интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Схема простого блок питания 5 В 1 А. Бп 5в 2а схема


Импульсный блок питания 5 В, 2,5 А

Электропитание

Главная  Радиолюбителю  Электропитание

Блоки питания с трансформаторами на частоту 50 Гц сегодня практически сдали свои позиции импульсным с высокой рабочей частотой, которые при той же выходной мощности имеют, как правило, меньшие габариты и массу, более высокий КПД. Основные сдерживающие факторы для самостоятельного изготовления импульсных блоков питания радиолюбителями - трудности с расчётом, изготовлением или приобретением готового импульсного трансформатора или ферритового магнитопровода для него. Но если для сборки маломощного импульсного блока питания использовать готовый трансформатор от компьютерного блока питания формфактора ATX, задача значительно упрощается.

У меня оказался в наличии неисправный компьютерный блок питания IW-ISP300J2-0 (ATX12V300WP4). В нём был заклинен вентилятор, пробит маломощный диод Шотки, а более половины всех установленных оксидных конденсаторов вздуты и потеряли ёмкость. Однако дежурное напряжение на выходе +5VSB было. Поэтому было принято решение, используя импульсный трансформатор источника дежурного напряжения и некоторые другие детали, изготовить другой импульсный источник питания с выходным напряжением 5 В при токе нагрузки до 2,5 А.

В блоке питания ATX узлы источника дежурного напряжения легко обособить. Он даёт напряжение 5 В и рассчитан на максимальный ток нагрузки 2 А и более. Правда, в старых блоках питания этого типа он может быть рассчитан на ток всего 0,5 А. При отсутствии на этикетке блока пояснительной надписи можно ориентироваться на то, что трансформатор источника дежурного напряжения с максимальным током нагрузки 0,5 А значительно меньше трансформатора источника на 2 А.

Схема самодельного импульсного блока питания с выходным напряжением 5...5,25 В при максимальном токе нагрузки 2,5 А изображена на рис. 1. Его генераторная часть построена на транзисторах VT1, VT2 и импульсном трансформаторе T1 по образу и подобию имевшейся в компьютерном блоке, из которого был извлечён трансформатор.

Схема самодельного импульсного блока питания

Рис. 1. Схема самодельного импульсного блока питания

Вторичные узлы исходного блока питания (после выпрямителя напряжения +5 В) было решено не повторять, а собрать по традиционной схеме с интегральным параллельным стабилизатором напряжения в качестве узла сравнения выходного напряжения с образцовым. Входной сетевой фильтр собран из имеющихся деталей с учётом свободного места для их монтажа.

Переменное напряжение сети 230 В через плавкую вставку FU1 и замкнутые контакты выключателя SA1 поступает на RLC фильтр R1C1L1L2C2, который не только защищает блок от помех из питающей сети, но и не даёт создаваемым самим импульсным блоком помехам проникнуть в сеть. Резистор R1 и дроссели L1, L2, кроме того, уменьшают бросок потребляемого тока при включении блока. После фильтра напряжение сети поступает на мостовой диодный выпрямитель VD1-VD4. Конденсатор C9 сглаживает пульсации выпрямленного напряжения.

На высоковольтном полевом транзисторе VT2 собран генераторный узел преобразователя напряжения. Резисторы R2-R4 предназначены для запуска генератора. Суммарная мощность этих резисторов увеличена, поскольку печатная плата блока питания, из которого они извлечены, под ними заметно потемнела в результате перегрева. По той же причине демпфирующий резистор R8 установлен большей мощности, а в качестве VD6 применён более мощный, чем в прототипе, диод.

Стабилитрон VD5 защищает полевой транзистор VT2 от превышения допустимого напряжения между затвором и истоком. На биполярном транзисторе VT1 собран узел защиты от перегрузки и стабилизации выходного напряжения. При увеличении тока истока транзистора VT2 до 0,6 А падение напряжения на резисторе R5 достигнет 0,6 В. Транзистор VT1 откроется. В результате напряжение между затвором и истоком полевого транзистора VT2 уменьшится. Это предотвратит дальнейшее увеличение тока в канале сток- исток полевого транзистора. По сравнению с прототипом сопротивление резистора R5 уменьшено с 1,3 до 1,03 Ом, резистора R6 увеличено с 20 до 68 Ом, ёмкость конденсатора C13 увеличена с 10 до 22 мкФ.

Напряжение с обмотки II трансформатора T1 поступает на выпрямительный диод Шотки VD8, размах напряжения на выводах которого около 26 В. Пульсации выпрямленного напряжения сглаживает конденсатор C15. Если по тем или иным причинам выходное напряжение блока питания стремится увеличиться, растёт напряжение на управляющем входе параллельного стабилизатора напряжения DA1. Ток, текущий через излучающий диод оптрона U1, увеличивается, его фототранзистор открывается. Открывшийся в результате транзистор VT1 уменьшает напряжение между затвором и истоком полевого транзистора VT2, что возвращает выходное напряжение выпрямителя к номинальному значению. Цепь из резистора R16 и конденсатора C16 предотвращает самовозбуждение стабилизатора.

Изготовленный источник питания оснащён стрелочным измерителем тока нагрузки PA1, что значительно повышает удобство пользования им, поскольку позволяет быстро оценить ток, потребляемый нагрузкой. Шунтом для микроамперметра PA1 служит омическое сопротивление обмотки дросселя L4. Светодиоды HL1 и HL2 подсвечивают шкалу микроамперметра.

На выходные разъёмы XP2 и XS1 напряжение поступает через фильтр L5C19. Стабилитрон VD9 с диодом VD10 предотвращают чрезмерное повышение выходного напряжения при неисправности цепей его стабилизации.

Рабочая частота преобразователя - около 60 кГц. При токе нагрузки 2,3 А размах пульсаций выпрямленного напряжения на конденсаторе C15 - около 100 мВ, на конденсаторе C18 - около 40 мВ и на выходе блока питания - около 24 мВ. Это очень неплохие показатели.

КПД блока питания при токе нагрузки 2,5 А - 71 %, 2 А - 80 %, 1 А - 74 %, 0,2 А - 38 %. Ток короткого замыкания выхода - около 5 А, потребляемая от сети мощность при этом - около 7 Вт. Без нагрузки блок потребляет от сети около 1 Вт. Измерения потребляемой мощности и КПД проводились при питании блока постоянным напряжением, равным амплитуде сетевого.

При длительной работе с максимальным током нагрузки температура внутри его корпуса достигала 40 оС при температуре окружающего воздуха 24 оС. Это значительно меньше, чем у многочисленных малогабаритных импульсных источников питания, входящих в комплекты различных бытовых электронных приборов. При токе нагрузки, равном половине заявленного максимального значения, они перегреваются на 35...55 оС.

