интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Зачем нужен конденсатор? Для чего нужны конденсаторы в схемах


Конденсатор (теория)

 

Конденсатор – это радиодеталь, по сути, крошечный аккумулятор, способный в кратчайшие сроки заряжаться, при наличии в цепи напряжения, и быстро приходить в исходное состояние, разряжаясь (отдавая свой заряд), когда напряжение скачет вниз, тем самым, компенсируя провалы в напряжении электрической цепи.

Одним из основных показателей конденсатора – емкость (единица измерения Фарад), она показывает, какой величины заряд способен удержать конденсатор. Неизменным остается правило: чем больше емкость конденсатора, тем меньше скорость его разрядки и заряда.

Схематичное обозначение конденсаторов. Обозначение конденсаторов на схеме. На данный момент одни из самых распространенных конденсаторов являются электролитические и керамические. Для керамических конденсаторов неважно полосовая ориентация, так как они имеют малые размеры и соответственно малые емкости (до 1μF). Электролитические конденсаторы имеют весьма большие емкости, и их подключение уже играет большую роль.

По сути, конденсатор состоит из двух пластин, расположенных на определенном расстоянии друг от друга по разные стороны диэлектрика. Данные пластины конденсатора накапливают заряд, одна – отрицательный, вторая – положительный; вследствие чего создается внутри конденсатора напряжение. Благодаря диэлектрику между пластинами напряжение не способно преобразоваться во внутренний ток, способный уровнять пластины.

Наиболее частое применение конденсатора в электротехнике в качестве резервного конденсатора (для стабилизации напряжения питания) или в качестве фильтрующего конденсатора (для выделения сигнала путем разделения изменяющейся и постоянной составляющих напряжения). Теперь немного поподробнее об этих случаях применения конденсаторов:

Много схем рассчитано на питание от стабильного, постоянного питания (например, 12v). Т.к. идеальных источников питания не существует, то те, которые есть при резком изменении потребления тока разработанного устройства (при включении одного из  более-менее мощного компонента), источник питания не успевает мгновенно «среагировать» и вследствие чего происходит кратковременный провал (на тысячные доли вольта) напряжения. Также если провод от схемы до источника питания довольно длинный, то он работает как приемник и может улавливать помехи и этим вносить изменения в уровень напряжения.

Пример подключения резервного конденсатора. Такие колебания ничего не значат, если главными запитанными компонентами является электродвигатели, системы освещения и т.д.,  но если речь идет о логических цепях, то срабатывание переключения от логической единицы к логическому нулю  и обратно происходит, основываясь на изменениях малых напряжениях. Вот в этом случае могут привести систему к непредсказуемому поведению провалы в напряжении или помехи в цепи питания.

Для устранения подобных сбоев, непосредственно между источником питания и схемой устанавливают резервный конденсатор. Конденсатор заряжается до полного насыщения и служит резервным запасом напряжения, когда напряжение питания устройства полное. В случае, если уровень напряжения резко падает, резервный конденсатор играет роль быстрого «восполнителя» провала напряжения, до тех пор пока не нормализуется подача напряжения питания. На практике данную работу резервный конденсатор проводит множество раз в секунду.

Для данной роли подходят керамические конденсаторы номиналом от 10 до 100нФ (nF). Более емкие конденсаторы с данной ролью не справляются, т.к. их скорость заметно меньше  и они не в состоянии быстро восполнять провалы напряжения. В одном устройстве такие резервные конденсаторы могут находиться в большом количестве и стоять они будут перед каждой частью схемы требующей стабильного источника питания.

Фильтрующий конденсатор используют для снятия сигнала в форме изменяющегося напряжения определенного диапазона с сенсора. Такими сенсорами являются активные антенны Wi-Fi, микрофоны мобильных телефонов и т.д.

Пример подключения фильтрующего конденсатора. Рассмотрим пример с микрофоном. В состоянии покоя (тишины), сопротивление микрофона велико, но когда на него воздействует звуковая волна затвор полевого транзистора внутри микрофона «открывается» и сопротивление начинает уменьшаться. Данная процедура происходит многократно каждую секунду.

