интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Тема 4. Стабилизаторы напряжения и тока. Схемы стабилизаторы напряжения и тока


Тема 4. Стабилизаторы напряжения и тока

Типы стабилизаторов, их основные параметры, параметрические стабилизаторы напряжения и параметрические стабилизаторы токаследует изучать по /1,2,3/. Изучите работу схем, основные характеристики, коэффициент стабилизации. Степень усвоения проверяется тестированием по этому разделу.

Линейные компенсационные стабилизаторы напряжения и тока.Принцип действия, функциональные и принципиальные схемы, коэффициент стабилизации, нагрузочные характеристики хорошо изложены в /1,2,3,5/. Построение и расчет стабилизаторов на интегральных микросхемах изложен ниже. Проверкой готовности к выполнению лабораторной работы №6 «Линейные стабилизаторы напряжения» являются выполненное домашнее задание и (или) результаты тестирования по этой теме.

Построение и расчет стабилизаторов на интегральных микросхемах

 

Рис. 6.1

Типовая схема включения интегральных микросхем стабилизаторов на фиксированное напряжение приведена на рис. 6.1. Выходной конденсатор С2 (не менее 1 мкФ для танталовых и не менее 10 мкФ для алюминиевых оксидных конденсаторов) обеспечивает устойчивость при импульсном изменении тока нагрузки, снижает уровень пульсации. Входной конденсатор С1 (не менее 2,2 мкФ для танталовых и не менее 10 мкФ для алюминиевых оксидных конденсаторов) необходимо включить для устранения генерации при скачкообразном включении входного напряжения. Эта генерация возникает в стабилизаторе из-за влияния паразитных индуктивности и емкости соединительных проводов, образующих контур ударного возбуждения. В отсутствии С1 амплитуда паразитных колебаний может превысить максимально допустимое входное напряжение, что приведет к пробою перехода коллектор-эмиттер регулирующего транзистора. В тех случаях, когда емкость С2>20мкФ, случайные замыкания входной цепи могут представлять опасность для микросхемы, поскольку импульсы разрядного тока выходных конденсаторов будут создавать на ней импульсы обратного напряжения значительной амплитуды. Для защиты микросхемы от подобных перегрузок необходимо включить диод VD1 (КД510А), шунтирующий ее при замыкании входной цепи.

Регулируемые стабилизаторы напряжения имеют дополнительный вывод, предназначенный для подключения делителя выходного напряжения (четырехвыводные стабилизаторы). С его помощью можно изменять или подстраивать выходное напряжение (рис. 6.2).

Рис. 6.2

Структурная схема DA такая же, как у трехвыводного стабилизатора. На практике регулируемые стабилизаторы могут иметь дополнительные выводы: для подключения умощняющих транзисторов к силовой цепи; для подачи внешнего сигнала, отключающего ИМС; для подключения конденсаторов корректирующих переходные процессы. Регулируемое выходное напряжение можно получить и с помощью трехвыводного стабилизатора (рис. 6.3).

Рис. 6.3

Выходное напряжение:

Uвых=Uвыхном+(Iп+Iд)R2 ,(6.1)

где Uвыхном – выходное напряжение микросхемы; IП – ток, потребляемый стабилизатором, Iд – ток делителя R1,R2.

На рис. 6.4 приведена принципиальная схема стабилизатора с регулированием выходного напряжения на ИМС К142ЕН1, К142ЕН2.

Рис. 6.4

Микросхема выполнена на кристалле 1,7Х1,7 мм. Регулируемый элемент – составной транзистор VT6, VT7. Применение составного транзистора позволяет существенно увеличить коэффициент передачи тока и уменьшить влияние неуправляемого коллекторного тока. Источник опорного напряжения служит для формирования опорного (эталонного) напряжения, с которым сравнивается часть выходного напряжения. Выделенный в результате сравнения сигнал рассогласования обеспечивает процесс автоматического регулирования выходного напряжения стабилизатора. Источник опорного напряжения в интегральном стабилизаторе представляет собой параметрический стабилизатор. В качестве стабилитрона VD1 используется эмиттер-базовый переход транзистора, смещенный в обратном направлении и имеющий характеристику лавинного пробоя. Для улучшения качества эталонного напряжения ток стабилитрона стабилизируется. В качестве стабилизатора тока используется МОП транзистор VT1, у которого закорочены выводы истока и затвора. Для уменьшения выходного сопротивления параметрического стабилизатора на его выход включают эмиттерный повторитель, выполненный на транзисторе VT3, резисторах R1, R2 и диоде VD2. Основным фактором, влияющим на качество опорного напряжения, является нестабильность, вызванная изменением температурных условий интегральной схемы. Для температурной компенсации опорного напряжения в схему параметрического стабилизатора вводят диод VD2.Делитель напряжения (резисторы R1, R2 ) позволяет получать опорное напряжение меньшее, чем напряжение стабилизатора VD1. Усилитель постоянного тока выполнен по дифференциальной схеме и состоит из транзисторов VT4, VT5. МОП транзистор VT2 включен как стабилизатор тока и является коллекторной нагрузкой транзистора VT5. Применение стабилизатора тока в качестве коллекторной нагрузки позволяет увеличить коэффициент усиления каскада.