Большинство деталей описываемого блока питания установлены на плате размерами 75x75 мм. Монтаж - двухсторонний навесной. В качестве корпуса применена пластмассовая распределительная коробка размерами 85x85x42 мм для наружной электропроводки. Блок в открытом корпусе показан на рис. 2, а его внешний вид - на рис. 3.

Блок в открытом корпусе

Рис. 2. Блок в открытом корпусе

Внешний вид блока

Рис. 3. Внешний вид блока

При изготовлении блока следует обратить особое внимание на фазировку обмоток трансформатора T1, начало и конец ни одной из них не должны быть перепутаны. Применённый трансформатор 3PMT10053000 (от упомянутого выше компьютерного блока питания) имеет также предназначенную для выпрямителя напряжения -12 В обмотку, которая в данном случае не использована. Взамен него можно применить почти любой подобный трансформатор. Для ориентировки при подборе трансформатора привожу значения индуктивности обмоток использованного: I - 2,4 мГн, II - 17 мкГн, III - 55 мкГн.

В качестве PA1 применён микроамперметр M68501 (индикатор уровня от отечественного магнитофона). Учтите, что микроамперметры этого типа различных лет выпуска имеют очень большой разброс сопротивления измерительного механизма. Если установить нужный предел измерения подборкой резистора R13 не удаётся, нужно включить последовательно с дросселем L4 проволочный резистор небольшого сопротивления (ориентировочно 0,1 Ом).

При градуировке микроамперметра неожиданно выяснилось, что он очень чувствителен к статическому электричеству. Поднесённая пластмассовая линейка могла отклонить стрелку прибора до середины шкалы, где она могла остаться и после того, как линейка была убрана. Устранить это явление удалось удалением имевшейся плёночной шкалы. Вместо неё была приклеена липкая алюминиевая фольга, которой были оклеены и свободные участки корпуса. Экран из фольги следует соединить проводом с любым выводом микроамперметра. Можно попробовать обработать корпус микроамперметра антистатическим средством.

Напечатанную на принтере бумажную шкалу приклеивают на место удалённой. Образец шкалы изображён на рис. 4. Как видите, у этого микроамперметра она заметно нелинейна.

Образец шкалы

Рис. 4. Образец шкалы

Резистор R1 - импортный невозгораемый. Вместо такого резистора можно установить проволочный мощностью 1...2 Вт. Отечественные металлоплёночные и углеродные резисторы в качестве R1 не подходят. Остальные резисторы общего применения (С1-14, С2-14, С2-33, С1-4, МЛТ, РПМ). Резистор R19 для поверхностного монтажа припаян непосредственно к выводам розетки XS1.

Оксидные конденсаторы - импортные аналоги К50-68. Использование конденсаторов C15, C18, C19 с номинальным напряжением 10 В вместо часто применяемых в импульсных блоках питания оксидных конденсаторов на напряжение 6,3 В значительно повышает надёжность устройства. Плёночный конденсатор C2 ёмкостью 0,033...0,1 мкФ предназначен для работы на переменном напряжении 275 В. Остальные конденсаторы - импортные керамические. Конденсаторы C14, C17 припаяны между выводами соответствующих оксидных конденсаторов. Конденсатор C20 установлен внутри штекера ХР2.

Мощная сборка диодов Шотки S30D40C взята из неисправного компьютерного блока питания. В рассматриваемом устройстве она может работать без теплоотвода. Заменить её можно на MBR3045PT, MBR4045PT, MBR3045WT. MBR4045WT При максимальном токе нагрузки корпус этой сборки нагревается до 60 оС - это самый горячий элемент в устройстве. Вместо диодной сборки можно применить два обычных диода в корпусе DO-201AD, например, MBR350, SR360, 1N5822, соединив их параллельно. К ним со стороны выводов катодов нужно прикрепить дополнительный медный теплоотвод, показанный на рис. 5.

Дополнительный медный теплоотвод

Рис. 5. Дополнительный медный теплоотвод

Вместо диодов 1N4005 подойдут 1 N4006, 1 N4007, UF4007, 1N4937, FR107, КД247Г, КД209Б. Диод FR157 можно заменить на FR207, FM207, FR307, PR3007. Один из перечисленных диодов подойдёт и вместо КД226Б. Заменой диода FR103 может служить любой из UF4003, UF4004, 1N4935GP RG2D, EGP20C, КД247Б. Вместо стабилитрона BZV55C18 подойдут 1N4746A, TZMC-18.

Светодиоды HL1, HL2 - белого цвета свечения из узла подсветки ЖКИ сотового телефонного аппарата. Их приклеивают к микроамперметру цианакрилатным клеем. Транзистор KSP2222 можно заменить любым из PN2222, 2N2222, KN2222, SS9013, SS9014, 2SC815, BC547 или серии КТ645 с учётом различий в назначении выводов.

Полевой транзистор SSS2N60B извлечён из неисправного блока питания и установлен на ребристый алюминиевый теплоотвод с площадью охлаждающей поверхности 20 см2, причём все выводы транзистора должны быть электрически изолированы от теплоотвода, при работе блока питания с максимальным током нагрузки этот транзистор нагревается всего до 40 оС. Вместо транзистора SSS2N60B можно применить SSS7N60B, SSS6N60A, SSP10N60B, P5NK60ZF, IRFBIC40, FQPF10N60C.

Оптрон EL817 можно заменить другим четырёхвыводным (SFH617A-2, LTV817, PC817, PS817S, PS2501-1, PC814, PC120, PC123). Вместо микросхемы LM431ACZ подойдёт любая функционально аналогичная в корпусе ТО-92 (TL431, AZ431, AN1431T).

Все дроссели - промышленного изготовления, причём магнитопроводы дросселей L1, L2, L4 - H-образные ферритовые. Сопротивление обмотки дросселя L4 - 0,042 Ом. Чем крупнее этот дроссель по размеру, тем меньше будет нагреваться его обмотка, тем точнее будет измерять ток нагрузки микроамперметр PA1. Дроссель L5 намотан на кольцевом магнитопроводе, чем меньше сопротивление его обмотки и чем больше её индуктивность, тем лучше. Дроссель L3 - надетая на вывод общего катода диодной сборки VD8 ферритовая трубка длиной 5 мм.

Штекер XP2 соединён с конденсатором C19 сдвоенным многожильным проводом 2x2,5 мм2 длиной 120 см. Розетка XS1 USB-AF закреплена в отверстии корпуса устройства клеем.

