интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Особенности выбора, эксплуатации и контроля технического состояния устройств защиты от импульсных перенапряжений. Узип обозначение на схеме


УЗИП для частного дома - защита от перенапряжения при ударе молнии

Бытовой УЗИП

Импульсным перенапряжением называется кратковременное резкое возрастание напряжения в электрической сети. Несмотря на то, что длится этот скачок совсем недолго (доли секунды), он чрезвычайно опасен как для линии, так и для подключенных к ней потребителей энергии. Чтобы не допустить повреждения кабеля и электрических приборов, используют устройства защиты от импульсных перенапряжений. В этом материале мы поговорим о том, что представляют собой эти приборы, каких видов они бывают, а также рассмотрим, как подключаются УЗИП для частного дома.

Причины возникновения импульсного перенапряжения

ИП может происходить как по технологическим, так и по природным причинам. В первом случае резкий перепад разности потенциалов происходит, когда на трансформаторной подстанции, откуда идет питание конкретной линии, возникает коммутационная перегрузка. Импульсное перенапряжение, вызванное природными причинами, случается, когда во время грозы мощный разряд бьет в молниезащиту сооружения или линию электрической передачи. Независимо от того, чем вызван скачок напряжения, он может быть очень опасен для домашней электросети, поэтому для эффективной защиты от него требуется подключить УЗИП.

Молния ударила в молниеотвод

Для чего нужно подключение УЗИП?

Для того чтобы защитить электрическую сеть и подключаемые к ней приборы от мощных импульсов тока и резких перепадов напряжения, устанавливается устройство для защиты линии и оборудования от импульсных напряжений (сокращенное обозначение – УЗИП). Оно включает в себя один или несколько нелинейных элементов. Подключение внутренних компонентов защитного устройства может производиться как в определенной комбинации, так и различными способами (фаза-фаза, фаза-земля, фаза-ноль, ноль-земля). В соответствии с требованиями ПУЭ установка УЗИП для защиты сети частного дома или другого отдельного здания производится только после вводного автомата.

Наглядно про УЗИП на видео:

Разновидности УЗИП

Эти аппараты могут иметь один или два ввода. Включение как одновводных, как и двухвводных устройств всегда производится параллельно цепи, защиту которой они обеспечивают. В соответствии с типом нелинейного элемента УЗИП подразделяются на:

  • Коммутирующие.
  • Ограничивающие (ограничитель сетевого напряжения).
  • Комбинированные.

Разновидности УЗИП

Коммутирующие защитные аппараты

Для коммутирующих устройств, находящихся в обычном рабочем режиме, характерно высокое сопротивление. Когда происходит резкое увеличение напряжения в электрической сети, сопротивление прибора мгновенно падает до минимального значения. Основой коммутирующих аппаратов защиты сети являются разрядники.

Ограничители сетевого перенапряжения (ОПН)

Ограничитель импульсных перенапряжений также характеризуется высоким сопротивлением, плавно снижающимся по ходу возрастания напряжения и повышения силы электротока. Постепенное снижение сопротивления – это отличительная черта ограничивающих УЗИП. Ограничитель сетевого перенапряжения (ОПН) имеет в своей конструкции варистор (так называется резистор, величина сопротивления которого находится в нелинейной зависимости от воздействующего на него напряжения). Когда параметр напряжения становится больше порогового значения, происходит резкое увеличение силы тока, проходящего через варистор. После сглаживания электрического импульса, вызванного коммутационной перегрузкой или ударом молнии, ограничитель сетевого напряжения (ОПН) возвращается в обычное состояние.

Ограничитель сетевого напряжения

Комбинированные УЗИП

Устройства комбинированного типа сочетают в себе возможности коммутационных и ограничивающих аппаратов. Они могут как коммутировать разность потенциалов, так и ограничивать ее возрастание. При необходимости комбинированные приборы могут выполнять одновременно обе этих задачи.

Классы устройств защиты от ИП

Существует 3 класса аппаратов защиты линии от перенапряжения:

Устройства I класса устанавливаются в распределительном щите или вводном шкафу и позволяют обеспечить защиту сети от импульсного перенапряжения, когда электрический разряд во время грозы попадает в ЛЭП или молниезащиту.

Приборы II класса обеспечивают дополнительную защиту электрической линии от повреждений в результате удара молнии. Устанавливают их и в том случае, когда необходимо защитить сеть от импульсных скачков напряжения, вызванных коммутацией. Их монтируют после устройств I класса.

Рассказ про УЗИП от специалистов компании ABB на видео:

Аппараты класса I+II обеспечивают защиту отдельных жилых домов. Монтаж этих приборов производится неподалеку от электрического оборудования. Они играют роль последнего барьера, сглаживающего остаточное перенапряжение, которое, как правило, имеет незначительную величину. Устройства этого класса выпускаются в виде специализированных электророзеток или вилок.

Разновидности УЗИП

Одновременная установка устройств I, II и III класса гарантирует трехступенчатую защиту электрической линии от импульсных скачков напряжения.

Как подключить УЗИП в частном доме?

Защитные устройства могут включаться в бытовые электрические сети (с одной фазой и рабочим напряжением 220В) и в токоведущие линии промышленных объектов (три фазы, 380В). Исходя из этого, полная схема подключения УЗИП предусматривает воздействие соответствующего показателя напряжения.

Если роль заземления и нулевого проводника играет общий кабель, то в такой схеме устанавливается простейшее одноблоковое УЗИП. Подключается он следующим образом: фазная жила, подключенная ко входу защитного устройства – выходной кабель, соединенный с общим защитным проводником – защищаемые электроприборы и оборудование.

В соответствии с требованиями современной электротехнической документации нулевой и заземляющий проводники объединяться не должны. Исходя из этого, в новых домах для защиты цепи от скачков напряжения применяется двухмодульный аппарат, имеющий три отдельных клеммы: фаза, нейтраль и заземление.

Подключение УЗИП – схема в линии TNC и TNS

В таком случае включение устройства в схему производится по другому принципу: фаза и нулевой кабель идут на соответствующие клеммы УЗИП, а затем шлейфом на подсоединенное к линии оборудование. Заземляющий проводник также подключается к своей клемме защитного прибора.

В каждом из описанных случаев чрезмерный ток, возникающий при перенапряжении, уходит в землю по кабелю заземления или общему защитному проводу, не оказывая воздействия на линию и подсоединенное к ней оборудование.

Ответы на вопросы про УЗИП на видео:

Заключение

В этой статье мы рассказали о том, что же такое УЗИП, каких типов бывают эти устройства и как они классифицируются, а также разобрались с тем, как производится их подключение к защищаемой цепи. Напоследок нужно сказать, что использование этого прибора, в отличие от УЗО, в линии электропитания частного дома обязательным не является. Включение его в сеть в каждом отдельно взятом случае требует учета индивидуальной заземляющей схемы, а также размещения ГЗШ и вводного автомата. Поэтому перед покупкой и установкой УЗИП настоятельно рекомендуем воспользоваться консультацией опытного электрика.

yaelectrik.ru

Особенности выбора, эксплуатации и контроля технического состояния устройств защиты от импульсных перенапряжений

В настоящее время на отечественном рынке появился целый ряд компаний-поставщиков, предлагающих широкий ассортимент устройств защиты от импульсных перенапряжений (УЗИП). Это стало явно заметно по результатам прошедших за последние два года выставок.

В большинстве случаев речь идет о фирмах, занимающихся продажей изделий, выпускаемых в Западной Европе, или об иностранных поставщиках, которые осуществляют поставки разнообразных технологических комплексов «под ключ». В результате, очень часто изделия разных производителей при установке на одном и том же объекте комбинируются между собой без какой-либо предварительной проверки их взаимной совместимости по амплитудам пропускаемых импульсных токов и уровням остающихся напряжений (уровней защиты). То есть появляется, так называемая, несогласованность между устройствами защиты и оборудованием.

