи разности потенциалов, называемой фото ЭДС

Фотодиоды, работающие в режиме фотогенератора, часто используются в качестве источников питания, преобразующих энергию солнечного излучения в электрическую. В фотодиодном или фотопреобразовательном режиме работы последовательно с фотодиодом включается внешний источник энергии, смещающий диод в обратном направлении. При отсутствии светового потока под действием обратного напряжения через фотодиод протекает обычный начальный обратной ток , который называют темновым. Темновой ток ограничивает минимальное значение светового потока При освещении фотодиода кванты света выбивают электроны из валентных связей полупроводника Увеличивается поток неосновных носителей заряда через p-n-переход Чем больше световой поток, падающий на фотодиод, тем выше концентрация неосновных носителей заряда вблизи обедненного слоя и тем больший фототок, определяемый напряжением внешнего источника и световым потоком, протекает через диод. Фотодиодный режим характеризуется высокой чувствительностью, большим динамическим диапазоном преобразования оптического излучения, высоким быстродействием (барьерная емкость p-n-перехода уменьшается) Недостатком фотодиодного режима работы является зависимость темнового тока (обратного тока p-n-перехода) от температуры. Если к неосвещенному фотодиоду подключить источник напряжения, значение и полярность которого можно изменять, то снятые при этом ВАХ будут иметь такой же вид, как у обычного полупроводникового диода. При освещении фотодиода существенно изменяется лишь обратная ветвь ВАХ, прямые же ветви практически совпадают. В квадранте III фотодиод работает в фотодиодном режиме, а в квадранте IV- в фотовентильном режиме, т. е. фотодиод становится источником электрической энергии Квадрант I - это нерабочая область для фотодиода, в этом квадранте p-n-переход смещен в прямом направлении. Параметрами фотодиодов являются:

  • Темновой ток IT- начальный обратный ток, протекающий через диод при отсутствии внешнего смещения и светового излучения (10 20 мкА дли германиевых и 1 2 мкА для кремниевых диодов)

  • Рабочее напряжение UP- номинальное напряжение, прикладываемое к фотодиоду в фотодиодном режиме UP=10 30 В

  • Интегральная чувствительность SИНТ, показывающая, как изменяется фототок при единичном изменении светового потока

  • Граничная частота fГР - частота, при которой интегральная чувствительность уменьшается в раз (fГР =10^6 10^12 Гц)

Рис. 1 Рис. 2

studfiles.net

31. Фотодиоды и светодиоды. Структуры и схемы подключений

Фотодио́д — приёмник оптического излучения, который преобразует попавший на его фоточувствительную область свет в электрический заряд за счёт процессов в p-n-переходе

Фотодиод, работа которого основана нафотовольтаическом эффекте(разделение электронов и дырок в p- и n- области, за счёт чего образуется заряд (ЭДС)) называется солнечным элементом. Кроме p-n фотодиодов существуют и p-i-n фотодиоды, в которых между слоями p- и n- находится слой изолятора i. p-n и p-i-n фотодиоды только преобразуют свет в электрический ток, но не усиливают его, в отличие от лавинных фотодиодов ифототранзисторов.

При воздействии квантовизлучения в базе происходит генерация свободных носителей, которые устремляются к границе p-n-перехода. Ширина базы (n-область) делается такой, чтобы дырки не успевали рекомбинировать до перехода в p-область.Токфотодиода определяется током неосновных носителей — дрейфовым током. Быстродействие фотодиода определяется скоростью разделения носителей полем p-n-перехода и ёмкостью p-n-перехода Cp-n

Фотодиод может работать в двух режимах:

-фотогальванический — без внешнего напряжения

-фотодиодный — с внешним обратным напряжением

Особенности:

-простота технологии изготовления и структур

-сочетание высокой фоточувствительности и быстродействия

-малое сопротивление базы

-малая инерционность

Светодио́д или светоизлучающий диод — полупроводниковый прибор, излучающий некогерентный свет при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра, его цветовые характеристики зависят от химического состава использованного в нем полупроводника.

Как и в любом полупроводниковом диоде, в светодиоде имеетсяp-n переход. При пропускании электрического тока в прямом направлении, носители заряда —электроныидырки— рекомбинируют с излучениемфотонов(из-за перехода электронов с одного энергетического уровня на другой).

По сравнению с другими электрическими источниками света (преобразователями электроэнергии в электромагнитное излучение видимого диапазона), светодиоды имеют следующие отличия:

-Высокий КПД. Современные светодиоды уступают по этому параметру только люминесцентной лампе с холодным катодом (CCFL).

-Высокая механическая прочность, вибростойкость (отсутствие спирали и иных чувствительных составляющих).

-Длительный срок службы. Но и он не бесконечен - при длительной работе и/или плохом охлаждении происходит "отравление" кристалла и постепенное падение яркости.

-Специфический спектральный состав излучения. Спектр довольно узкий. Для нужд индикации и передачи данных это - достоинство, но для освещения это недостаток. Более узкий спектр имеет только лазер.