Первое включение изготовленного устройства в сеть переменного тока производят без нагрузки через лампу накаливания мощностью 40...60 Вт на 235 В, установленную вместо плавкой вставки FU1. Предварительные испытания под нагрузкой выполняют, заменив FU1 лампой накаливания мощностью 250...300 Вт. Нити ламп накаливания при нормальной работе блока питания не должны светиться. Безошибочно изготовленное из исправных деталей устройство начинает работать сразу.

При необходимости подборкой резистора R13 можно установить показания амперметра. Подбирая резистор R14, устанавливают выходное напряжение блока питания равным 5...5,25 В. Повышенное напряжение компенсирует его падение на проводах, соединяющих блок с нагрузкой.

Изготовленный источник питания можно эксплуатировать совместно с доработанным USB-концентратором [1], к которому можно будет подключить до четырёх внешних жёстких дисков типоразмера 2,5 дюйма, работающих одновременно. Мощности будет достаточно и для питания, например, таких устройств, как [2].

Литература

1. Бутов А. Доработка USB-концентратора. - Радио, 2013, № 11, с. 12.

2. БутовА. Преобразователь напряжения 5/9 В для питания радиоприёмников. - Радио, 2013, № 12, с. 24, 25.

Автор: А. Бутов, с. Курба Ярославской обл.

Дата публикации: 13.04.2016

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:

www.radioradar.net

Импульсный блок питания 5В, 2,5А — Меандр — занимательная электроника

Читать все новости ➔

Блоки питания с трансформаторами на частоту 50 Гц сегодня практически сдали свои позиции импульсным с высокой рабочей частотой, которые при той же выходной мощности имеют, как правило, меньшие габариты и массу, более высокий КПД. Основные сдерживающие факторы для самостоятельного изготовления импульсных блоков питания радиолюбителями - трудности с расчётом, изготовлением или приобретением готового импульсного трансформатора или ферритового магнитопровода для него. Но если для сборки маломощного импульсного блока питания использовать готовый трансформатор от компьютерного блока питания формфактора ATX, задача значительно упрощается.

У меня оказался в наличии неисправный компьютерный блок питания IW-ISP300J2-0 (ATX12V300WP4). В нём был заклинен вентилятор, пробит маломощный диод Шотки, а более половины всех установленных оксидных конденсаторов вздуты и потеряли ёмкость. Однако дежурное напряжение на выходе +5VSB было. Поэтому было принято решение, используя импульсный трансформатор источника дежурного напряжения и некоторые другие детали, изготовить другой импульсный источник питания с выходным напряжением 5 В при токе нагрузки до 2,5 А.

В блоке питания ATX узлы источника дежурного напряжения легко обособить. Он даёт напряжение 5 В и рассчитан на максимальный ток нагрузки 2 А и более. Правда, в старых блоках питания этого типа он может быть рассчитан на ток всего 0,5 А. При отсутствии на этикетке блока пояснительной надписи можно ориентироваться на то, что трансформатор источника дежурного напряжения с максимальным током нагрузки 0,5 А значительно меньше трансформатора источника на 2 А.

Схема самодельного импульсного блока питания с выходным напряжением 5...5,25 В при максимальном токе нагрузки 2,5 А изображена на рис. 1. Его генераторная часть построена на транзисторах VT1, VT2 и импульсном трансформаторе T1 по образу и подобию имевшейся в компьютерном блоке, из которого был извлечён трансформатор.

Рис. 1.

Рис. 1.

Вторичные узлы исходного блока питания (после выпрямителя напряжения +5 В) было решено не повторять, а собрать по традиционной схеме с интегральным параллельным стабилизатором напряжения в качестве узла сравнения выходного напряжения с образцовым. Входной сетевой фильтр собран из имеющихся деталей с учётом свободного места для их монтажа.

Переменное напряжение сети 230 В через плавкую вставку FU1 и замкнутые контакты выключателя SA1 поступает на RLC фильтр R1C1L1L2C2, который не только защищает блок от помех из питающей сети, но и не даёт создаваемым самим импульсным блоком помехам проникнуть в сеть. Резистор R1 и дроссели L1, L2, кроме того, уменьшают бросок потребляемого тока при включении блока. После фильтра напряжение сети поступает на мостовой диодный выпрямитель VD1-VD4. Конденсатор C9 сглаживает пульсации выпрямленного напряжения.

На высоковольтном полевом транзисторе VT2 собран генераторный узел преобразователя напряжения. Резисторы R2-R4 предназначены для запуска генератора. Суммарная мощность этих резисторов увеличена, поскольку печатная плата блока питания, из которого они извлечены, под ними заметно потемнела в результате перегрева. По той же причине демпфирующий резистор R8 установлен большей мощности, а в качестве VD6 применён более мощный, чем в прототипе, диод.

Стабилитрон VD5 защищает полевой транзистор VT2 от превышения допустимого напряжения между затвором и истоком. На биполярном транзисторе VT1 собран узел защиты от перегрузки и стабилизации выходного напряжения. При увеличении тока истока транзистора VT2 до 0,6 А падение напряжения на резисторе R5 достигнет 0,6 В. Транзистор VT1 откроется. В результате напряжение между затвором и истоком полевого транзистора VT2 уменьшится. Это предотвратит дальнейшее увеличение тока в канале сток- исток полевого транзистора. По сравнению с прототипом сопротивление резистора R5 уменьшено с 1,3 до 1,03 Ом, резистора R6 увеличено с 20 до 68 Ом, ёмкость конденсатора C13 увеличена с 10 до 22 мкФ.

Напряжение с обмотки II трансформатора T1 поступает на выпрямительный диод Шотки VD8, размах напряжения на выводах которого около 26 В. Пульсации выпрямленного напряжения сглаживает конденсатор C15. Если по тем или иным причинам выходное напряжение блока питания стремится увеличиться, растёт напряжение на управляющем входе параллельного стабилизатора напряжения DA1. Ток, текущий через излучающий диод оптрона U1, увеличивается, его фототранзистор открывается. Открывшийся в результате транзистор VT1 уменьшает напряжение между затвором и истоком полевого транзистора VT2, что возвращает выходное напряжение выпрямителя к номинальному значению. Цепь из резистора R16 и конденсатора C16 предотвращает самовозбуждение стабилизатора.

Изготовленный источник питания оснащён стрелочным измерителем тока нагрузки PA1, что значительно повышает удобство пользования им, поскольку позволяет быстро оценить ток, потребляемый нагрузкой. Шунтом для микроамперметра PA1 служит омическое сопротивление обмотки дросселя L4. Светодиоды HL1 и HL2 подсвечивают шкалу микроамперметра.

На выходные разъёмы XP2 и XS1 напряжение поступает через фильтр L5C19. Стабилитрон VD9 с диодом VD10 предотвращают чрезмерное повышение выходного напряжения при неисправности цепей его стабилизации.