Ситуацию к тому же частично усложняет то, что большинство видов предлагаемых УЗИП сконструировано в соответствии с немецким стандартом DIN VDE 0675. Данный стандарт имеет много общего со стандартом Международной Электротехнической Комиссии (МЭК) IEC 61643-1:1998 и его более поздними редакциями, но все же, он является национальным стандартом Германии. В России же действует ГОСТ Р 51992-2002 (Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Часть 1. Требования к работоспособности и методы испытаний), который является аутентичным тексту приведенного выше стандарта МЭК 61643-1:1998. И именно он должен приниматься за основу при сертификации данного оборудования. Надо добавить и то, что право выдачи сертификатов соответствия принадлежит техническому комитету ТК 331 «Низковольтная коммутационная аппаратура и комплектные устройства распределения, защиты, управления и сигнализации» при Федеральном агентстве по техническому регулированию и метрологии на основе результатов испытаний в аккредитованных им лабораториях или испытательных центрах. Сейчас уже стали известны факты выдачи подобных сертификатов, не имеющими на это права сертификационными органами. Выявление таких случаев и принятие мер по их исключению так же входит в функции ТК 331.

Что касается отечественных производителей, можно отметить, что в области напряжений свыше 1 кВ ограничители перенапряжений (ОПН) выпускаются в очень широком ассортименте и хорошего качества. Для напряжений менее 1 кВ данная проблема пока остается не решенной в достаточной степени. Устройств защиты от импульсных перенапряжений (УЗИП) отечественного производства, полностью соответствующих требованиям ГОСТ Р 51992-2002 на рынке до недавнего времени найти было невозможно. Сейчас, делаются первые шаги по организации производства устройств II и III классов. Их качество и доступность будут показаны временем. В большинстве же случаев выпускаемые варисторные УЗИП имеют примитивную конструкцию, основу которой составляет дисковый варистор и два приваренных к его боковым плоскостям болта или гайки (или т.п.). Производятся такие устройства на том же оборудовании, что и варисторы для высоковольтных ОПН, и по своей сути являются составными элементами такого высоковольтного ограничителя перенапряжений. Существуют УЗИП, предназначенные для установки на DIN-рейку 35 мм, но и они, и описанные выше конструкции не имеют в своем составе устройства теплового отключения, предназначенного для защиты неисправного варистора от перегрева при возникновении токов утечки и, соответственно, от вероятности возникновения пожара в электроустановке.

И еще необходимо добавить, что большая часть производимых отечественных УЗИП для низковольтных распределительных сетей относится всего лишь к третьему классу защиты согласно ГОСТ Р 51992. Эти устройства способны без разрушения или теплового пробоя варистора пропустить через себя максимальный импульсный ток Imax (волны 8/20 мкс) с амплитудным значением не более 10-15 кА, в то время как форма импульса тока при прямом ударе молнии Iimp описывается волной 10/350 мкс и значительно большими амплитудами тока (согласно [1, 2, 3]: 100, 150 и 200 кА (10/350 мкс) в зависимости от выбранного уровня надежности внешней системы молниезащиты). Таким образом, даже при условии того, что на долю ввода электропитания придется лишь часть тока, вызванного прямым ударом молнии (например 10-20%, с учетом его растекания по другим металлоконструкциям объекта [8]), а амплитудное значение тока Iimp (волны 10/350 мкс) может и не превысить значения Imax (волны 8/20 мкс) = 15 кА, при этом за счет большей почти на порядок длительности импульса тока Iimp, выделенная на варисторе тепловая энергия приведет к его выходу из строя! Этот процесс может сопровождаться взрывным разрушением варистора, что может стать причиной серьезных травм, повреждения изоляции проводников в электроустановке, а также за счет интенсивного искрения привести к возникновению пожара. Вопрос же защиты потребителей электроэнергии при этом может остаться нерешенным, так как часть импульса тока после выхода УЗИП из строя беспрепятственно пройдет непосредственно в защищаемое оборудование и неизбежно повредит его.

Несогласованность терминологии и системы обозначений

Существует очень важное правило: чтобы грамотно и быстро решать любую техническую проблему, необходимо иметь единую терминологию, систему обозначений основных параметров и применяемых сокращений.

Целью данной статьи не является поиск и глубокий анализ всех имеющихся недостатков и ошибок теоретического и конструктивного характера, возникающих при производстве и эксплуатации УЗИП. Но, тем не менее, привлечь внимание потребителей к данной проблеме необходимо. Хотя бы потому, что предусмотренные стандартом IEC 61643-1:1998 термины, определения и обозначения перенесены в ГОСТ Р 51992-2002 и имеют четкие и понятные формулировки, которые и рекомендуется использовать.

Ниже приведены наиболее часто встречающиеся недостатки, касающиеся определений, терминологии и сокращений:

Стандартом для низковольтных распределительных сетей предусмотрен термин «устройство защиты от импульсных перенапряжений», сокращение — УЗИП.

Определение: Устройство защиты от перенапряжений (УЗИП) — это устройство, которое предназначено для ограничения переходных перенапряжений и для отвода импульсов тока. Это устройство содержит, по крайне мере, один нелинейный элемент.

В качестве элементной базы для создания УЗИП, как правило, используют разрядники различных типов, оксидно-цинковые варисторы и полупроводниковые элементы

В рекламной продукции, сопроводительной документации данные устройства могут называться ограничителями перенапряжений (ОПН). Термин используется в высоковольтной технике и обозначает варисторные устройства, предназначенные для защиты оборудования электростанций, подстанций, высоковольтных линий электропередачи и т.д. Он не подразумевает использования искровых или газонаполненных разрядников, а также полупроводниковых приборов (первых — по причине сложности гашения сопровождающих токов больших величин, вторых — по причине маленьких значений выдерживаемых импульсных токов и напряжений). Однако на некоторых типах высоковольтных воздушных линий применяются длинно-искровые разрядники петлевого типа РДИП.

Иногда весь спектр устройств защиты от импульсных перенапряжений (I, II, и III-го классов) называют грозоразрядниками, разрядниками грозового тока и т.п., совершенно не привязываясь к предусмотренной ГОСТ классификации и не учитывая, что данные устройства могут защищать от перенапряжений не только вызванных ударом молнии, но и возникших в результате рабочих переключений оборудования на подстанциях, однофазных коротких замыканиях на высоковольтных линиях или при работе низковольтных нагрузок, имеющих в своем составе ключевые преобразователи (например, тиристорные выпрямители, сварочные аппараты).

И еще, обязательно надо отметить недостаточную корректность термина устройство защиты от перенапряжений (УЗП), который использован в новой «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций», СО-153-34.21.122-2003. Приведенный выше термин не раскрывает главную суть и характеристику данного типа устройств. Перенапряжения, согласно ГОСТ-13109-97 «Нормы качества электрической энергии в системах электроснабжения общего назначения», могут быть импульсными и временными. Импульсные перенапряжения данным ГОСТом не нормируются, но в то же время ГОСТ предусматривает нормирование временных перенапряжений, длительность которых превышает 10 мс, а амплитуда превышает значение 1.1 Uном (где Uном — номинальное напряжение сети). Устройства, предназначенные для защиты от импульсных перенапряжений, как правило, сами нуждаются в дополнительной защите от временных перенапряжений, в случае превышения ими максимального длительного рабочего напряжения Uс, предусмотренного производителем. Такие перенапряжения приводят УЗИП к выходу из строя, часто сопровождающемуся большим нагревом и разрушением как самого нелинейного элемента, так и корпуса устройства, а иногда и возгоранием.

Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к однофазной нагрузке может оказаться приложенным межфазное напряжение величиной до 380 В. При этом устройство защиты от импульсных перенапряжений откроется, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер (и более). Практика показывает, что терморасцепитель варисторного УЗИП не успевает отреагировать в подобных ситуациях из-за тепловой инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора. При этом возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств.

На фотографии (рис. 1) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

На рис. 2 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

Сказанное выше относится не только к варисторным устройствам, но и к УЗИП на базе разрядников, которые не имеют в своем составе терморасцепителя. Для того, чтобы предотвратить подобные последствия, рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339.0-92 (МЭК 60269-1-86) или VDE-0636 (Германия) соответственно). На рисунке 3 показан вариант включения предохранителей в схему электроустановки.