-Малая инерционность.

-Малый угол излучения - также может быть как достоинством, так и недостатком.

-Низкая стоимость.

-Безопасность - не требуются высокие напряжения.

-Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.

-Отсутствие ядовитых составляющих (ртутьи др.) и, следовательно, лёгкость утилизации.

studfiles.net

13.Фотоприемники. Фоторезисторы и фотодиоды. Схемы включения. Классификация фотоприемных устройств:

  • Интегральные

  • Селективные

Интегральные фотоприемники. Принцип действия их основан на изменении механических или иных свойств при изменении температуры, изменение которой осуществляется под действием светового потока

Селективные фотоприемники. В таких фотоприемниках имеет место прямое взаимодействие падающих фотонов с электронами чувствительного слоя.

Селективные фотоприемники делятся на типы:

  1. С внутренним фотоэффектом;

  2. С внешним фотоэффектом.

К селективным фотоприемникам с внутренним фотоэффектом относятся:

    1. Фоторезисторы.

    2. Фотодиод.

    3. Фототранзистор.

    4. Фототиристор.

    5. Фотоварикап.

    6. Оптрон.

Фоторезистором называют полупроводниковый прибор, сопротивление которого меняется под действием света. У них изменяется сопротивление под действием световой энергии.

Принцип действия фоторезистора основан на внутреннем фотоэффекте, который заключается в перераспределении электронов по энергетическим состояниям, происходящем в конденсированных средах при поглощении света. Толщина рабочего тела фоторезистора обычно соизмерима с глубиной проникновения света в полупроводник. Для обеспечения необходимой механической прочности служит подложка из материала с хорошими диэлектрическими свойствами.

Характеристики фоторезисторов (темновое сопротивление, чувствительность, инерционность) сильно зависят от температуры. Темновое сопротивление и чувствительность с ростом температуры уменьшаются, а постоянная времени увеличивается. Для большинства фоторезисторов допустимый температурный диапазон составляет от -60 до +60ºС.

Зависимость темнового сопротивления от температу­ры называют температурной характеристикой фоторезистора.

Измерительные цепифоторезисторов строятся с использованием как постоян­ного, так и переменного напряжения питания. В состав современ­ных измерительных цепей включаются опе­рационные усилители. Пример измеритель­ной цепи с операционным усилителем пока­зан на рис. 12-14

Фотодиод представляет собой открытую для доступа света пластинку полупроводни­ка, в которой имеются области электронной и дырочной электропроводности, разделенные р-n переходом.

Под действием фотонов светового потока происходит увеличение количества неосновных носителей заряда в области базы, тем самым изменяется ширина p-n перехода. Поскольку световой поток переменен во времени, то изменение ширины перехода переменно. В результате проводимость диода становится переменной и зависит от изменения светового потока.

ФД могут работать в двух режимах – фотосопротивления и фотоэлемента.

Схема преобразования тока в напряжение

ВАХ фотодиода описывается выражением:

где IФ — фототок, т. е. ток, созданный носи­телями, возбужденными светом; I — ток во внешней цепи.

Схемы включения фотодиодов показаны на рис. 12-17.

А) как резистор и включается в схемы делителей

Б) или мостовые измерительные цепи позволяющие в известной степени уменьшить влияние дрейфа темнового тока. ФД по напряжению питания хорошо согласуются с полупроводниковыми электронными элементами, поэтому ис­пользуются обычно в схемах совместно с операционными усилителями.

В) схема включения ФД, работающего в фотогенераторном режиме. Благодаря тому, что входное сопротивление усилителя () не превышает 10 Ом, ФД работает в режиме, близком к короткому замыканию (прямая 2 на рис. 12-15, б) и обладает достаточно линейной характеристикой.

studfiles.net

Фотосенсор из светодиода, усилитель для фотодиода на ОУ.

Макет схемы усилителя фотодиода на ОУ TL072

У меня уже давно копошилась идейка опробовать светодиод в качестве фотосенсора - это ведь тот же полупроводниковый диод, в котором разработчиками приложены все усилия, чтобы максимум света от p-n перехода попадало наружу, а следовательно - и в обратном направлении. А тут товарищу срочно понадобилось отчитаться по продвижению проекта фурье-спектрометра. Ему там надо усиливать и оцифровывать сигнал с фотоприёмника. Конечно, у этих физиков всегда всё очень специальное: и фотосенсор у них там на особую длину волны, и облучателем - лазер. В качестве усилителя они желали иметь только самые наиточнейшие ОУ, да ещё и в схеме с автокалибровкой нуля. Но для первого "кукареку" товарищу сгодился бы самый простенький макет фотоприёмника - чтобы было что подать на вход АЦП. Вобщем это был для меня идеальный повод опробовать разные сочетания светодиодов в купе с классической схемой усиления тока фотодиода на недорогом операционном усилителе со входами на полевых транзисторах с p-n переходом.