Для нормальной работы интегрального стабилизатора напряжения, а также для получения заданного значения выходного напряжения к микросхеме подключают дополнительные дискретные элементы: резисторы и конденсаторы. Делитель напряжения, выполненный на резисторах R8, R9, является делителем обратной связи. Необходимую величину выходного напряжения устанавливают при помощи переменного резистора R8. При помощи резисторов R5, R6, R7 обеспечивается работа схемы защиты при заданных перегрузках по току. В данной схеме источник опорного напряжения и усилитель постоянного тока питаются от входного напряжения. При изменении входного напряжения Uвх ( например, увеличении ) в первый момент возрастает выходное напряжение Uвых. Это вызывает повышение напряжений на резисторах делителя R8, R9. Напряжение на нижнем плече делителя UR8,9 сравнивается с напряжением на резисторе R3, которое равно опорному напряжению Uon. Увеличение напряжения UR8,9 приводит к возрастанию токов базы и коллектора транзистора VT5. Ток стока МОП транзистора VT2 IC2 величина постоянная, равная сумме токов IK5+Iб7. При повышении тока IK5 ток базы транзистора Iб7 уменьшается, так как IC2=const. Уменьшение тока Iб7 приводит к уменьшению тока базы транзистора VT6 Iб6 и к увеличению напряжения коллектор – эмиттер. В результате напряжение Uвых уменьшается до своего первоначального значения с определенной степенью точности. При изменении тока нагрузки Iн ( например, понижении ) в первый момент уменьшаются падение напряжения на регулирующем транзисторе VT6 и падение напряжения на внутреннем сопротивлении источника, питающего стабилизатор. Увеличивается выходное напряжение Uвых , что приводит к возрастанию напряжения на нижнем плече делителя UR8,9. В дальнейшем схема работает так, как было показано выше. В стабилизаторе предусмотрена защита от перегрузок по току и от короткого замыкания. Эту функцию в интегральном стабилизаторе выполняет транзистор VT9, который работает совместно с дополнительными внешними резисторами R5, R6, R7.

Напряжение база-эмиттер транзистора VT9: Uбэ9=UR6-Uбэ6-UR5. При нормальной работе транзистора, когда ток нагрузки не превышает заданное максимальное значение, напряжение UR5 мало и напряжение UR6>(UR5+Uбэ6).

В этом случае на базу транзистора VT9 относительно его эмиттера подается отрицательное смещение и он заперт. При перегрузке по току или коротком замыкании на выходе схемы напряжение UR5 возрастает и становится больше напряжения (Uбэ6-UR6). Транзистор VT9 открывается, и на базу составного регулирующего транзистора (VT6, VT7 ) подается отрицательный потенциал с резистора R5. Регулирующий транзистор запирается и ограничивает величину тока нагрузки. При устранении перегрузки схема возвращается в исходное состояние. Изменяя величину сопротивления резистора R5, можно регулировать величину тока, при котором срабатывает защита.

В интегральном стабилизаторе предусмотрена возможность запирать составной регулирующий транзистор внешним сигналом. Если на базу транзистора VT8 интегральной схемы ( вывод 9) от внешнего источника подать положительный сигнал, то транзистор открывается. При этом на базу составного регулирующего транзистора VT6, VT7 подается отрицательный потенциал через открытый транзистор VT8. Составной транзистор запирается. Выходное напряжение стабилизатора падает до нуля.

Качество работы ИСН оценивается следующими параметрами. Нестабильность выходного напряжения при заданном изменении входного напряжения:

, [%/B]. (6.2)

Коэффициент стабилизации – отношение относительных нестабильностей входного и выходного напряжений:

. (6.3)

Нестабильность по току при заданном сбросе тока нагрузки:

, [%/A], (6.4)

где Iвыхном – номинальный ток нагрузки.