Номиналы предохранителей и тип их время токовых характеристик определяются конкретным производителем УЗИП и отражаются в технической документации. Как уже указывалось выше, для этих целей обычно используются предохранители с характеристикой gG или gL (с кратностью 1,2 -: 3), предназначенные для защиты проводников и коммутационного оборудования от перегрузок и коротких замыканий. Они обладают значительно меньшим временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин, соответственно являются более простыми и надежными по конструкции.

Примерный вариант выбора номиналов предохранителей (зависит от требований производителя УЗИП) для схемы, рассмотренной на рисунке 3, показан ниже:

  • при номинале предохранителей FU1-FU3 более 315 А gG (или их отсутствии), номиналы FU4-FU6 выбираются — 315 А gG, номиналы FU7-FU9 выбираются — 160 А gG;
  • при номинале предохранителей FU1-FU3 менее 315 А gG, но более 160 А gG, предохранители FU4-FU6 можно не устанавливать, номиналы FU7-FU9 выбираются — 160 А gG.
  • при номинале предохранителей FU1-FU3 менее 160 А gG, предохранители FU4-FU6 и FU7-FU9 можно не устанавливать.
  • при наличии разделительных дросселей LL1-LL3 номинал предохранителей FU1-FU3 должен соответствовать номинальному току дросселей.

Следует обратить внимание на то, что ведущие и общепризнанные производители УЗИП в своих схемных решениях показывают именно предохранители, а не автоматические выключатели, в том числе и перед точкой установки УЗИП. Здесь можно говорить о непредвзятом выборе технического решения, так как никто из данных производителей не выпускает ни предохранители, ни автоматы.

Практический же опыт и данные экспериментальных испытаний показывают, что автоматические выключатели довольно часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции. Кроме этого, при установке автоматических выключателей последовательно с УЗИП (вместо FU4-FU6 и FU7-FU9 на рис. 3) за счет элементов их внутренней конструкции, имеющих индуктивные свойства, а следовательно, и повышенное индуктивное сопротивление при протекании импульсных токов, в точках подключения данной цепочки к защищаемой линии может повышаться значение остающегося напряжения, приложенного к нагрузке. Более подробно вопросы правильного выбора предохранителей и автоматических выключателей в цепях защиты УЗИП будут рассмотрены в следующих статьях.

Вывод: Безусловно, электроустановка должна быть дополнительно защищена от воздействия временных перенапряжений при помощи специальных устройств, к которым можно отнести, например, реле контроля напряжения с функцией управления контактором или реле контроля фаз и другие подобные им приборы, широко представленные на рынке (рисунок 4).

Требования к обозначениям параметров УЗИП

Для того, чтобы правильно выбрать устройство защиты от импульсных перенапряжений для конкретной цели, проектировщику или потребителю необходима следующая информация, которая обязательно должна быть показана в каталоге и нанесена на лицевой части корпуса УЗИП:

Un — номинальное напряжение сети. В большинстве случаев оно выбирается равным 230 В. Хотя производятся устройства с другими номинальными напряжениями.

Uс — максимальное длительное рабочее напряжение — это максимальное напряжение действующего значения переменного или постоянного тока, которое может длительно подаваться на выходы УЗИП.

Iimp — импульсный ток. Определяется пиковым значением тока Ipeak и зарядом Q (применяется, как правило, испытательный импульс с формой волны 10/350 мкс). Применяется для испытаний защитных устройств класса I.

Imax — максимальный импульсный разрядный ток. Это пиковое значение испытательного импульса тока формы 8/20 мкс, который защитное устройство может пропустить один раз и не выйти из строя. Используется для испытания УЗИП класса II.

In — номинальный импульсный разрядный ток. Это пиковое значение тока, протекающего через УЗИП, с формой волны 8/20 мкс. Применяется для испытания УЗИП класса II. Ток данной величины защитное устройство может выдерживать многократно. При воздействии данного импульса определяется уровень защиты устройства. По этому параметру также производится координация других характеристик УЗИП, а также норм и методов его испытаний.

Up — уровень напряжения защиты. Это максимальное значение падения напряжения на защитном устройстве при протекании через него импульсного тока разряда. Параметр характеризует способность устройства ограничивать появляющиеся на его клеммах перенапряжения. Обычно определяется при протекании номинального импульсного разрядного тока (In).

If — сопровождающий ток. (Параметр для УЗИП на базе разрядников). Это ток, который протекает через разрядник после окончания импульса перенапряжения и поддерживается самим источником тока, т.е. электроэнергетической системой. Теоретически значение этого тока стремится к расчетному току короткого замыкания (в точке установки разрядника для данной конкретной электроустановки). На практике же, сам разрядник своим внутренним сопротивлением уже существенно ограничивает этот ток.

Код IP — степень защиты, обеспечиваемая оболочкой. Определяется производителем, согласно ГОСТ 14254.

ν — диапазон рабочих температур УЗИП.

ta — время реагирования защитного устройства на импульсное воздействие.

Класс защитного устройства I, II или III. Указывается в соответствии с ГОСТ Р 51992-2002 (МЭК 61643-98).

Наиболее часто встречающиеся недостатки в обозначении параметров и маркировке УЗИП

Не указывается класс УЗИП (I, II или III, в соответствии с ГОСТ Р 51992-2002 (МЭК 61643-1-98) вообще, или обозначается буквами B, C, D без ссылки на некоторый стандарт. Буквенное обозначение, например, принято в немецком национальном стандарте DIN VDE 0675, который не может быть использован в России как нормативный документ.

Не указывается диапазон рабочих температур прибора ν.

Данные основных параметров УЗИП, приведенные на фирменных табличках и в сопроводительной документации, часто значительно отличаются (завышаются) от данных, получаемых при испытании защитных устройств соответствующими импульсными токами и напряжениями в специальных лабораториях. Это касается, прежде всего, указываемых максимальных значений испытательных импульсных разрядных токов Iimp (10/350), Imax (8/20), In (8/20), а так же данных, определяющих максимальную удельную энергию W/R и максимальный заряд Q для УЗИП I и II классов. Частично этот недостаток можно объяснить разбросом параметров самих нелинейных элементов, которые обязательно существуют при их серийном производстве.

Кроме перечисленного выше, часто не указывается, какие критерии были положены в определение параметра Up (уровень напряжения защиты).

Совершенно ясно, что для УЗИП на базе разрядника параметр Up будет зависеть в первую очередь от крутизны фронта импульса и времени реагирования ta самого разрядника, которое в свою очередь зависит от его конструкции (рисунок 5).

Для варисторного УЗИП уровень напряжения защиты Up будет напрямую зависеть от амплитудного значения импульсного тока, и не будет зависеть от длительности и фронта импульса (падение напряжения на открытом варисторе зависит от его сопротивления и величины протекающего тока). Поэтому некоторые поставщики УЗИП часто показывают более низкое значение Up, что, конечно же, является более привлекательным для потребителя. При этом они не акцентируют внимание на том, при каком значении импульсного тока оно было измерено (In; Imax или при каком то меньшем — рисунок 6).

Сказанное выше подтверждается осциллограммами, полученными при испытании УЗИП на базе разрядника и варистора комбинированной волной напряжения и тока (формы 1.2/50 мкс и 8/20 мкс соответственно (рисунок 7 а-в).

(Продолжение №3 (9-10) март—апрель 2007.)

А. Л. ЗОРИЧЕВ, заместитель директора ЗАО «Хакель Рос».

market.elec.ru

Устройство защиты от импульсных перенапряжений

 

Существуют различные причины, по которым появляются перепады напряжения. Среди них такие, как грозы, появление перехлестов провода, работы сварочного характера, помехи в сети электропитания и различные ситуации аварийного характера.

С целью защиты электрической проводки дома и работающих в нем приборов-потребителей созданы специализированные устройства. Именно эти устройства и имеют название «устройства защиты от импульсных перенапряжений» (сокращенно УЗИП).

Наиболее надежным образом домовая сеть защищается при помощи использования сразу нескольких уровней защитной системы, собранной из устройств разных классов.

В большинстве случаев такая защита состоит из трех ступеней. Существует специальный ГОСТ (Р 51992-2002 (МЭК 61643-1-98)), который и регламентирует деление таких устройств на три класса.