Для передачи звука мы должны выбрать только диапазон волн воспринимаемый человеческим ухом, а именно 20 Гц – 20 кГц. Чтобы извлечь из напряжения только сигнал звуковой волны, но не шумы питания, используют фильтрующий электролитический конденсатор 10 мкФ. Не стоит забывать, то выходной сигнал получается отрицательным напряжением и чтобы сделать его обратно положительным и усилить  используют операционный усилитель. Если соединить выход с выход с землей, то ток последует из земли к выходу.

Расчет суммарной емкости конденсаторов аналогичен расчету суммарного сопротивления резисторов, только при условии обратного соединения.

При параллельном соединении конденсаторов их суммарная емкость  равняется сумме емкостей каждого из конденсаторов C­сумм = C1 + С2. При  последовательном соединении конденсаторов их суммарная емкость равняется произведению емкостей, деленному на сумму емкостей конденсаторов C­сумм = C1 * С2 / (C1 + С2).

Примеры параллельного и последовательного соединения конденсаторов.

В datasheet на каждый тип конденсатора указано его предельное допустимое напряжение. При незначительном его превышении происходит пробой диэлектрика, но при значительном и резком – к взрыву конденсатора.

Страницы:

best-chart.ru

Для чего нужен конденсатор. Виды, характеристики

Конденсаторы представляют собой электронные компоненты, используемые для хранения электрического заряда. Конденсаторы могут иметь различную форму, но всегда похожи друг на друга внутри.

Конденсатор, как правило, состоит из двух электропроводящих пластин (электродов), которые изолированы друг от друга диэлектриком.Величина (емкость) накопленного заряда определяется поверхностью электродов и расстояния между ними. Большая площадь и меньшее расстояние обеспечивает более высокую емкость.

Для расчета емкости мы используем следующее соотношение:

С = e х A / d

  • C = емкость в фарадах
  • A = площадь в м2
  • d = расстояние между электродами
  • е = диэлектрическая проницаемость диэлектрика

Единицей измерения емкости является фарад. Один фарад — это такая емкость, при которой заряд в 1 кулон создает напряжение между обкладками в 1 вольт.

Обозначение конденсатора на схемах:

обозначение конденсатораДля того, чтобы лучше понять взаимосвязь между параметрами конденсатора, рассмотрим следующую упрощенную эквивалентную схему:

dlya-chego-nuzhen-kondensator-vidy-xarakteristiki-2

  • Rs — последовательное сопротивление выводов и электродов, электролита, а также потери в диэлектрике.
  • Ls — индуктивность выводов и электрод.
  • C – емкость.
  • Rр — сопротивление изоляции в диэлектрике.

Виды конденсаторов

dlya-chego-nuzhen-kondensator-vidy-xarakteristiki-min

Постоянные конденсаторы

Бумажные конденсаторы (KLMP, KSMP) в большинстве заменены пластиковыми. Несмотря на высокую диэлектрическую проницаемость бумажных конденсаторов они крупнее и дороже, чем пластиковые.

Преимущества бумажных конденсаторов — устойчивость к импульсному напряжению, низкое содержание углерода (приблизительно 3%, для сравнения у пластиковых 40…70%) приводит к хорошему самовосстановлению и небольшой риск возгорания. В настоящее время бумажные конденсаторы используются исключительно для подавления помех.

Конденсаторы полистирольные и полиэфирные (KSF, MKSE, MKSF, MKSP) конденсаторы изготавливаются из металлизированной полиэфирной пленки.

Слюдяные конденсаторы (КСО) многослойные, построены так же, как и керамические конденсаторы, электрод может быть выполнен из серебра. Слюда является минералом, добываемым в шахтах Индии, где его качество особенно высоко.

Этот материал очень твердый и прочный, отличается тем, что он разделяется на тонкие пластины, которые могут быть оснащены электродами.Электрические свойства, например, сопротивление изоляции, потери и стабильность вполне сопоставимы с лучшими искусственными диэлектриками и керамикой.

Слюдяные конденсаторы, тем не менее, являются относительно крупными и дорогими, в результате чего в значительной степени подлежат замене полипропиленовыми конденсаторами. Слюдяные конденсаторы часто используется в высокочастотных схемах, которые требуют не только низкие потери, но и высокую стабильность частоты и температуры. Они изготавливаются емкостью от 1 пФ и до 0,1 мкФ.