Внутреннее сопротивление:

, [Ом].(6.5)

Коэффициент сглаживания пульсации – отношение переменой составляющей входного напряжения к переменной составляющей выходного напряжения.

, [дБ]. (6.6)

Если Ксг не приведено, можно считать Ксг=20lg Кст.

Относительный температурный коэффициент нестабильности напряжения:

[%/oC] , (6.7)

где Uвых0 – значение Uвых при нормальной температуре, а Uвых1 и Uвых2 – при температурах t1 и t2 соответственно;

t1 и t2 – крайние значения температурного интервала (для большинства ИСН t2=125оС, t1=-60оС ).

Падение напряжения на ИСН – Uпд, В.

Ток, потребляемый ИСН – IП, мА.

Температурный коэффициент напряжения:

,[B/oC]. (6.8 )

Допустимая мощность, рассеиваемая в ИСН, определяется в основном потерями на регулирующем элементе Ррасс.. Для увеличения рассеиваемой мощности микросхему устанавливают на теплоотвод. В таблице П2.3 Приложения 2 приведены параметры интегральных микросхем стабилизаторов напряжения.

Построение и расчет стабилизатора напряжения следует начать с выбора микросхемы. Исходные данные, необходимые для расчета: номинальное значение выходного напряжения Uвых; пределы регулирования выходного напряжения Uвыхmin, Uвыхmax; максимальный и минимальный токи нагрузки Iнmax, Iнmin; нестабильность входного напряжения α; нестабильность выходного напряжения Ku=∆Uвых/Uвых или коэффициент пульсаций выходного напряжения Кп; коэффициент стабилизации напряжения KCT= α /Ku; внутреннее сопротивление стабилизатора Rвн; температурный коэффициент γ. Выбор ИМС производится по заданным Uвых, Iвыхmax, Кст (6.3), γ (6.8), Rвн (6.5). При этом следует отдавать предпочтение тем ИМС, которые работают с меньшим количеством внешних элементов. При этом должны быть выполнены условия : Uвых имс≥Uвых; Iвых max имс≥ Iн max; Кст имс>Кст. Независимо от типа выбранной микросхемы определяют минимальное, номинальное и максимальное напряжения на входе стабилизатора:

Uвх min=Uвых max+Uпд; ;Uвх max=Uвх (1+α (+)),

где α (+) , α (-) – наибольшие положительные и отрицательные относительные изменения входного напряжения соответственно.

Возможные пределы изменения КПД:

(предполагается, что ток, потребляемый стабилизатором, мал, т.е. Iвых≈ Iвх)

Элементы принципиальной схемы стабилизатора на ИМС К142ЕН1, К142ЕН2 (рис. 6.5) рассчитываются следующим образом: делитель выходного напряжения R4,R5 выбирается из условия, чтобы через него протекал ток Iд не менее 1,5 мА. Сопротивление резистора R5 определяется уровнем опорного напряжения и составляет обычно 1,2 кОм.

.

Емкость выходного конденсатора С2, повышающего устойчивость стабилизатора и снижающего уровень пульсации выходного напряжения, выбирается из условия С2≥2,2 мкФ. Для повышения устойчивости включается также конденсатор С1≈0,1 мкФ.

Ток через делитель R2,R3 выбирается равным Iд =0,3 мА, а R2=2 кОм. Напряжение Uбэ9 транзистора защиты составляет 0,7 В, поэтому сопротивление, кОм,

.

Рис. 6.5

Зависимость выходного напряжения стабилизатора от тока нагрузки при действии схемы защиты показана на рис. 6.6.

Рис. 6.6.

Напряжение на резисторе защиты R1 открывает транзистор защиты VT9 только при токе Iпор, при этом Iпор≤Iнmax, а сопротивление резистора R1=0,7/Iпор.

Включение последовательно в выходную цепь ИСН резистора R1 увеличивает его внутреннее сопротивление, поэтому R1 выбирают минимально возможным. Схема стабилизатора (рис. 6.7) может работать на повышенном токе нагрузки благодаря включению составного транзистора VT1,VT2.

Рис. 6.7

Расчет стабилизатора производится в следующем порядке. Ток через транзистор VT1

Ik1max=Iн max+Iп ,

где Iп  ток, потребляемый стабилизатором.

Максимальное напряжение на входе стабилизатора с учетом падения напряжения на внутреннем сопротивлении выпрямителя r0

Uвхmm=Uвхmax+(Iнmax-Iнmin)r0.

Величину r0 можно принять равной (0,050,1)Uвх/Iн.