Классы УЗИП

Класс I (В). Устройства, принадлежащие к этому классу, защищают от прямых попаданий разряда молнии в молниезащитную систему строения, либо воздушные электросети. Монтаж этих устройств выполняют прямо в ВРУ, либо ГРЩ там, где кабель входит в здание. Эти устройства рассчитаны на разрядный ток порядка 30-60 килоАмпер.

Второй класс (С). Эти приборы предназначены для защиты сетей токораспределения объектов от появления помех коммутации. Они способны работать в качестве второй защитной ступени от попадания молнии. Их устанавливают в распредщите, а их ток разряда по номиналу 20-40 килоАмпер.

Класс III (D). Блоки, представляющие из себя защитные устройства этого класса, устанавливают прямо перед прибором-потребителем. По конструкции такие устройства могут быть самыми разными (розетка, вилка, отдельно монтируемый модуль, либо устройство навесного монтажа). Ток их разряда не превышает 5-10 кА.

Главным элементом построения таких устройств явился варистор или разрядник. Кроме того, в состав этих устройств входит устройство-индикатор, способное сообщить о том, что УЗИП вышел из строя.

Из отрицательных показателей этих «защитников» следует отметить тот, что они нагреваются при сработке, что стало причиной того, что им необходимо время для остывания, а это сильно уменьшает селективность работы устройства.

Монтируют такой прибор на ДИН-рейке, варистор же, вышедший из строя, легко меняется методом удаления последнего из корпуса.

Чтобы добиться защиты потребителя от ненужных воздействий в хорошем качестве, требуется обеспечение строений эффективными системами заземлений и уравниванием потенциалов. С этой целью используется заземляющая система типа TN-C либо TN-CS, имеющие разделение проводников нуля и защиты.

Затем монтируют устройства защиты, расстояние между которыми (от одного класса до другого) не должно быть менее 10 метров по питающему кабелю. Только при выполнении таких условий можно обеспечить правильную сработку защитных устройств.

На воздушных линиях, в щите ввода на столбах наилучшим образом срабатывают системы, основанные на разрядниках и плавких вставках.

Главные щиты зданий хорошо защищают УЗИП первого и второго класса, основанные на варисторах, а этажные щиты – снабжаются системами третьего класса. В качестве защиты дополнительного характера, розетки снабжаются системами в виде вставок и разных удлинителей.

Наконец, хочу заметить, что устройства подобного типа значительным образом уменьшают процент выхода из строя потребителей и поражения человека высоким напряжением, хотя и не способны полностью обеспечить защиту на все сто процентов. Поэтому, во время грозы следует, по возможности, производить отключение наиболее важных потребителей от сети питания.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

podvi.ru

Особенности монтажа УЗИП в щитах

p3Во избежание образования индуктивной связи между защищенными и незащищенными проводниками, они должны располагаться на расстоянии не менее 30 см друг от друга и пересекаться только под прямым углом 90°.

У импульсного перенапряжения короткая длительность и крутой фронт волны, разница напряжения на одном и том же проводнике на расстоянии одного метра при прямом попадании молнии может достигать 1,2 кВ. Поэтому для эффективного использования УЗИП общая длина проводов соединяющих УЗИП к защищаемому проводнику и к заземляюшей шине (ЗШ) щита, если УЗИП к заземляющему устройству не подключен отдельным проводником, должна быть не более 50 сантиметров. Чтоб максимально уменьшить длину проводников с помощю которых подключается УЗИП нужно в первую очередь стараться подключать с помощщю V образного подключения.

Если от разделения PEN до УЗИП меньше 5 метров, то УЗИП между N и PE можно не ставить. Если РЕ приходит по другому пути чем L и N, то УЗИП между N и PE нужно ставить обязательно.

Если после разделения PEN более 5 метров, то применяется схема как для ТТ.

tt_11В системе ТТ ставить варисторный модуль УЗИП первой и второй срупени между N – РЕ и особенно между L – PE нельзя!!! Так как из-за номинальной отключающей способности УЗО первая и вторая ступень УЗИП должна ставится до УЗО и в случае не полного востановления варистора и не срабатывания защиты варистора между N – РЕ, система ТТ станет TN-C, что не допустимо. В той же ситуации между L – PE, опасный потенциал будет вынесен на корпуса электрооборудования, так как в ТТ нейтральный провод питающей сети не подключен к системе защитного заземления!

Так же по этой причине не следует в системе ТТ и после УЗО ставить варисторный модуль УЗИП третей ступени между N – РЕ и особенно между L – PE!

В системе защитного заземления ТТ сопротивление заземляющего устройства при применении УЗИП должно быть как для молниезащиты, то есть не более 10 Ом, а не как допускает ПУЭ намного более высокое в зависимости от самой большой уставки примененных УЗО! Так же не забываем что контур заземления, а не локалный очаг заземления в виде одного или некоторого количества штырей, или вбитого в головы треугольника, обзываемых контуром, возле дома, обеспечивает лучшую эквопотенциальность токопроводящих поверхностей, а значит безопасность!

Защита УЗИП от перегрузки и защита питающей сети от аварии в УЗИП

УЗИП обязательно должен защищаться на случай если мощность импульса перенапряжения будет больше чем он может погасить и, или спустить (канализировать) в землю!

Питающая сеть обязательно должна защищаться от короткого замыкания через УЗИП при повышении номинального напряжения однофазной сети в случае обрыва нейтрали или если варистор после срабатывания не восстановится, а так же на случай пробоя в УЗИП из-за естественного старения!

Нельзя слепо доверять встроенной в УЗИП термо защите! Она как минимум инерционна и может вообще не сработать!

АВВ, Легран и некоторые другие производители, для защиты УЗИП 2 ступени рекомендуют устанавливать автоматические выключатели, в частности по телефону, менеджер Киевского АВВ относительно применения автомата во второй ступени сослался на небольшие ограничиваемые токи. Легран в каталогах вообще предлагает автоматы ставить даже на первую ступень, где речи о небольших ограничиваемых токах даже и быть не может!

Установка автоматов для защиты УЗИП 2-й ступени и особенно 1-й ступени и питающей сети от аварий в УЗИП 2-й ступени и особенно 1-й ступени это грубая ошибка, которая противоречит другим рекомендациям по монтажу этих же и других производителей, что снижает эффективность ограничения импульсного перенапряжения УЗИП и особенно безопасность эксплуатации УЗИП!

В автоматических выключателях за счет индуктивных свойств элементов внутренней конструкции, особенно катушки электромагнитного привода ращепителя, образуется повышенное индуктивное сопротивление протеканию импульсных токов, в связи с чем не вся мощность импульса перенапряжения попадает на УЗИП где она должна поглощаться и, или канализироваться в землю из-за чего повышаться значение остаточного напряжения пропускаемого к защищаемым электроприборам!

При прохождении импульса перенапряжения с током превышающим номинал коммутирующей способности расцепителя автоматического выключателя, может произойти приваривание контактов расцепителя автоматического выключателя друг к другу и появляется опасность несрабатывания автомата при аварийных ситуациях!

Если импульс перенапряжения будет меньше максимальной коммутирующей способности расцепителя автоматического выключателя но больше тока срабатывания электромагнитного расцепителя то автомат может ложно сработать из-за чего электроприборы останутся без защиты от импульсных перенапряжений при совершенно исправном УЗИП! У некоторых качественных автоматов время от начала КЗ до момента срабатывания электромагнитного расцепителя составляет 0,7 ms.

Плавкий предохранитель полностью исключает подобные ситуации!

Время-токовые характеристики плавкого предохранителя обладают значительно меньшим, на 1-2 порядка, временем срабатывания от статической перегрузки по сравнению с терморасцепителем автоматического выключателя тех же номиналов. При этом предохранитель имет более высокую стойкость к импульсным токам значительных величин по сравнению с электромагнитным расцепителем автоматического выключателя тех же номиналов.

УЗИП 1-й, 2-й ступени нужно защищать только плавкими предохранителями!