Керамические конденсаторы (KCP, КФП, КЧР, KFR) производятся из одной или нескольких керамических пластин с нанесением металлического напыления (электроды). Керамический конденсатор с одним слоем диэлектрика называется «однослойным». Когда конденсатор состоит из нескольких слоев диэлектрика, его называют многослойный. Керамические конденсаторы изготавливаются емкостью от 0,5 пФ и до нескольких сотен микрофарад. Конденсаторы емкостью больше чем 10 мкФ достаточно редки из-за высокой цены.

Электролитические конденсаторы (KEN, KEO, SME, T, UL, KERMS) имеют алюминиевые или танталовые электроды. Поверхность анода (положительный полюс) покрыт очень тонким слоем оксида, который действует в качестве диэлектрика. Для того чтобы уменьшить расстояние между оксидным слоем и катодом (отрицательный полюс) используют электролит с низким сопротивлением.

Алюминиевые влажные электролитические конденсаторы. Они содержат электролит, состоящий из борной кислоты, этиленгликоля, соли и растворителя. Электроды вытравливаются в кислотной ванне, чтобы получить пористую поверхность. Таким образом, поверхность возрастает до 300 раз.

Танталовые конденсаторы. Они имеют в качестве диэлектрика оксид тантала с превосходными электрическими свойствами. Анод конденсатора выполнен путем спеканием порошка тантала. Около 50% объема состоит из пор, в результате чего внутренняя поверхность в 100 раз больше, чем внешняя.

После нанесения покрытия на слой оксида тантала, образующегося в кислотной ванне, конденсатор погружают в раствор диоксида марганца, заполняющий все поры. Контакт с катодом, который состоит из электропроводной серебряной краски, получается путем покрытия слоем углерода в виде графита.

Переменные конденсаторы

Эти конденсаторы имеют переменную емкость с воздушным диэлектриком (AM, FM) или керамические оборотные конденсаторы.Воздушный конденсатор выполнен из двух параллельных сборок пластин ( ротора и статора ), которые изменяют свое положение из-за чего меняется и емкость такого конденсатора.

Параметры конденсаторов

  • Номинальная емкость — значение емкости. Фактическая емкость на практике равна номинальной емкости с учетом допусков связанных с изменением диэлектрической проницаемости диэлектрика вследствие изменения окружающей температуры. Значения допусков зависят от типа диэлектрика.
  • Номинальное напряжение — максимально допустимое напряжение, которое может быть на конденсаторе. Это напряжение, как правило, является суммой постоянного напряжения и пикового значения переменного напряжения.
  • Сопротивление изоляции конденсатора — это электрическое сопротивление конденсатора постоянному току определенного напряжения. Оно характеризует качество диэлектрика и качество его изготовления.

fornk.ru

§52. Конденсаторы, их назначение и устройство

Заряд и разряд конденсатора. Конденсатор представляет собой устройство, способное накапливать электрические заряды. Простейшим конденсатором являются две металлические пластины (электроды), разделенные каким-либо диэлектриком. Конденсатор 2 можно зарядить, если соединить его электроды с источником 1 электрической энергии постоянного тока (рис. 181, а).

При заряде конденсатора свободные электроны, имеющиеся на одном из его электродов, устремляются к положительному полюсу источника, вследствие чего этот электрод становится положительно заряженным. Электроны с отрицательного полюса источника устремляются ко второму электроду и создают на нем избыток электронов, поэтому он становится отрицательно заряженным. В результате протекания зарядного тока i3 на обоих электродах конденсатора образуются равные, но противоположные по знаку заряды и между ними возникает электрическое поле, создающее между электродами конденсатора определенную разность потенциалов. Когда эта разность потенциалов станет равной напряжению источника тока, движение электронов в цепи конденсатора, т. е. прохождение по ней тока i3 прекращается. Этот момент соответствует окончанию процесса заряда конденсатора.

При отключении от источника (рис. 181,б) конденсатор способен длительное время сохранять накопленные электрические заряды. Заряженный конденсатор является источником электрической энергии, имеющим некоторую э. д. с. ес. Если соединить электроды заряженного конденсатора каким-либо проводником (рис. 181, в), то конденсатор начнет разряжаться. При этом по цепи пойдет ток iр разряда конденсатора. Начнет уменьшаться и разность потенциалов между электродами, т. е. конденсатор будет отдавать накопленную электрическую энергию во внешнюю цепь. В тот момент, когда количество свободных электронов на каждом электроде конденсатора станет одинаковым, электрическое поле между электродами исчезнет и ток станет равным нулю. Это означает, что произошел полный разряд конденсатора, т. е. он отдал накопленную им электрическую энергию.