 

Выбор ОУ

Знакомьтесь: TL072 от TI (datasheet). Этот ОУ долгое время был исключительно популярен, на ряду с NE5532/5534, среди строителей полупроводниковой аудио-аппаратуры. Для своего времени это была действительно передовая технология, сочетавшая низкое потребление, ничтожные входные токи и завидно низкий уровень шумов с относительно невысоким уровнем искажений. Скажу честно, меня  ОУ в звуке как-то вообще не возбуждают, ну да мы сейчас не об этом. Сегодня на рынке доступны и более точные, и менее шумные, и существенно меньше искажающие микросхемы операционных усилителей. Но у всех у них есть один серьёзный недостаток по сравнению с TL072 - существенно бОльшая цена. А если внимательно рассмотреть заявленные параметры для дорогущих собратьев и сравнить с тем, на что способна легенда операционных усилителей TL072, то сразу встаёт вопрос: "а стоит ли переплачивать?"

Для сравнения возьмём пусть и не самый-самый современный, но уже весьма недешевый ОУ от тех же TI OPA129 (datasheet).

  OPA129   TL072
BIAS CURRENT:   100fA max   100pA max
OFFSET:   2mV max   3mV max
DRIFT:   10µV/°C max   18µV/°C max
NOISE:   15nV/√Hz at 10kHz   18 nV/√Hz at 1 kHz

Ну да, TL072 чуточку похуже будет... но зато он во много раз дешевле на сегодня! 🙂 Выбор сделан. Вот, собственно, схема усилителя фототока:

Усилитель фототока на ОУ

Значение R будем подбирать в зависимости от условий. Фильтры по питанию здесь, возможно, не столь необходимы, но для точных измерений и/или шумных и слабых сигналов - всегда хороши.

 

Первый блин - красный-красный

Первым делом я взял два одинаковых красных светодиода на 1.7В, повышенной яркости. Поставил их нос к носу. Излучатель запитал от своего простенького тестового генератора прямоугольных сигналов. Ток через излучатель был порядка 15мА. Сигнал получился очень слабенький. Чтобы разглядеть что-либо дельное на осциллографе пришлось срочно заземлять основание макетки и скручивать сигнальные проводки.

Красный светодиод как фотосенсор, R=4.7МОм

Значение R было равно 4.7МОм, чтобы хоть что-нибудь можно было увидеть на выходе, что в результате гарантировало очень много шума и много наводок 🙁

Такое я не мог предложить ещё не слишком опытному в электронике товарищу в качестве материала для успешного доклада.

 

Сладкая парочка

Настоящее чудо случилось, когда я заменил красный излучающий светодиод на нестерпимо яркий зелёный на 3 вольта: размах сигнала увеличился в 100 раз! Такое уже было легко усиливать и нестыдно показывать.

Потом я опробовал ещё несколько различных комбинаций светодиод-излучатель / светодиод-фотоприёмник. ИК пары как-то не впечатлили - все варианты, что были у меня в наличии оказались много хуже зелёно-красной сладкой парочки. Белые и синие светодиоды в качестве излучателей тоже явно проигрывали зелёному в сочетании с любыми из имеющихся у меня кандидатов в фотоприёмники. Зато вот оранжевый светодиод на 1.7В повышенной яркости выдал аж втрое больший сигнал, будучи освеченным тем же зелёненьким, что и в первом успешном опыте. Вот как выглядел сигнал на экране осцила, R=91КОм:

Светодиоды в оптопаре: оранжевый приёмник и зелёный излучатель

 

Разгоняемся

Далее решено было прицениться к частотным свойствам данного устройства. Под нагрузкой мой генератор выдал чуть больше 80КГц.

Светодиоды в оптопаре на 82КГц

Фронты уже заметно завалены. Видны выбросы перерегулирования от петли отрицательной обратной связи. Но всё ещё красивый сигнал, вполне годный для определённого круга приложений.

 

Рецепт успеха

Если Вам по какой-либо причине понадобилась опто-пара с открытым каналом, а готового фирменного устройства под рукой не оказалось - весьма рекомендую воспользоваться моим только что проверенным рецептом:

  • Яркий 3-х вольтовый зелёный светодиод в качестве излучателя
  • Простенький оранжевый на 1.7В светодиод в качестве фотоприёмника
  • TL071 или что-либо подобное для усилителя
  • Резистор в цепи обратной связи 1 МОм для начала, потом подбираем
  • Аккуратное экранирование и чистое питание

 

Будьте щедрыми!

Если Вам эта тема показалась интересной - буду рад комментариям, вопросам, советам.

Подумайте о своих друзьях: может, кому-нибудь из вашего круга в соц-сети эта статья поможет в написании курсовой или продвижении домашнего проекта по робото-строению? Поделитесь ссылкой прямо сейчас!

С ярким приветом 🙂

myelectrons.ru


Каталог товаров
    .