Рабочая частота преобразователя - около 60 кГц. При токе нагрузки 2,3 А размах пульсаций выпрямленного напряжения на конденсаторе C15 - около 100 мВ, на конденсаторе C18 - около 40 мВ и на выходе блока питания - около 24 мВ. Это очень неплохие показатели.

КПД блока питания при токе нагрузки 2,5 А - 71 %, 2 А - 80 %, 1 А - 74 %, 0,2 А - 38 %. Ток короткого замыкания выхода - около 5 А, потребляемая от сети мощность при этом - около 7 Вт. Без нагрузки блок потребляет от сети около 1 Вт. Измерения потребляемой мощности и КПД проводились при питании блока постоянным напряжением, равным амплитуде сетевого.

При длительной работе с максимальным током нагрузки температура внутри его корпуса достигала 40 °С при температуре окружающего воздуха 24 °С. Это значительно меньше, чем у многочисленных малогабаритных импульсных источников питания, входящих в комплекты различных бытовых электронных приборов. При токе нагрузки, равном половине заявленного максимального значения, они перегреваются на 35...55 °С.

Большинство деталей описываемого блока питания установлены на плате размерами 75x75 мм. Монтаж - двухсторонний навесной. В качестве корпуса применена пластмассовая распределительная коробка размерами 85x85x42 мм для наружной электропроводки. Блок в открытом корпусе показан на рис. 2, а его внешний вид - на рис. 3.

Рис. 2.

Рис. 2.

Рис. 3. Внешний вид блока

Рис. 3.

При изготовлении блока следует обратить особое внимание на фазировку обмоток трансформатора T1, начало и конец ни одной из них не должны быть перепутаны. Применённый трансформатор 3PMT10053000 (от упомянутого выше компьютерного блока питания) имеет также предназначенную для выпрямителя напряжения -12 В обмотку, которая в данном случае не использована. Взамен него можно применить почти любой подобный трансформатор. Для ориентировки при подборе трансформатора привожу значения индуктивности обмоток использованного: I - 2,4 мГн, II - 17 мкГн, III - 55 мкГн.

В качестве PA1 применён микроамперметр M68501 (индикатор уровня от отечественного магнитофона). Учтите, что микроамперметры этого типа различных лет выпуска имеют очень большой разброс сопротивления измерительного механизма. Если установить нужный предел измерения подборкой резистора R13 не удаётся, нужно включить последовательно с дросселем L4 проволочный резистор небольшого сопротивления (ориентировочно 0,1 Ом).

При градуировке микроамперметра неожиданно выяснилось, что он очень чувствителен к статическому электричеству. Поднесённая пластмассовая линейка могла отклонить стрелку прибора до середины шкалы, где она могла остаться и после того, как линейка была убрана. Устранить это явление удалось удалением имевшейся плёночной шкалы. Вместо неё была приклеена липкая алюминиевая фольга, которой были оклеены и свободные участки корпуса. Экран из фольги следует соединить проводом с любым выводом микроамперметра. Можно попробовать обработать корпус микроамперметра антистатическим средством.

Напечатанную на принтере бумажную шкалу приклеивают на место удалённой. Образец шкалы изображён на рис. 4. Как видите, у этого микроамперметра она заметно нелинейна.

Рис. 4.

Рис. 4.

Резистор R1 - импортный невозгораемый. Вместо такого резистора можно установить проволочный мощностью 1...2 Вт. Отечественные металлоплёночные и углеродные резисторы в качестве R1 не подходят. Остальные резисторы общего применения (С1-14, С2-14, С2-33, С1-4, МЛТ, РПМ). Резистор R19 для поверхностного монтажа припаян непосредственно к выводам розетки XS1.

Оксидные конденсаторы - импортные аналоги К50-68. Использование конденсаторов C15, C18, C19 с номинальным напряжением 10 В вместо часто применяемых в импульсных блоках питания оксидных конденсаторов на напряжение 6,3 В значительно повышает надёжность устройства. Плёночный конденсатор C2 ёмкостью 0,033...0,1 мкФ предназначен для работы на переменном напряжении 275 В. Остальные конденсаторы - импортные керамические. Конденсаторы C14, C17 припаяны между выводами соответствующих оксидных конденсаторов. Конденсатор C20 установлен внутри штекера ХР2.

Мощная сборка диодов Шотки S30D40C взята из неисправного компьютерного блока питания. В рассматриваемом устройстве она может работать без теплоотвода. Заменить её можно на MBR3045PT, MBR4045PT, MBR3045WT, MBR4045WT. При максимальном токе нагрузки корпус этой сборки нагревается до 60 °С - это самый горячий элемент в устройстве. Вместо диодной сборки можно применить два обычных диода в корпусе DO-201AD, например, MBR350, SR360, 1N5822, соединив их параллельно. К ним со стороны выводов катодов нужно прикрепить дополнительный медный теплоотвод, показанный на рис. 5.

Рис. 5.

Рис. 5.

Вместо диодов 1N4005 подойдут 1N4006, 1N4007, UF4007, 1N4937, FR107, КД247Г, КД209Б. Диод FR157 можно заменить на FR207, FM207, FR307, PR3007. Один из перечисленных диодов подойдёт и вместо КД226Б. Заменой диода FR103 может служить любой из UF4003, UF4004, 1N4935GP RG2D, EGP20C, КД247Б. Вместо стабилитрона BZV55C18 подойдут 1N4746A, TZMC-18.

Светодиоды HL1, HL2 - белого цвета свечения из узла подсветки ЖКИ сотового телефонного аппарата. Их приклеивают к микроамперметру цианакрилатным клеем. Транзистор KSP2222 можно заменить любым из PN2222, 2N2222, KN2222, SS9013, SS9014, 2SC815, BC547 или серии КТ645 с учётом различий в назначении выводов.

Полевой транзистор SSS2N60B извлечён из неисправного блока питания и установлен на ребристый алюминиевый теплоотвод с площадью охлаждающей поверхности 20 см2, причём все выводы транзистора должны быть электрически изолированы от теплоотвода, при работе блока питания с максимальным током нагрузки этот транзистор нагревается всего до 40 °С. Вместо транзистора SSS2N60B можно применить SSS7N60B, SSS6N60A, SSP10N60B, P5NK60ZF, IRFBIC40, FQPF10N60C.

Оптрон EL817 можно заменить другим четырёхвыводным (SFH617A-2, LTV817, PC817, PS817S, PS2501-1, PC814, PC120, PC123). Вместо микросхемы LM431ACZ подойдёт любая функционально аналогичная в корпусе ТО-92 (TL431, AZ431, AN1431T).