Емкость конденсатора. Свойство конденсатора накапливать и удерживать электрические заряды характеризуется его емкостью. Чем больше емкость конденсатора, тем больше накопленный им заряд, так же как с увеличением вместимости сосуда или газового баллона увеличивается объем жидкости или газа в нем.

Емкость С конденсатора определяется как отношение заряда q, накопленного в конденсаторе, к разности потенциалов между его электродами (приложенному напряжению)U:

C = q / U (69)

Емкость конденсатора измеряется в фарадах (Ф). Емкостью в 1 Ф обладает конденсатор, у которого при сообщении заряда

Рис. 181. Заряд и разряд конденсатораРис. 181. Заряд и разряд конденсатора

в 1 Кл разность потенциалов возрастает на 1 В. В практике преимущественно пользуются более мелкими единицами: микрофарадой (1 мкФ=10-6 Ф), пикофарадой (1 пФ = 10-12 мкФ).

Емкость конденсатора зависит от формы и размеров его электродов, их взаимного расположения и свойств диэлектрика, разделяющего электроды. Различают плоские конденсаторы, электродами которых служат плоские параллельные пластины (рис. 182, а), и цилиндрические (рис. 182,б).

Свойствами конденсатора обладают не только специально изготовленные на заводе устройства, но и любые два проводника, разделенные диэлектриком. Емкость их оказывает существенное влияние на работу электротехнических установок при переменном токе. Например, конденсаторами с определенной емкостью являются два электрических провода, провод и земля (рис. 183, а), жилы электрического кабеля, жилы и металлическая оболочка кабеля (рис. 183,6).

Устройство конденсаторов и их применение в технике. В зависимости от применяемого диэлектрика конденсаторы бывают бумажными, слюдяными, воздушными (рис. 184). Используя в качестве диэлектрика вместо воздуха слюду, бумагу, керамику и другие материалы с высокой диэлектрической проницаемостью, удается при тех же размерах конденсатора увеличить в несколько раз его емкость. Для того чтобы увеличить площади электродов конденсатора, его делают обычно многослойным.

Рис. 182. Плоский (а) и цилиндрический (б) конденсаторыРис. 182. Плоский (а) и цилиндрический (б) конденсаторы

В электротехнических установках переменного тока обычно применяют силовые конденсаторы. В них электродами служат длинные полосы из алюминиевой, свинцовой или медной фольги, разделенные несколькими слоями специальной (конденсаторной) бумаги, пропитанной нефтяными маслами или синтетическими пропитывающими жидкостями. Ленты фольги 2 и бумаги 1 сматывают в рулоны (рис. 185), сушат, пропитывают парафином и помещают в виде одной или нескольких секций в металлический или картонный корпус. Необходимое рабочее напряжение конденсатора обеспечивается последовательным, параллельным или последовательно-параллельным соединениями отдельных секций.

Всякий конденсатор характеризуется не только значением емкости, но и значением напряжения, которое выдерживает его диэлектрик. При слишком больших напряжениях электроны диэлектрика отрываются от атомов, диэлектрик начинает проводить ток и металлические электроды конденсатора замыкаются накоротко (конденсатор пробивается). Напряжение, при котором это происходит, называют пробивным. Напряжение, при котором конденсатор может надежно работать неограниченно долгое время, называют рабочим. Оно в несколько раз меньше пробивного.

Конденсаторы широко применяют в системах энергоснабжения промышленных предприятий и электрифицированных железных дорог для улучшения использования электрической энергии при переменном токе. На э. п. с. и тепловозах конденсаторы используют для сглаживания пульсирующего тока, получаемого от выпрямителей и импульсных прерывателей, борьбы с искрением контактов электрических аппаратов и с радиопомехами, в системах управления полупроводниковыми преобразователями, а также для созда-

Рис. 183. Емкости, образованные проводами воздушной линии (а) и жилами кабеля (б)Рис. 183. Емкости, образованные проводами воздушной линии (а) и жилами кабеля (б)