Применяется два варианта включения защитных предохранителей.

zaschita_pprio11. Приоритет безопасности, последовательное включение предоханителя. Если мощность импульса перенапряжения превысит мощность которую может выдержать УЗИП отключается питающий провод. В схеме с приоритетом безопасности защитные предохранители УЗИП ставить не нужно если номинал штатных предохранителей равняется или меньше предельного номинала защитных предохранителей указанных производителем для УЗИП. Если штатно стоит только автомат, то установка предохранителей в разрыв фазы в схеме с приоритетом безопасности обязательна.

zaschita_pprio22. Приоритет бесперебойности питания, параллельное включение предоханителя. Если мощность импульса перенапряжения превысит мощность которую может выдержать УЗИП, то отключается не питающий провод, а УЗИП.

Производители в своих каталогах, справочниках указывают максимально допустимый ток защитного предохранителя. Не допускается не обдуманно ставить максимально допустимый номинал защитного предохранителя, без учета номиналов штатных автоматов и предохранителей щита, ожидаемого тока КЗ в месте установки УЗИП, состояния соединений и проводников, а так же без учета коммутирующих характеристик штепсельного соединения, через которое подключаются сменные модули УЗИП!

Ножевые, штыревые штепсельные контакты применяемые в УЗИП со сменными модулями могут иметь гальваническое покрытие низкого качества в связи с чем может быть неравномерное покрытие, окислившаяся поверхность и другие дефекты, так же из-за недостаточной рабочей площади соприкосновения и малой степени прижатия контактных поверхностей друг к другу такие соединения не способны пропускать большие импульсные токи на кототорые расчитаны примененные варисторы и разрядники. Поэтому УЗИП со сменныи модулями нужно применять там где ожидаемые импульсные перенапряжения не превысят пределы Iimp 20 kA для волны 10/350 мкс и Imax 25 kA для волны 8/20 мкс.

В каждом конкретном случае при выборе номинала защитного предохранителя УЗИП требуется учитывать много параметров!

Обслуживание УЗИП

Проверят предохранители защищающие фазные УЗИП в схеме приоритета безперебойности питания и предохранитель защищающий нейтральный УЗИП в схеме приоритета безопасности, производить визуальный осмотр УЗИП нужно обязательно в начале и конце грозового периода, а так же после каждой сильной грозы.

Паралельно каждого фазного УЗИП, в схеме безперебойности питания, можно поставить неонки, чтоб контролировать состояние предохранителей защищающих фазные УЗИП. Так же не помешает поставить токовый тансформатор с звуковой и световой сигнализацией индицирующей об наступающей или случившейся аварии УЗИП. Ну и не лишним будет поставить термо датчики на корпуса УЗИП. Все эти индикационные устройства должны быть адаптированы к высоковольтным импульсным токам!

Простая проверка варистора УЗИП

Отсоединить варисторный УЗИП от питающей сети и подсоединить к мегомметру напряжением 1000 В, замерить сопротивление варистора, оно должно лежать в диапазоне 0,1-2 мОм.

Так же предмонтажные испытания УЗИП на основе варистора, на предмет исправности, можно провести следующим способом, для этого нужен источник постоянного тока с плавной регулировкой напряжения до 1000В. Для измерения тока утечки один из выводов разрядника соединяется с выводом источника тока, а второй вывод присоединяется к заземлению через измерительный прибор. Значение напряжения, при протекании через разрядник постоянного тока 1мА, не должно быть ниже 750В.

Примеры схем для защиты от импульсных перенапряжений частных домов, дач, коттеджей.

Однофазная схема отличается от приведенных схем тем, что отсутствуют проводники и элементы связанные с двумя фазами, откинте их и получится однофазная схема. Приведенные схемы обеспечивают минимально необходимую защиту, для полной защиты от импульсных перенапряжений требуется добавление в 3-х фазную сеть от 3 до 6, в зависимости от вида системы, УЗИП на каждую ступень. То есть для полной защиты в 3-х фазной сети должно быть от 6 до 10, а в однофазной от 1 до 3 УЗИП на каждой ступени.

Система с защитным заземлением TN-C, 4-х проводный ввод в основном применяемый при питании домов.

Приоритет безперебойности питания.

uzip_3f_tn-c-s3_pit

Приоритет безопасности.

uzip_3f_tn-c-s4_bez

Система с защитным заземлением TT.

Приоритет безперебойности питания.

uzip_3f_tt_pit5

Приоритет безопасности.

uzip_3f_tt_be6z

Уcтройства защиты от импульсных перенапряжений и помех- нажмите на ссылку для ознакомления.

Молниезащита и громоотвод - нажмите на ссылку для ознакомления.

 

malahit-irk.ru

Особенности выбора, эксплуатации и контроля технического состояния устройств защиты от импульсных перенапряжений

21 марта 2007 г. в 12:38, 5000

В настоящее время на отечественном рынке появился целый ряд компаний-поставщиков, предлагающих широкий ассортимент устройств защиты от импульсных перенапряжений (УЗИП). Это стало явно заметно по результатам прошедших за последние два года выставок.

В большинстве случаев речь идет о фирмах, занимающихся продажей изделий, выпускаемых в Западной Европе, или об иностранных поставщиках, которые осуществляют поставки разнообразных технологических комплексов «под ключ». В результате, очень часто изделия разных производителей при установке на одном и том же объекте комбинируются между собой без какой-либо предварительной проверки их взаимной совместимости по амплитудам пропускаемых импульсных токов и уровням остающихся напряжений (уровней защиты). То есть появляется, так называемая, несогласованность между устройствами защиты и оборудованием.

Ситуацию к тому же частично усложняет то, что большинство видов предлагаемых УЗИП сконструировано в соответствии с немецким стандартом DIN VDE 0675. Данный стандарт имеет много общего со стандартом Международной Электротехнической Комиссии (МЭК) IEC 61643—1:1998 и его более поздними редакциями, но все же, он является национальным стандартом Германии. В России же действует ГОСТ Р 51992—2002 (Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Часть 1. Требования к работоспособности и методы испытаний), который является аутентичным тексту приведенного выше стандарта МЭК 61643—1:1998. И именно он должен приниматься за основу при сертификации данного оборудования. Надо добавить и то, что право выдачи сертификатов соответствия принадлежит техническому комитету ТК 331 «Низковольтная коммутационная аппаратура и комплектные устройства распределения, защиты, управления и сигнализации» при Федеральном агентстве по техническому регулированию и метрологии на основе результатов испытаний в аккредитованных им лабораториях или испытательных центрах. Сейчас уже стали известны факты выдачи подобных сертификатов, не имеющими на это права сертификационными органами. Выявление таких случаев и принятие мер по их исключению так же входит в функции ТК 331.

Что касается отечественных производителей, можно отметить, что в области напряжений свыше 1 кВ ограничители перенапряжений (ОПН) выпускаются в очень широком ассортименте и хорошего качества. Для напряжений менее 1 кВ данная проблема пока остается не решенной в достаточной степени. Устройств защиты от импульсных перенапряжений (УЗИП) отечественного производства, полностью соответствующих требованиям ГОСТ Р 51992—2002 на рынке до недавнего времени найти было невозможно. Сейчас, делаются первые шаги по организации производства устройств II и III классов. Их качество и доступность будут показаны временем. В большинстве же случаев выпускаемые варисторные УЗИП имеют примитивную конструкцию, основу которой составляет дисковый варистор и два приваренных к его боковым плоскостям болта или гайки (или т.п.). Производятся такие устройства на том же оборудовании, что и варисторы для высоковольтных ОПН, и по своей сути являются составными элементами такого высоковольтного ограничителя перенапряжений. Существуют УЗИП, предназначенные для установки на DIN-рейку 35 мм, но и они, и описанные выше конструкции не имеют в своем составе устройства теплового отключения, предназначенного для защиты неисправного варистора от перегрева при возникновении токов утечки и, соответственно, от вероятности возникновения пожара в электроустановке.