Все дроссели - промышленного изготовления, причём магнитопроводы дросселей L1, L2, L4 - H-образные ферритовые. Сопротивление обмотки дросселя L4 - 0,042 Ом. Чем крупнее этот дроссель по размеру, тем меньше будет нагреваться его обмотка, тем точнее будет измерять ток нагрузки микроамперметр PA1. Дроссель L5 намотан на кольцевом магнитопроводе, чем меньше сопротивление его обмотки и чем больше её индуктивность, тем лучше. Дроссель L3 - надетая на вывод общего катода диодной сборки VD8 ферритовая трубка длиной 5 мм.

Штекер XP2 соединён с конденсатором C19 сдвоенным многожильным проводом 2x2,5 мм2 длиной 120 см. Розетка XS1 USB-AF закреплена в отверстии корпуса устройства клеем.

Первое включение изготовленного устройства в сеть переменного тока производят без нагрузки через лампу накаливания мощностью 40...60 Вт на 235 В, установленную вместо плавкой вставки FU1. Предварительные испытания под нагрузкой выполняют, заменив FU1 лампой накаливания мощностью 250...300 Вт. Нити ламп накаливания при нормальной работе блока питания не должны светиться. Безошибочно изготовленное из исправных деталей устройство начинает работать сразу.

При необходимости подборкой резистора R13 можно установить показания амперметра. Подбирая резистор R14, устанавливают выходное напряжение блока питания равным 5...5,25 В. Повышенное напряжение компенсирует его падение на проводах, соединяющих блок с нагрузкой.

Изготовленный источник питания можно эксплуатировать совместно с доработанным USB-концентратором [1], к которому можно будет подключить до четырёх внешних жёстких дисков типоразмера 2,5 дюйма, работающих одновременно. Мощности будет достаточно и для питания, например, таких устройств, как [2].

Литература

1. Бутов А. Доработка USB-концентратора. - Радио, 2013, № 11, с. 12.

2. БутовА. Преобразователь напряжения 5/9 В для питания радиоприёмников. - Радио, 2013, № 12, с. 24, 25.

Автор: А. Бутов, с. Курба Ярославской обл.

Возможно, Вам это будет интересно:

meandr.org

Блок питания +5В

Этот простой импульсный преобразователь выполнен на основе микросхемы TOP-221 фирмы Power Integrations, Inc. и может отдавать в нагрузку ток до 2А, что более чем достаточно для питания различных цифровых устройств.

Внешний вид

Микросхема TOP-221, являющаяся представителем семейства TOPSwitch-II фирмы Power Integrations, Inc., включает в себя мощный высоковольтный транзистор и все узлы, необходимые для его управления. В связи с этим конструирование источников питания  упрощается до безобразия, а система встроенных в микросхему защит делает ее практически неубиваемой.

Схема, показанная ниже, практически полностью повторяет типовое решение, предлагаемой фирмой. Конденсатор C3 через выпрямительный мост VD1 заряжается до амплитудного значения сетевого напряжения. С помощью обратноходового преобразователя на основе трансформатора T1, микросхемы DA1, диода VD3 и конденсатора C5 это напряжение понижается до 5В. Во время открытого состояния транзистора энергия накапливается в сердечнике трансформатора, а в моменты его закрывания «выплескивается» обратно и питает вторичные цепи. Процесс идет на фиксированной частоте 100 кГц, а количество запасенной в цикле энергии определяется длительностью открытого состояния, задаваемого узлами стабилизации через вход Control микросхемы.

Внешние узлы стабилизации – это «микросхема регулируемого аналога стабилитрона» DA2 и оптрон DA3. При увеличении выходного напряжения сверх 5В зажигается светодиод оптрона, и на вход Control микросхемы поступает повышенный ток от вспомогательного выпрямителя (обмотка II–VD4–C6). Этот ток приводит к уменьшению длительности открывающих импульсов, и следовательно – к уменьшению передаваемой во вторичные цепи энергии, в результате чего напряжение на выходе выправляется.

Электрическая схема, нагрузочная характеристика и моточные данные трансформатора

Пока напряжение на выходе не достигло 5В (а на C6 и C7 – устойчивых 4,7В), микросхема делает попытки запуститься, при которых рассеиваемая ею мощность минимальна. Это предохраняет преобразователь от коротких замыканий и чрезмерно большой нагрузки.

При превышении тока через открывшийся транзистор сверх установленной величины, последний досрочно закрывается, что защищает узел от перегрузок и также способствует повышению надежности. Наконец, при перегреве микросхемы свыше135o C срабатывает внутренний температурный датчик и работа преобразователя временно блокируется (до остывания микросхемы). В итоге, чтобы вывести микросхему из строя надо очень и очень постараться!

Нагрузочная характеристика получившегося блока питания приведена на электрической схеме. В одном из блоков питания я поленился и изготовил трансформатор с сокращенным (более чем в два раза!) количеством витков («2-ой вариант»). Микросхема стерпела такое «издевательство» и ощутимо не нагревалась даже без использования теплоотвода, отдавая в нагрузку ток порядка 0,4А (максимальный отдаваемый ток такого преобразователя снизился до 0,8А).

Печатная плата разрабатывалась под пластмассовые флакончики из-под химикатов, которых мне надарили великое множество. Этим объясняется столь «обтекаемая» форма платы. У флакончиков отрезалось горлышко, уменьшалась высота, а недостающая стенка («дно») вырезалась из винипласта толщиной 4 мм. В дно вворачивались два штепселя, крепление к стенкам осуществлялось четырьмя винтами М2.

" Топология печатной платы (габариты 60х32 мм)

Внешний вид платы

В плату без ее модификации можно установить стандартные 4-выводные оптроны, а также 5-выводный отечественный оптрон АОТ110. Для оптронов в корпусах DIP6 (1N35) предусмотрены дополнительные площадки, но печатные проводники в некоторых местах придется перерезать и соединить их по-новому. У оптрона АОТ110 следует уменьшить коэффициент передачи, соединив базу фототранзистора с эммитером через резистор порядка 10к (на плате есть место под соответствующий SMD-компонент). Вместо Ш-образного трансформатора на плату помещается магнитопровод Б22.

Резисторы R1 и R2 ограничивают пусковой ток и служат «плавкими предохранителями». Конденсаторы C1 и C2 уменьшают излучаемые помехи и с некоторым запасом должны быть рассчитаны на сетевое напряжение. Конденсатор C4 должен быть на напряжение не ниже 200В (совместно с элементами VD2 и R3 он образует цепочку, гасящую выбросы напряжения на первичной обмотке, опасные для DA1. Вместо конденсатора и резистора здесь иногда ставят защитный диод типа P6KE200).