Рис. 184. Общие виды применяемых конденсаторов: 1 — слюдяные; 2 — бумажные; 3 — электролитический; 4 — керамический Рис. 184. Общие виды применяемых конденсаторов: 1 — слюдяные; 2 — бумажные; 3 — электролитический; 4 — керамический

Рис. 185. Устройство бумажного (а) и электролитического (б) конденсаторовРис. 185. Устройство бумажного (а) и электролитического (б) конденсаторов

Рис. 186. Устройство конденсатора переменной емкостиРис. 186. Устройство конденсатора переменной емкости

ния симметричного трехфазного напряжения, требуемого для питания электродвигателей вспомогательных машин. В радиотехнике конденсаторы служат для создания высокочастотных электромагнитных колебаний, разделения электрических цепей постоянного и переменного тока и др.

В цепях постоянного тока часто устанавливают электролитические конденсаторы. Их изготовляют из двух скатанных в рулон тонких алюминиевых лент 3 и 5 (рис. 185,б), между которыми проложена бумага 4, пропитанная специальным электролитом (раствор борной кислоты с аммиаком в глицерине). Алюминиевую ленту 3 покрывают тонкой пленкой окиси алюминия; эта пленка образует диэлектрик, обладающий высокой диэлектрической проницаемостью. Электродами конденсатора служат лента 3, покрытая окисной пленкой, и электролит; вторая лента 5 предназначена лишь для создания электрического контакта с электролитом. Конденсатор помещают в цилиндрический алюминиевый корпус.

При включении электролитического конденсатора в цепь постоянного тока необходимо строго соблюдать полярность его полюсов; электрод, покрытый окисной пленкой, должен быть соединен с положительным полюсом источника тока. При неправильном включении диэлектрик пробивается. По этой причине электролитические конденсаторы нельзя включать в цепи переменного тока. Их нельзя также использовать в устройствах, работающих при высоких напряжениях, так как окисная пленка имеет сравнительно небольшую электрическую прочность.

В радиотехнических устройствах применяют также конденсаторы переменной емкости (рис. 186). Такой конденсатор состоит из двух групп пластин: неподвижных 2 и подвижных 3, разделенных воздушными промежутками. Подвижные пластины могут перемещаться относительно неподвижных; при повороте оси 1 конденсатора изменяется площадь взаимного перекрытия пластин, а следовательно, и емкость конденсатора.

Способы соединения конденсаторов. Конденсаторы можно соединять последовательно и параллельно. При последовательном

Рис. 187. Последовательное (а) и параллельное (б) соединения конденсаторовРис. 187. Последовательное (а) и параллельное (б) соединения конденсаторов

Рис. 188. Схема подключения цепи R-C к источнику постоянного тока (а) и кпивые тока и напряжения при переходном процессе (б) кривые Рис. 188. Схема подключения цепи R-C к источнику постоянного тока (а) и кпивые тока и напряжения при переходном процессе (б) кривые

Рис. 189. Схема разряда емкости С на резистор R (а) и кривые тока и напряжения при переходном процессе (б) Рис. 189. Схема разряда емкости С на резистор R (а) и кривые тока и напряжения при переходном процессе (б)

Рис. 190. Кривая пилообразного напряженияРис. 190. Кривая пилообразного напряжения

соединении нескольких (например, трех), конденсаторов (рис. 187, а) эквивалентная емкость

1 /Cэк = 1 /C1 + 1 /C2 + 1 /C3

эквивалентное емкостное сопротивление

XCэк= XC1 + XC2 + XC3

результирующее емкостное сопротивление

Cэк = C1 + C2 + C3

При параллельном соединении конденсаторов (рис. 187,б) их результирующая емкость

1 /XCэк = 1 /XC1 + 1 /XC2 + 1 /XC3

Включение и отключение цепей постоянного тока с конденсатором. При подключении цепи R-C к источнику постоянного тока и при разряде конденсатора на резистор также возникает переходный процесс с апериодическим изменением тока i и напряжения uc При подключении к источнику постоянного тока цепи R-C выключателем В1 (рис. 188,а) происходит заряд конденсатора. В начальный момент зарядный ток Iнач=U /R. Но по мере накопления зарядов на электродах конденсатора напряжение его и с будет возрастать, а ток уменьшаться (рис. 188,б). Если сопротивление R мало, то в начальный момент подключения конденсатора возникает большой екачок тока, значительно превышающий номинальный ток данной цепи. При разряде конденсатора на резистор R (размыкается выключатель В1 на рис. 189, а) напряжение на конденсаторе uс и ток i постепенно уменьшаются до нуля (рис. 189,б).