И еще необходимо добавить, что большая часть производимых отечественных УЗИП для низковольтных распределительных сетей относится всего лишь к третьему классу защиты согласно ГОСТ Р 51992. Эти устройства способны без разрушения или теплового пробоя варистора пропустить через себя максимальный импульсный ток Imax (волны 8/20 мкс) с амплитудным значением не более 10—15 кА, в то время как форма импульса тока при прямом ударе молнии Iimp описывается волной 10/350 мкс и значительно большими амплитудами тока (согласно [1, 2, 3]: 100, 150 × 200 кА (10/350 мкс) в зависимости от выбранного уровня надежности внешней системы молниезащиты). Таким образом, даже при условии того, что на долю ввода электропитания придется лишь часть тока, вызванного прямым ударом молнии (например 10—20%, с учетом его растекания по другим металлоконструкциям объекта [8]), а амплитудное значение тока Iimp (волны 10/350 мкс) может и не превысить значения Imax (волны 8/20 мкс) = 15 кА, при этом за счет большей почти на порядок длительности импульса тока Iimp, выделенная на варисторе тепловая энергия приведет к его выходу из строя! Этот процесс может сопровождаться взрывным разрушением варистора, что может стать причиной серьезных травм, повреждения изоляции проводников в электроустановке, а также за счет интенсивного искрения привести к возникновению пожара. Вопрос же защиты потребителей электроэнергии при этом может остаться нерешенным, так как часть импульса тока после выхода УЗИП из строя беспрепятственно пройдет непосредственно в защищаемое оборудование и неизбежно повредит его.

Несогласованность терминологии и системы обозначений

Существует очень важное правило: чтобы грамотно и быстро решать любую техническую проблему, необходимо иметь единую терминологию, систему обозначений основных параметров и применяемых сокращений.

Целью данной статьи не является поиск и глубокий анализ всех имеющихся недостатков и ошибок теоретического и конструктивного характера, возникающих при производстве и эксплуатации УЗИП. Но, тем не менее, привлечь внимание потребителей к данной проблеме необходимо. Хотя бы потому, что предусмотренные стандартом IEC 61643—1:1998 термины, определения и обозначения перенесены в ГОСТ Р 51992—2002 и имеют четкие и понятные формулировки, которые и рекомендуется использовать.

Ниже приведены наиболее часто встречающиеся недостатки, касающиеся определений, терминологии и сокращений:

Стандартом для низковольтных распределительных сетей предусмотрен термин «устройство защиты от импульсных перенапряжений», сокращение — УЗИП.

Определение: Устройство защиты от перенапряжений (УЗИП) — это устройство, которое предназначено для ограничения переходных перенапряжений и для отвода импульсов тока. Это устройство содержит, по крайне мере, один нелинейный элемент.

В качестве элементной базы для создания УЗИП, как правило, используют разрядники различных типов, оксидно-цинковые варисторы и полупроводниковые элементы

В рекламной продукции, сопроводительной документации данные устройства могут называться ограничителями перенапряжений (ОПН). Термин используется в высоковольтной технике и обозначает варисторные устройства, предназначенные для защиты оборудования электростанций, подстанций, высоковольтных линий электропередачи и т.д. Он не подразумевает использования искровых или газонаполненных разрядников, а также полупроводниковых приборов (первых — по причине сложности гашения сопровождающих токов больших величин, вторых — по причине маленьких значений выдерживаемых импульсных токов и напряжений). Однако на некоторых типах высоковольтных воздушных линий применяются длинно-искровые разрядники петлевого типа РДИП.

Иногда весь спектр устройств защиты от импульсных перенапряжений (I, II, и III-го классов) называют грозоразрядниками, разрядниками грозового тока и т.п., совершенно не привязываясь к предусмотренной ГОСТ классификации и не учитывая, что данные устройства могут защищать от перенапряжений не только вызванных ударом молнии, но и возникших в результате рабочих переключений оборудования на подстанциях, однофазных коротких замыканиях на высоковольтных линиях или при работе низковольтных нагрузок, имеющих в своем составе ключевые преобразователи (например, тиристорные выпрямители, сварочные аппараты).

И еще, обязательно надо отметить недостаточную корректность термина устройство защиты от перенапряжений (УЗП), который использован в новой «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций», СО-153—34.21.122—2003. Приведенный выше термин не раскрывает главную суть и характеристику данного типа устройств. Перенапряжения, согласно ГОСТ-13109—97 «Нормы качества электрической энергии в системах электроснабжения общего назначения», могут быть импульсными и временными. Импульсные перенапряжения данным ГОСТом не нормируются, но в то же время ГОСТ предусматривает нормирование временных перенапряжений, длительность которых превышает 10 мс, а амплитуда превышает значение 1.1 Uном (где Uном — номинальное напряжение сети). Устройства, предназначенные для защиты от импульсных перенапряжений, как правило, сами нуждаются в дополнительной защите от временных перенапряжений, в случае превышения ими максимального длительного рабочего напряжения Uс, предусмотренного производителем. Такие перенапряжения приводят УЗИП к выходу из строя, часто сопровождающемуся большим нагревом и разрушением как самого нелинейного элемента, так и корпуса устройства, а иногда и возгоранием.

Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к однофазной нагрузке может оказаться приложенным межфазное напряжение величиной до 380 В. При этом устройство защиты от импульсных перенапряжений откроется, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер (и более). Практика показывает, что терморасцепитель варисторного УЗИП не успевает отреагировать в подобных ситуациях из-за тепловой инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора. При этом возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств.

На фотографии (рис. 1) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

На рис. 2 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

Сказанное выше относится не только к варисторным устройствам, но и к УЗИП на базе разрядников, которые не имеют в своем составе терморасцепителя. Для того, чтобы предотвратить подобные последствия, рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339.0—92 (МЭК 60269—1—86) или VDE-0636 (Германия) соответственно). На рисунке 3 показан вариант включения предохранителей в схему электроустановки.

Номиналы предохранителей и тип их время токовых характеристик определяются конкретным производителем УЗИП и отражаются в технической документации. Как уже указывалось выше, для этих целей обычно используются предохранители с характеристикой gG или gL (с кратностью 1,2 -: 3), предназначенные для защиты проводников и коммутационного оборудования от перегрузок и коротких замыканий. Они обладают значительно меньшим временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин, соответственно являются более простыми и надежными по конструкции.

Примерный вариант выбора номиналов предохранителей (зависит от требований производителя УЗИП) для схемы, рассмотренной на рисунке 3, показан ниже:

  • при номинале предохранителей FU1-FU3 более 315 А gG (или их отсутствии), номиналы FU4-FU6 выбираются — 315 А gG, номиналы FU7-FU9 выбираются — 160 А gG;
  • при номинале предохранителей FU1-FU3 менее 315 А gG, но более 160 А gG, предохранители FU4-FU6 можно не устанавливать, номиналы FU7-FU9 выбираются — 160 А gG.
  • при номинале предохранителей FU1-FU3 менее 160 А gG, предохранители FU4-FU6 и FU7-FU9 можно не устанавливать.
  • при наличии разделительных дросселей LL1-LL3 номинал предохранителей FU1-FU3 должен соответствовать номинальному току дросселей.

Следует обратить внимание на то, что ведущие и общепризнанные производители УЗИП в своих схемных решениях показывают именно предохранители, а не автоматические выключатели, в том числе и перед точкой установки УЗИП. Здесь можно говорить о непредвзятом выборе технического решения, так как никто из данных производителей не выпускает ни предохранители, ни автоматы.

Практический же опыт и данные экспериментальных испытаний показывают, что автоматические выключатели довольно часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции. Кроме этого, при установке автоматических выключателей последовательно с УЗИП (вместо FU4-FU6 и FU7-FU9 на рис. 3) за счет элементов их внутренней конструкции, имеющих индуктивные свойства, а следовательно, и повышенное индуктивное сопротивление при протекании импульсных токов, в точках подключения данной цепочки к защищаемой линии может повышаться значение остающегося напряжения, приложенного к нагрузке. Более подробно вопросы правильного выбора предохранителей и автоматических выключателей в цепях защиты УЗИП будут рассмотрены в следующих статьях.

Вывод: Безусловно, электроустановка должна быть дополнительно защищена от воздействия временных перенапряжений при помощи специальных устройств, к которым можно отнести, например, реле контроля напряжения с функцией управления контактором или реле контроля фаз и другие подобные им приборы, широко представленные на рынке (рисунок 4).