Изоляции обмотки III следует придать первостепенное значение. Для уменьшения излучаемых помех желательно ввести экран из одного слоя тонкого провода. В крайнем случае между обмотками I и III следует разместить обмотку II, распределив ее по всей ширине каркаса. Дроссель L1 может быть намотан на ферритовом кольце или стержне, «витками поболее да сопротивлением пониже». На выход блока питания я поставил светодиод с токоограничительным резистором (на схеме не показаны) для индикации наличия напряжения +5В.

Микросхемы TOP221 установлены без каких-либо теплоотводов, но свои блоки питания я эксплуатирую в щадящих режимах. При токах нагрузки, близких к максимальным, потребуется установка микросхемы DA1 на теплоотводящую пластину и более «прозрачные» для воздуха стенки корпуса.

antiradio.narod.ru Дата создания документа: 10.10.2008. Последнее обновление: 10.10.2008.

Сайт создан в системе uCoz

antiradio.narod.ru

Схема простого блок питания 5 В 1 А

Очень часто для питания различных устройств, например, детские электронные игрушки, новогодние гирлянды, возникает необходимость в маломощном блоке питания 5 В, это довольно распространенный тип источника и, если для наладки собранного устройства подойдет лабораторный блок питания, то питать готовую конструкцию конечно же нужно собственным БП 5В.

В данной статье я постараюсь пошагово расписать построение трансформаторного блока питания на 5 вольт специально для начинающих радиолюбителей. Вообще написать статью о БП меня побудили предыдущие публикации:

Простая мигалка на светодиодахПростейшая мигалка на светодиодеПрограммируемый переключатель гирляндСветодиодная гирлянда на микроконтроллереПереключатель ёлочной гирлянды на ШИМ

Во всех перечисленных схемах требуется блок питания 5 В как основной или дополнительный источник. Наш БП 5 В будет трансформаторным, а не импульсным. По моему скромному мнению трансформаторный блок питания собрать и настроить легче, возможно по стоимости и габаритам импульсный предпочтительней, но если у вас завалялся старенький и к тому, же тороидальный «транс» на 7 — 10 В, то как говорится сам бог велел.

Структурная схема блока питания на 5 В:

Каждый блок пронумерован А1-А6. На принципиальной схеме каждый блок будет выделен, так сказать для наглядности. Рассмотрим, что представляет из себя каждый блок.

Сетевой фильтр (А1).

Предназначен для подавления высоковольтных и высокочастотных сетевых помех. С высоковольтными помехами успешно справляется варистор. А высокочастотными помехами займется RC фильтр.

Варистор – это полупроводниковый элемент, характеризующийся сопротивлением. Работает следующим образом: в рабочем режиме сопротивление варистора достаточно велико, напряжение не превышает пороговое значение варистора, и ток через него не течет. Как только напряжение достигает «порога» — сопротивление варистора понижается практически до нескольких десятков Ом и ток начинает протекать через него. Кратковременные высоковольтные импульсы гасятся варистором, а более длительное перенапряжение, как правило, выводит его из строя, иногда даже с громким хлопком.

В нашей схеме блока питания 5 В будем использовать RC фильтр, он уступает по эффективности LC фильтру, но зато дешевле и для нашего маломощного БП вполне подойдет.

Раньше никто не «заморачивался» сетевым фильтром, а теперь, какую бы вы бытовую технику не разобрали, обязательно увидите варистор, RC или LC фильтры тоже встречаются, но реже. Вызвано это массовым использованием импульсных блоков питания, которые передают в сеть такую «кашу» помех, что не всякий потребитель выдержит, поэтому производители электротехники пытаются хоть как-то обезопасить свою продукцию. Одним словом не рекомендую убирать из схемы блока питания сетевой фильтр.

Трансформатор (А2).

В нашем БП 5 В трансформатор играет ключевую роль, именно он понижает (преобразует) сетевое питание 220 В в низковольтное. Трансформатор должен быть силовым, рассчитан на сетевую частоту 50 Гц, с первичной обмоткой на 220 В и одной вторичной обмоткой на 7 — 10 В. Номинальная мощность трансформатора 4 — 8 Вт. Конструкция (тороидальный, броневой) в принципе особой роли не играет, какой найдете.

Еще такой момент, на трансформаторе указывают действующее значение напряжения (Uд), которое можно проверить, измерив вольтметром. А на выходе после фильтра (блок А4), по сути после диодного моста и сглаживающего конденсатора, мы получим амплитудное значение (Uа). Зависимость между амплитудным и действующим напряжениями такая:

Uа = 1,41xUд

Т.е. если в блоке питания вторичная обмотка трансформатора выдает 7 — 10 В, то на фильтре-конденсаторе (А4) мы приблизительно получим 10 — 14 В. Забегая наперед скажу, что для нас это не опасно, т.к. стабилизатор напряжения (А5) работает до 40 В на входе. Теоретически, да и практически, мы можем взять трансформатор с большим напряжением и на выходе стабилизатора получить необходимые 5 В. Куда денется разница? Правильно – в тепло! А нам это не надо, мы строим рациональный блок питания 5 В.

Выпрямитель (А3).

Превращает переменное напряжение на входе в постоянное на выходе. Будем использовать двухполупериодный выпрямитель – диодный мост.

Фильтр (А4).

Предназначен для сглаживания напряжения после выпрямителя. Используется обычный электролитический конденсатор достаточно большой емкости. Чем больше емкость конденсатора, тем меньше пульсации. У конденсатора кроме емкости есть еще такой параметр как напряжение, будьте внимательны и берите конденсаторы с запасом. Мы условились, что в блоке питания на 5 В вторичная обмотка трансформатора (А2) будет на 7 — 10 В и с учетом повышения напряжения в 1,41 раз возьмем конденсатор не менее 25 В. В момент, когда конденсатор заряжается, протекающий через диодный мост ток увеличивается т.к. необходимо обеспечить и заряд и нагрузку. Обратное напряжение диода тоже велико – происходит суммирование входного и выходного напряжений. Поэтому диоды для выпрямителя нужно подбирать с запасом по параметрам.

Стабилизатор напряжения (А5).

Это микросхема, служит для стабилизации диапазона напряжений на входе в четко установленное значение на выходе. Логично, что входное напряжение должно быть больше выходного, как правило, не менее чем на 3 В. Максимальный порог обычно ограничен 30 — 40 В. Стабилизатор лучше брать в корпусе TO220 и установить на радиатор, по крайней мере, в нашем блоке питания на 5 В я рекомендую это сделать.

Индикатор (А6).