Скорость изменения тока i и напряжения ис при переходном процессе отделяется постоянной времени

T = RC

Чем больше R и С, тем медленнее происходит заряд конденсатора.

Процессы заряда и разряда конденсатора широко используют в электронике и автоматике. С помощью их получают периодаческие несинусоидальные колебания, называемые релаксационными, и, в частности, пилообразное напряжение, необходимое для работы систем управления тиристорами, осциллографов и других устройств. Для получения пилообразного напряжения (рис. 190) периодически подключают конденсатор к источнику питания, а затем к разрядному резистору. Периоды Т1 и T2, соответствующие заряду и разряду конденсатора, определяются постоянными времени цепей заряда Т3 и разряда Тр, т. е. сопротивлениями резисторов, включенных в эти цепи.

electrono.ru

Конденсатор - электронное устройство, принцип работы, функциональное назначение, разновидности.

Конденсатор (электро-, Capacitor — Eng.) — элемент электрической цепи, который обеспечивает кратковременное накопление энергии и быструю отдачу накопленного. Применяются в цепях фильтров питания, цепях межкаскадовых связей, а также для фильтрации помех.

Основной характеристикой является ёмкость. Измеряется в Фарадах (Ф, F). Фарад характеризует заряды, создаваемые электрическими полями.Емкость конденсатора пропорционально увеличивается с площадью обкладок и уменьшается с расстоянием между ними. Еще одной важным параметром конденсатора является рабочее напряжение. Напряжение это не с потолка берется, а характеризуется максимальным напряжением при превышении которого наступает пробой диэлектрика и выход конденсатора из строя. Качественные конденсаторы от дорожащих своим именем производителей, имеют солидный запас прочности и могут работать и на немного завышенных напряжениях без каких либо последствий. Потому именно их и стоит приобретать для лучшей стабильности и долговечности.

Существуют поляризированные и неполяризированные конденсаторы. При неправильном подключении поляризированного, он может выйти из строя из-за сильного нагрева, с последующим вскрытием или даже мини-взрывом.

Существует множество разновидностей конденсаторов.В относительно сложных электронных схемах обычно применяются электролитические, полимерные и керамические. К тому же если конденсаторы используются с цифровым оборудованием, желательно чтобы они имели низкое эквивалентное последовательное сопротивление (Low — ESR). Чтобы это получить, производители используют более качественные компоненты конденсатора. Если требуется Low-ESR конденсатор а вы поставили обычный, он будет довольно сильно нагреваться и быстро выйдет из строя. Может быть за пару дней или даже часов.

Электролитические — самые недолговечные, по причине постоянного испарения электролита, особенно при повышенной температуре или плохой герметичности конденсатора. Но тем не менее, они и самые распространённые по причине своей дешевизны.

В основном, имеют срок службы не более 50 000 часов, обычно же 10 — 20 000. При испарении или недостаточном количестве электролита вздуваются и даже разрываются с характерным хлопком. Вздутые конденсаторы — показатель того что необходимо его заменить во избежании проблем с питанием и общей стабильностью.

Твёрдотельные полимерные

Относительно долговечны, очень редко вздуваются и намного компактней электролитических. Большинство производителей компьютерной техники, полностью перешли на полимерные конденсаторы, даже в бюджетном секторе. Нюанс в том, что они дороже электролитических. Потому этот переход был постепенным и произошёл благодаря массовому производству и удешевлению полимерных конденсаторов.

Принцип работы схож с электролитическими конденсаторами, только вместо электролита используется вязкий полимерный материал. Он практически не испаряется и имеет лучшие показатели, чем обычный электролит.

Керамические

Керамические конденсаторы умеют накапливать энергию с малыми потерями по току, лучше фильтруют помехи и не вздуваются в тяжёлых эксплуатационных условиях. А ещё они не вскрываются и не взрываются (есть исключения в некоторых видах полимерных), забрызгивая электролитом остальные компоненты схемы.Имеют гораздо меньший размер в сравнении с электролитическими, меньше нагреваются. Срок службы 100 000 часов и более.