Требования к обозначениям параметров УЗИП

Для того, чтобы правильно выбрать устройство защиты от импульсных перенапряжений для конкретной цели, проектировщику или потребителю необходима следующая информация, которая обязательно должна быть показана в каталоге и нанесена на лицевой части корпуса УЗИП:

Un — номинальное напряжение сети. В большинстве случаев оно выбирается равным 230 В. Хотя производятся устройства с другими номинальными напряжениями.

Uс — максимальное длительное рабочее напряжение — это максимальное напряжение действующего значения переменного или постоянного тока, которое может длительно подаваться на выходы УЗИП.

Iimp — импульсный ток. Определяется пиковым значением тока Ipeak и зарядом Q (применяется, как правило, испытательный импульс с формой волны 10/350 мкс). Применяется для испытаний защитных устройств класса  I.

Imax — максимальный импульсный разрядный ток. Это пиковое значение испытательного импульса тока формы 8/20 мкс, который защитное устройство может пропустить один раз и не выйти из строя. Используется для испытания УЗИП класса II.

In — номинальный импульсный разрядный ток. Это пиковое значение тока, протекающего через УЗИП, с формой волны 8/20 мкс. Применяется для испытания УЗИП класса II. Ток данной величины защитное устройство может выдерживать многократно. При воздействии данного импульса определяется уровень защиты устройства. По этому параметру также производится координация других характеристик УЗИП, а также норм и методов его испытаний.

Up — уровень напряжения защиты. Это максимальное значение падения напряжения на защитном устройстве при протекании через него импульсного тока разряда. Параметр характеризует способность устройства ограничивать появляющиеся на его клеммах перенапряжения. Обычно определяется при протекании номинального импульсного разрядного тока (In).

If — сопровождающий ток. (Параметр для УЗИП на базе разрядников). Это ток, который протекает через разрядник после окончания импульса перенапряжения и поддерживается самим источником тока, т. е. электроэнергетической системой. Теоретически значение этого тока стремится к расчетному току короткого замыкания (в точке установки разрядника для данной конкретной электроустановки). На практике же, сам разрядник своим внутренним сопротивлением уже существенно ограничивает этот ток.

Код IP — степень защиты, обеспечиваемая оболочкой. Определяется производителем, согласно ГОСТ 14254.

ν — диапазон рабочих температур УЗИП.

ta — время реагирования защитного устройства на импульсное воздействие.

Класс защитного устройства I, II или III. Указывается в соответствии с ГОСТ Р 51992—2002 (МЭК 61643—98).

Наиболее часто встречающиеся недостатки в обозначении параметров и маркировке УЗИП

Не указывается класс УЗИП (I, II или III, в соответствии с ГОСТ Р 51992—2002 (МЭК 61643—1—98) вообще, или обозначается буквами B, C, D без ссылки на некоторый стандарт. Буквенное обозначение, например, принято в немецком национальном стандарте DIN VDE 0675, который не может быть использован в России как нормативный документ.

Не указывается диапазон рабочих температур прибора ν.

Данные основных параметров УЗИП, приведенные на фирменных табличках и в сопроводительной документации, часто значительно отличаются (завышаются) от данных, получаемых при испытании защитных устройств соответствующими импульсными токами и напряжениями в специальных лабораториях. Это касается, прежде всего, указываемых максимальных значений испытательных импульсных разрядных токов Iimp (10/350), Imax (8/20), In (8/20), а так же данных, определяющих максимальную удельную энергию W/R и максимальный заряд Q для УЗИП I и II классов. Частично этот недостаток можно объяснить разбросом параметров самих нелинейных элементов, которые обязательно существуют при их серийном производстве.

Кроме перечисленного выше, часто не указывается, какие критерии были положены в определение параметра Up (уровень напряжения защиты).

Совершенно ясно, что для УЗИП на базе разрядника параметр Up будет зависеть в первую очередь от крутизны фронта импульса и времени реагирования ta самого разрядника, которое в свою очередь зависит от его конструкции (рисунок 5).

Для варисторного УЗИП уровень напряжения защиты Up будет напрямую зависеть от амплитудного значения импульсного тока, и не будет зависеть от длительности и фронта импульса (падение напряжения на открытом варисторе зависит от его сопротивления и величины протекающего тока). Поэтому некоторые поставщики УЗИП часто показывают более низкое значение Up, что, конечно же, является более привлекательным для потребителя. При этом они не акцентируют внимание на том, при каком значении импульсного тока оно было измерено (In; Imax или при каком то меньшем — рисунок 6).

Сказанное выше подтверждается осциллограммами, полученными при испытании УЗИП на базе разрядника и варистора комбинированной волной напряжения и тока (формы 1.2/50 мкс и 8/20 мкс соответственно (рисунок 7 а-в).

( Продолжение.)

А. Л. ЗОРИЧЕВ,заместитель директора ЗАО «Хакель Рос».

www.elec.ru

применение, схема подключения, принцип работы

Во время грозы в сети часто возникают импульсные помехи. Также их можно наблюдать при поломке трансформатора. Для защиты электрооборудования в доме используются специальные устройства УЗИП. Устанавливаются они в щитки разных комплектаций.

Различие модификаций заключается в величине параметров выходного напряжения, пороговой частоты и проводимости. Стандартная модель состоит из блока и контактов. Резисторы устанавливаются различных типов. Модулятор в устройствах соединяется с трансивером. В данном элементе имеются проводники, а также триод. Для того чтобы больше узнать об УЗИП, следует рассмотреть принцип работы модели.

устройства защиты от импульсных перенапряжений

Принцип работы

На рынке представлены различные устройства защиты от импульсных перенапряжений. Принцип работы их основан на изменении проводимости. Для этого в устройстве имеются контакты. Стабилизация пороговой частоты осуществляется за счет модулятора. Триод играет роль проводника. При подаче напряжения на выходные контакты параметр проводимости тока меняется. Если рассматривать устройства с расширителем, то у них контакты устанавливаются на пластине. Изменение положения элементов осуществляется за счет работы резистора.

Схема подключения устройств первой степени

Устройства защиты от импульсных перенапряжений первой степени подходят для щитков серии РВ. В данном случае для подключения моделей используется трансивер. Выходное напряжение в среднем обязано составлять 14 В. Параметр проводимости УЗИП зависит от типа резисторов. Как правило, они используются с усилителем. Для подключения контактов применяются фиксаторы. Параметр пороговой проводимости в среднем равен 4,5 мк.

Перед подключением УЗИП проверяется общее сопротивление в цепи. Указанный параметр для устройств первой серии равен 50 Ом. Также модификации указанного типа подходят для щитков типа СР. Они установлены во многих жилых домах. Подключение к щитку происходит через трансивер. Параметр общего сопротивления в цепи не должен превышать 55 Ом. Для щитков серии РР устройство не подходит из-за высокой проводимости тока.

устройства защиты от импульсных перенапряжений что это

Применение модификаций второй степени

Устройства защиты от импульсных перенапряжений второй степени - это устройства, которые подключаются к щиткам серии РР. В данном случае соединение осуществляется за счет проводников. Если рассматривать модификации на расширителях, то модуляторы используются с обкладкой. Перед подключением оборудования проверяется выходное напряжение на стабилизаторе. Указанный параметр колеблется в районе 13 В. Расширитель используется двухконтактного типа.

Если рассматривать щитки серии РР20, то у них установлен изолятор. Для подключения УЗИП используется сеточный триод. Наиболее часто он применяется на операционном усилителе. Также важно отметить, что в щитках серии РР21 имеются интегральные выпрямители. Указанные элементы необходимы для преобразования тока.

Устройства защиты третьей степени

Устройства защиты от импульсных перенапряжений третьей степени подходят для щитков, у которых используется динистор проходного типа. Получение оборудования осуществляется через демпфер. Контакты для соединения подбираются с медной обкладкой. Параметр общего сопротивления должен составлять около 40 Ом. Если рассматривать щитки серии РР19, то тиристор используется с усилителем. В некоторых случаях модификации выпускаются с конденсаторными резисторами.