В повседневной жизни мы уже настолько привыкли, что любая техника нам весело подмигивает светодиодом, когда мы ее включаем, то я решил, что индикатор рабочего режима не помешает в БП 5 В. Он состоит из светодиода и токоограничивающего резистора. Светодиод красного или зеленого цвета свечения на напряжение 1,5 В или 3 В, только посчитайте правильно сопротивление резистора. Сопротивление токоограничивающего резистора рассчитывается по формуле:

R = (Uпит — Uсвет)/Iсвет, где

Uпит – напряжение источника питания;

Uсвет – прямое напряжение светодиода;

Iсвет – прямой ток светодиода.

Рекомендую воспользоваться отличным калькулятором для расчета токоограничивающего резистора.

Пора переходить от теории к практике. Вашему вниманию предлагается принципиальная схема блока питания 5 В:

Для наглядности на схеме БП выделены блоки согласно структурной схемы. Пройдемся по схеме.

Первым идет предохранитель FU1, не забывайте про него в своих конструкциях, это очень важный элемент. Нередко, жертвуя собой, он спасает всю схему. Предохранитель должен быть рассчитан на ток 0,15 А, можно взять и мощней, но до 0,5 А, это на тот крайний случай когда 0,15 А сгорает. Все зависит от качества трансформатора. Больше 0,5 А не ставьте ни в коем случае!

 

Выключатель SA1 любой подходящий, лучше конечно если у него будет две группы контактов как показано на схеме. Отлично подойдет на 250 В, 6 А. Ставить с подсветкой в блок питания не советую, у нас в качестве индикатора будет светодиод который стоит на выходе БП и в отличии от неонки в кнопке сигнализирует о работе всех предстоящих компонентов.

 

Далее по схеме блока питания 5 В идет варистор RU1. Можно любой, я поставил JVR-07N471K. Главное чтобы так называемое классификационное напряжение было 470 В, не меньше – будет греться, и не больше – будет пропускать перенапряжение.

 

Сопротивление резисторов R1 и R2 5 — 20 Ом, мощность до 2 Вт. Если при сборке блока питания эти резисторы у вас окажутся рядом – оденьте на них термоусадку или кембрик, таким образом, их нужно изолировать друг от друга, потому что собственная изоляция резисторов штука ненадежная. На предлагаемой ниже печатной плате эти резисторы разнесены, тем не менее, лишняя изоляция не повредит.

Конденсатор C1 неэлектролитический пленочный серии К73-17 номинальное напряжение 630 В, емкость 0,1 — 0,47 мкФ.

 

Про трансформатор Т1 для блока питания 5 В уже говорили, вкратце напомню – первичная обмотка 220 В, вторичная 7 — 10 В, мощность 4 — 8 Вт.

 

Диодный мост VD1 рекомендую брать готовый, конечно если есть желание можно спаять из диодов. При подключении смотрите маркировку на корпусе. Если все же решили собрать из диодов, напомню, что на корпусе диода полоской маркируется катод, как определить катод на схеме смотрите рисунок, красным отмечена буква «К» это он и есть. Что касается параметров, для нашего БП 5 В берем мост с запасом, я выбрал KBL01.

Фильтр блока питания, он же конденсатор электролитический C2 типа К50-35. Электролитические конденсаторы имеют полярность, на корпусе маркируется минус, в схеме указывается плюс, будьте внимательны, если перепутаете ба-бах обеспечен. Тоже произойдет, если напряжение питания превысит номинальное конденсатора. Емкость 2200 — 4700 мкФ, меньше нельзя из-за роста пульсаций, больше — нет смысла. Напряжение 25 В и выше. Не забывайте мы условились, что в собираемом БП вторичная обмотка на 10 В, не больше, учитывая повышение в 1,41 раз, получаем с запасом 25 В. Вообще, при подборе трансформатора умножайте примерно на 1,5 подаваемое на конденсатор напряжение (т.е. с учетом 1,41) – это будет запас на прочность.

Стабилизатор напряжения также важный компонент схемы блока питания на 5 В. Есть отечественные, есть импортные аналоги выбирать вам. Я остановился на L7805A, максимальное входное напряжение – 35 В, выходное – 5 В, выходной ток до 1 А, корпус TO220. Конденсатор C3 рекомендуется для предотвращения самовозбуждения стабилизаторов. Подойдет обычный керамический многослойный серии К10-17Б, емкость 0,1 — 4,7 мкФ.

Последний элемент блока питания 5 В – индикатор работы. Светодиод HL1 и токоограничивающий резистор R3. Светодиод АЛ307БМ, сопротивление резистора согласно расчетам 300 Ом, мощность 0,125 Вт. У светодиода, как и у диода, есть катод, и анод не перепутайте при подключении. Определить полярность поможет мультиметр в режиме омметра или в режиме проверки диодов, при правильном подключении светодиод загорится.

5 В блок питания собран на одностороннем фольгированном стеклотекстолите размерами 60х26 мм. Предохранитель FU1, выключатель SA1 и трансформатор Т1 располагаются отдельно. Светодиод HL1 по желанию, его можно вынести на корпус.

Печатная плата блока питания 5 В со стороны элементов выглядит так:

А со стороны выводов элементов выглядит следующим образом:

Предлагаю вам скачать печатную плату блока питания 5 В в формате .lay в конце этой статьи.

В наладке правильно собранный блок питания 5 В не нуждается.

Скачать

bp_5v.lay

Печатная плата блока питания 5 В

  • Загрузок: 805
  • Размер: 23 Kb

Источник

picofarad.ru

Блок питания 5 В на TNY266 - Блоки питания (импульсные) - Источники питания

ВНИМАНИЕ!!! здесь нет никакой защиты от КЗ, при эксплуатации нужно учитывать этот момент, иначе "трах, бабах - и нет его"!

Схема представлена ниже, она почти полностью повторяет ту, что в даташите

Частота работы преобразователя 132 кГц, производитель обещает мощность TNY266 до 15 Ватт. Блок питания построен по топологии fluybaск-обратноходовый преобразователь.

Коротко по деталям:

Конденсатор от помех в сеть на 2,2 нФ, на схеме показан, но у меня в блоке не стоит, как показала практика мало эффективен, для полноценной защиты нужна связка дроссель-конденсатор, но это уже будет другая история)

Диодная сборка DB107, можно заменить на обычные диоды или любую другую оборку (400B 0,5А)

Конденсатор 22мкфх400 - электролит, если к ИБП подключать слаботочные нагрузки (максимум 1A), то можно уменьшить до 10 мкФ

Защитная цепочка: конденсатор Y5Р 2200пФ 2000В, резистор 200 кОм 0,125 Вт, диод 1N4007. Менять на аналогичное, конденсатор на напряжение не ниже 1000 Вольт.