Не менее распространены танталовые конденсаторы, но применяются преимущественно в точной электронике с нанесением на саму плату. Танталовые конденсаторы, относятся к подвиду электролитических, но с натяжкой.

При малых размерах, имеют выдающиеся характеристики, а также долгий срок службы. Менее чувствительны к нефильтрованной высокочастотной составляющей, выносливы при работе с повышенной температурой, имеют низкий ESR.

www.xtechx.ru

Зачем нужен конденсатор?

Если заглянуть внутрь корпуса любого электроприбора, можно увидеть множество различных компонентов, применяемых в современной схемотехнике. Разобраться, как работают все эти соединенные в единую систему резисторы, транзисторы, диоды и микросхемы, довольно сложно. Однако для того чтобы понять, зачем нужен конденсатор в электрических цепях, достаточно знаний школьного курса физики.

  • Устройство конденсатора и его свойства
  • Где применяются конденсаторы?

Устройство конденсатора и его свойства

Конденсатор состоит из двух или более электродов – обкладок, между которыми помещен слой диэлектрика. Такая конструкция обладает способностью накапливать электрический заряд при подключении к источнику напряжения. В качестве диэлектрика могут использоваться воздух или твердые вещества: бумага, слюда, керамика, оксидные пленки.

Основная характеристика конденсатора – постоянная или переменная электрическая емкость, измеряемая в фарадах. Она зависит от площади обкладок, зазора между ними и вида диэлектрика. Емкость конденсатора определяет два важнейших его свойства: способность накапливать энергию и зависимость проводимости от частоты пропускаемого сигнала, благодаря которым этот компонент получил широкое применение в электрических цепях.

к содержанию ↑

Накопление энергии

Если подключить плоский конденсатор к источнику постоянного напряжения, на одном из его электродов будут постепенно собираться отрицательные заряды, а на другом – положительные. Данный процесс, называемый зарядкой, показан на рисунке. Его длительность зависит от значений емкости и активного сопротивления элементов цепи.

Наличие диэлектрика между обкладками препятствует протеканию заряженных частиц внутри устройства. Но в самой цепи в это время электрический ток будет существовать до тех пор, пока напряжения на конденсаторе и источнике не станут равны. Теперь, если отключить элемент питания от емкости, она сама будет являться своеобразной батарейкой, способной отдавать энергию в случае подсоединения нагрузки.

к содержанию ↑

Зависимость сопротивления от частоты тока

Подключенный к цепи переменного тока конденсатор будет периодически перезаряжаться в соответствии с изменением полярности питающего напряжения. Таким образом, рассматриваемый электронный компонент, наряду с резисторами и катушками индуктивности, создает сопротивление Rс=1/(2πfC), где f – частота, С – емкость.

Как видно из представленной зависимости, конденсатор обладает высокой проводимостью по отношению к высокочастотным сигналам и слабо проводит низкочастотные. Сопротивление емкостного элемента в цепи постоянного тока будет бесконечно большим, что эквивалентно ее разрыву.

Изучив эти свойства, можно рассмотреть, зачем нужен конденсатор и где он используется.

к содержанию ↑

Где применяются конденсаторы?

  • Фильтры – устройства в радиоэлектронных, энергетических, акустических и других системах, предназначенные для пропускания сигналов в определенных диапазонах частот. Например, в обычном зарядном устройстве для мобильного телефона применяются конденсаторы для сглаживания напряжения за счет подавления высокочастотных составляющих.
  • Колебательные контуры электронной аппаратуры. Их работа основана на том, что при включении конденсаторов в совокупности с катушкой индуктивности в цепи возникают периодические напряжения и токи.
  • Формирователи импульсов, таймеры, аналоговые вычислительные устройства. В работе этих систем используется зависимость времени заряда конденсатора от величины емкости.
  • Выпрямители с умножением напряжения, применяемые в том числе в рентгенотехнических установках, лазерах, ускорителях заряженных частиц. Здесь важнейшую роль играет свойство емкостного компонента накапливать энергию, сохранять и отдавать ее.

Конечно, это только самые распространенные устройства, где используются конденсаторы. Без них не обойдется ни одна сложная бытовая, автомобильная, промышленная, телекоммуникационная, силовая электронная аппаратура.

thedifference.ru


Каталог товаров
    .