Подключение элементов указанного типа происходит с адаптером и без него. Если рассматривать первый вариант, то варикапы берутся переменного типа. Показатель общего сопротивления в среднем равен 30 Ом. Если рассматривать второй вариант, то варикапы разрешается использовать переменного типа. Параметр пороговой перегрузки устройств составляет около 3 А. Также важно отметить, что у моделей используются фильтры магнитного типа.

устройство защиты от импульсных перенапряжений схема подключения

Однополюсные модификации РН-101М

Однополюсные устройства защиты от импульсных перенапряжений - что это такое? Указанные приборы представляют собой контактные блоки, которые подходят для сетей с переменным током. Они часто подключаются к трансформаторам, у которых используется высоковольтное реле. В жилых домах устройства используются редко. Отличие моделей также заключается в выпрямителе. Он используется на демпферной основе. Параметр общего сопротивления в среднем равен 22 Ом.

Также важно отметить, что выходное напряжение составляет около 200 В. Внутри устройства используются контакты, а также модулятор. Пластины чаще всего устанавливаются в горизонтальном положении. Трансивер для подключения подбирается линейного типа. Многие модификации оснащены тетродами. Для их нормальной работы применяются преобразователи. Наиболее часто они производятся с выпрямителем.

Схема подключения двухполюсной модификации РН-105М

Двухполюсные устройства защиты от импульсных перенапряжений разрешается подключать через пентоды. Параметр общего сопротивления должен составлять 40 Ом. Также важно отметить, что контакты устройства соединяются с динистором напрямую. У многих элементов используется компаратор. Указанный элемент дает возможность устанавливать поворотный регулятор.

Для щитков серии СР модель подходит. В данном случае проводимость зависит от модулятора УЗИП. Если он используется интегрального типа, то вышеуказанный показатель в среднем составляет 2,2 мк. Также у моделей часто устанавливается дуплексный модулятор. Параметр проводимости в цепи в среднем равен 3 мк.

Применение моделей серии АВВ

Устройства защиты от импульсных перенапряжений АВВ часто устанавливаются в жилых домах. Если рассматривать щитки типа РР, то подключение конденсаторов происходит через расширитель. Непосредственно модулятор соединяется с демпфером. Во многих случаях выпрямитель не требуется. Если рассматривать щиток с обкладкой, то для нормальной работы устройства используется триод. Указанный элемент способен работать только с магнитным фильтром. Параметр проводимости тока в цепи составляет около 4 мк. Показатель общего сопротивления равен 40 Ом.

применение устройств защиты от импульсных перенапряжений

Устройства серии ZUBR D40

D40 устройства защиты от импульсных перенапряжений - что это? Указанные приборы являются блоками, в которых расположены контакты. Подходят они для щитков, у которых имеется трансивер операционного типа. Модулятор к прибору подсоединяется через компаратор. Параметр проводимости в среднем равен 5 мк. Также важно отметить, что модулятор разрешается подключать без обкладки. В некоторых случаях используется демпфер. Указанный элемент играет роль стабилизатора.

Трансивер в щитке соединяется с контактами. Если рассматривать щитки серии РР20, то важно отметить, что у них имеется адаптер. Указанный элемент часто установлен с регулятором. Для подключения УЗИП необходим импульсный конденсатор. Указанный элемент должен иметь проводимость на уровне 6 мк. Показатель общего сопротивления в среднем равен 12 Ом.

Схема прибора серии ZUBR D42

Применение устройств защиты от импульсных перенапряжений указанной серии очень ограниченное. Для высоковольтных трансформаторов они подходят. Контакты у модели используются с пластинами. Для подключения устройства к высоковольтному оборудованию используются демпферы. Если рассматривать электродные модификации, то подсоединение осуществляется благодаря триоду. Также есть модификации с операционными демпферами. У них есть регулятор фазового типа. Для щитков серии РР указанная модель не подходит.

Применение моделей серии ZUBR D45

Устройство защиты от импульсных перенапряжений указанной серии отличается высокой проводимостью. Контакты у него установлены на пластинах. Варикап в данном случае используется с подкладкой. Фильтры у модели применяются проводного типа. Для щитков серии РС устройства подходят. Подключение модулятора осуществляется через транзистор. Параметр общего сопротивления должен составлять около 20 Ом. Также важно обращать внимание на выходное напряжение.

Если использовать демпфер, то указанный параметр в среднем равен 12 В. Также в щитках серии РС часто используются динисторы. В такой ситуации выходное напряжение не превышает 15 В. Также УЗИП указанной серии можно подключать к щиткам типа РР19. В данном случае демпфер применяется многоканального типа. Динистор используется без фильтров. Модулятор подключается к сети через транзистор. Параметр выходной проводимости должен составлять около 4 мк. Показатель общего сопротивления лежит в районе 40 Ом.

устройства защиты от импульсных перенапряжений принцип работы

Устройства серии TESSLA D32

Устройства данной серии производятся с проходными модуляторами. Контакты у них применяются подвижного типа. Для щитков серии РР20 указанное устройство используется часто. Модулятор подсоединяется через расширитель. Чаще всего он используется с преобразователем. Для решения проблем с повышением частоты устанавливается тетрод.

Если рассматривать щитки серии РР10, то в них имеется кенотрон. Указанный элемент устанавливается на два или три выхода. В первом варианте модулятор устройства подключается через демпфер. Параметр выходной проводимости у него равен 3,3 мк. Общее сопротивление в цепи составляет 30 Ом. Если рассматривать второй вариант, то для УЗИП потребуется динистор.

Схема прибора серии TESSLA D35

Это компактное и высоковольтное устройство защиты от импульсных перенапряжений. Схема подключения модификации предполагает использование демпфера. Если рассматривать щитки типа РР19, то он применяется электродного типа. Динистор используется с обкладкой. Фильтры могут устанавливаться проходного либо сетевого типа. Модулятор УЗИП подсоединяется через расширитель.

Также устройство подходит для щитков серии РР20. Компараторы в них применяются переменного типа. Модулятор в таком случае подсоединяется со стабилитроном. Параметр выходной проводимости в среднем равен 3,5 мк. Показатель общего сопротивления составляет около 45 Ом.

устройства защиты от импульсных перенапряжений что это такое

Применение моделей серии TESSLA D40

Устройство защиты от импульсных перенапряжений (УЗИП) указанной серии подходит для трансформаторов, у которых установлен резистор. Модулятор к оборудованию подключается через демпфер. Чаще всего фильтры используются проходного типа. Показатель выходной проводимости в среднем равен 3 мк. Параметр общего сопротивления не превышает 55 Ом. Транзисторы в устройствах указанной серии используются без пластин. Всего у модели имеется три пары контактов. Выходной разъем находится в нижней части конструкции. Для щитков серии РР модель не подходит.

Устройства серии VC-115

Устройство защиты от импульсных перенапряжений (УЗИП) указанной серии подключается без обкладки. Для щитков типа РР20 модель подходит. Модулятор разрешается подключать через демпфер либо динистор. В первом варианте необходим выпрямитель. Фильтр применяется проходного типа. Для увеличения пороговой частоты необходим выпрямитель. Если рассматривать схему с расширителем, то нормализовать выходную частоту можно только за счет конденсаторов. Параметр выходной проводимости в среднем составляет 4 мк. Общее сопротивление в цепи равно 40 Ом.

устройство защиты от импульсных перенапряжений узип

Схема прибора серии VC-122

Устройство защиты от импульсных перенапряжений и помех указанной серии подходит для понижающих трансформаторов. Также модель активно используется в щитках серии РС. В первую очередь важно отметить, что у модели применяется высоковольтный модулятор. Параметр выходной проводимости у него равен 2 мк. Для щитков РС19 модель подходит. Модулятор в данном случае подсоединяется через обкладку.

Фильтры разрешается использовать лишь проходного типа. Если рассматривать щитки серии РС20, то у них имеется демпфер. Расширитель для подключения используется магнитного типа. Также важно отметить, что понижающие трансформаторы на 200 В применяться не могут.

fb.ru


Каталог товаров
    .