Микросхема ТNY266, можно заменить на ТNY263-268, параметры см. ниже:

 

Конденсатор на 1 ножке микросхемы - 0,1 мкф 50В-обычный керамический

Оптотранзистор CNY17-2 или любой c аналогичными параметрами из серий РС, TLP, ток через диод подбирается путём подстройки резисторов делителя (на схеме со звёздочкой) 

Стабилитрон - любой на 3,9 вольта

Диод Шоттки 1N5822 или любой аналогичный

Сглаживающий конденсатор 1000 мкФ х 16 B, конденсатор на напряжение ниже 10 вольт ставить не стоит.

 И теперь самое главное, камень преткновения для многих - импульсный трансформатор. Берём его из отслужившей (или бейте рабочую )))) энергосберегающей лампы. Разбираем, выпаиваем трансформатор, отматываем жёлтую ленту, которая скрепляет 2 Ш-половинки. Разъединяем трансформатор (мой разъединился от усилия рук-повезло), если не разъединяется, то кипятим, как остынет-снова пробуем. Отматываем провод c каркаса, смотрим, если он нормальный, то мотаем им или меняем на ПЭВ-2 диаметром 0,15мм всего 130 витков. Вторичная обмотка содержит 6 витков проводом 0,35 х 3 (сложенным втрое). Первичка обязательно изолируется от вторички! 

Теперь по поводу направления намотки, мотаем обе обмотки в одном направлении, как это сделать показано ниже на рисунке:

Печатная плата блока лежит тут: http://cxema.my1.ru/load/0-0-0-2042-20

Фото готового блока:

Фото трансформатора из лампы:

cxema.my1.ru

Три простых варианта блоков питания

stab3Рассмотрим три простых варианта источников питания. Собрать их под силу даже начинающим радиолюбителям. Блоки питания можно приспособить для питания различных радиосхем, устройств  разной мощности и разной полярности. В зависимости какое устройство, схему вам нужно запитать выбираем варианты БП и IC в них.

I вариант

Блок питания на микросхеме-стабилизаторе (IC) серии Кр142ЕНхх или зарубежный аналог 78ХХ

Три простых варианта блоков питания

Напряжение и ток на выходе этого источника питания соответствует характеристикам, установленной в нём IC (см. табл.). На микросхеме рассеивается мощность: P=Iн (Udc max — Uн). Диоды типа Д202, КД226 и т.д., С1-С4 на напряжение в 1,5 раза больше чем на них будет, стабилитрон VS1 выбираем в зависимости на какое напряжение будет диапазон регулировки на выходе БП, но не забываем о Umax входном для IC.

Например, напряжение на выходе меняется от 5 до 12в, ток 3А.

  1.  Тр-р выход ~12В (3А)
  2. Диоды, расчитанные на ток не менее — 3А ( на радиаторе)
  3. С1 — 2200,0 х 25В
  4. IC — К142ЕН5А (на радиаторе)
  5. VS — Д814А
  6. С4 10,0 х 16В
Таблица характеристик микросхем-стабилизаторов.
Тип микросхемы Напряжение входное мin-мах, В Напряжение стабилизации, В Мах. ток, А Расс. Мощн., Вт Потребл. Ток мА
142ЕН3 9,5-60 3-30 1,0 6,0
142ЕН4 9,5-60 3-30 1,0 6,0
(К,КР)142ЕН5А(К,КР)142ЕН5Б(К,КР)142ЕН5В(К,КР)142ЕН5Г 7.5-158.5-157.5-158.5-15 5±0,16±0,125±0,186±0,21 3,03,02,02,0 5 10
(К,КР)142ЕН8А(К,КР)142ЕН8Б(К,КР)142ЕН8В 11,5-3514,5-3517,5-35 9±0,1512±0,2715±0,36 1,5 6 10
(К,КР)142ЕН8Г(К,КР)142ЕН8Д(К,КР)142ЕН8Е 11,5-3514,5-3517,5-35 9±0,3612±0,4815±0,6 1,5 6 10
(К)142ЕН9А(К)142ЕН9Б(К)142ЕН9В(К)142ЕН9Г(К)142ЕН9Д(К)142ЕН9Е 23-4527-4530-4523-4527-4530-45 19,6-20,423,52-24,4826,48-27,5419,4-20,623,28-24,7226,19-27,81 1,5
142ЕН10 9-40 3-30 1,0 5
(К)142ЕН11 5-45 1.2…37 1,5 8 7
(К)142ЕН12КР142ЕН12А 1.2…371,2…37 1,51,0 1 5
КР142ЕН18АКР142ЕН18Б -1,2…26,5-1,2…26,5 1,01,5 1 5
Три простых варианта блоков питания
II вариант

В нижеприведённой схеме источника питания на выходе стоит мощный транзистор типа КТ818, КТ825 и т.д. Ток на выходе данного источника питания соответствует характеристикам установленного в нём транзистора VT1. Диоды соответственно тоже необходимо устанавливать мощнее, чем в предыдущем варианте (типа Д242-248, КД213,  КД2997 и т.д.).

Три простых варианта блоков питания

III вариант

Отличается от предыдущего варианта только тем, что инвертированы полярности диодов, электролитических конденсаторов, IC-79хх, так же применён транзистор обратной полярности.

Три простых варианта блоков питания

На всех вариантах схем диоды, транзисторы и IC необходимо установить на теплоотводы с тепловым со­противлением не выше 3 °С/Вт.

В транзисторах рассеивается мощность: P=Iн (Udc max — Uн)

А.Зотов

Прислать свою поделку!

П О П У Л Я Р Н О Е:

  • Симисторный регулятор мощности
  • Симисторный регулятор мощностиПростой регулятор мощности для паяльника (лампы) на MAC97A

    Простой регулятор мощности до 100Вт можно сделать всего из нескольких деталей. Его можно приспособить для регулирования температуры жала паяльника, яркости настольной лампы, скорости вентилятора и т.п. Регулятор на тиристоре получается по размерам сильно большой и конструктивно имеет недочеты и большую схему. Регулятор мощности на импортном малогабаритном симисторе mac97a (600В; 0,6А) можно коммутировать и более мощные нагрузки, простая схема, плавная регулировка, маленькие габариты.

    Подробнее…
  • Защита БП от КЗ
  • Схема защиты источника питания от перегрузки на КУ202

    Схема защиты источника питания от перегрузки на КУ202

    Для защиты блока питания при конструировании различных схем рекомендуется на выход БП добавить узел защиты от перегрузки по току. Простая схема устройства построена с применением тиристора в качестве управляющего элемента защиты по напряжению.

    Подробнее…

  • Стабилизатор на тиристорах.
  • Предварительный стабилизатор на тиристорах

    Предварительный стабилизатор на тиристорах

    Подробнее…

>>

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ:

Популярность: 18 824 просм.

www.mastervintik.ru


Каталог товаров
    .