Максимальное напряжение между коллектором и эмиттером транзистора VT1

Uкэ1max=Uвхmm-Uн.

Максимальная мощность, рассеиваемая на регулируемом транзисторе VT1

Pк1=(Uвхmax-Uн)Iк1max.

По данным Uкэ1max, Ik1max, Pk1 выбирают тип регулируемого транзистора.

При этом необходимо учесть, что расчетные величины должны быть меньше предельных величин, указанных в справочнике.

Максимальный ток базы транзистора VT1

Iб1max=Ik1max/h31max.

Если Iб1max меньше номинального тока нагрузки Iном ИМС, то транзистор VT2 вводить в схему не нужно. Вывод I3 ИМС следует соединить с базой VT1, а резистор R1 убрать. Транзистор VT1 является третьим в составном регулируемом транзисторе стабилизатора. Если Iб1max>Iном, включают еще один транзистор VT2, предварительно определив следующие параметры.

Ток через резисторы R2, R3

IR2,3=(1..1,5)Iko2max,

где Iko2max  наибольший обратный ток коллектора транзистора VT2. Если VT2 отсутствует, IR2,3=1мА.

Сопротивление резисторов R2, R3

(R2+R3)=Uн/IR2,3.

Максимальное значение тока эмиттера транзистора VT2

Iэ2 max=(Iб1 max + IR2,3)≈ Ik2 max.

Максимальное напряжение Uкэ2max транзистора VT2

Uкэ2max≈Uкэ1max.

Максимальная мощность, рассеиваемая транзистором VT2,

Рк2=Ik2max∙Uкэ2max.

По величинам Ik2max,Uкэmax, Рк2 выбирают транзистор VT2.

Сопротивление R1=Uн/1mA.

Наибольший ток базы транзистора VT2

Iб2=Ik2max/h31э2max.

Необходимо проверить соблюдение условия Iб2max≤Iвыхmaxимс.

Защита от перегрузки и короткого замыкания осуществляется напряжением, подаваемым с резистора R4 на базу транзистора защиты по току в ИМС.

Сопротивление резистора защиты:

R4=UR4/Iпор,

Отношение R2/R3 следует выбирать таким, чтобы при нормальном токе нагрузки напряжение между выводами 10 и11 ИМС, между базой и эмиттером транзистора защиты по току, было близким к нулю:

U10-11=UR4+Uбэ1-UR2≈0.

Из этого условия определяют сопротивление:

.

Мощность, рассеиваемая на резисторах:

PR=IR2R.

Интегральные стабилизаторы типов К142ЕН3, К142ЕН4 выполнены на кристалле размером 2,2Х2,2 мм. Принципиальная электрическая схема значительно усложнена по сравнению со схемой стабилизаторов К142ЕН1, К142ЕН2 за счет введения двухкаскадного дифференциального УПТ с токостабилизирующими двухполюсниками, что существенно повысило стабильность по напряжению, а наличие мощного регулирующего транзистора обеспечило ток нагрузки ИМС до 1А.

Рис. 6.8

Типовая схема включения стабилизаторов К142ЕН3, К142ЕН4 приведена на рис. 6.8. Назначение элементов: R1  ограничительный резистор выключения микросхем внешним сигналом; R2  ограничительный резистор для регулирования порога срабатывания тепловой защиты в диапазоне температур корпуса микросхемы Тк от +650 до +1450С; R3  резистор защиты от перегрузки по току или короткого замыкания; Ск  корректирующий конденсатор; совместно с выходным конденсатором Сн он обеспечивает устойчивую работу стабилизатора (обычно Ск=0,01 мкФ, Сн≈2,2 мкФ).

Резистор R2, кОм, выбирают из условия:

.

Сопротивление ограничительного резистора, кОм,

,

где Uy амплитуда управляющего импульса включения.

При управлении от микросхемы с ТТЛ- выходом Uy составляет около 5 В.

Сопротивление резистора защиты:

.

Ток, протекающий через выходной делитель R4, R5 Iд>1,5 мА.

Общее сопротивление делителя

.

Напряжение на резисторе R5 должно быть равно образцовому:

Uобр=2,5 В+10%. Тогда ;R4=R4,5-R5.

Фиксированное выходное напряжение можно получить в стабилизаторах на ИМС К142ЕН5, К142ЕН8, КР142ЕН8, К142ЕН9, КР142ЕН17, КР1157, КР1162 (рис. 6.1). Номер входного, выходного и общего выводов указан в таблице П2.3. В зависимости от того, включен ли регулирующий транзистор в плюсовой или минусовой провод, в таблице приводится соответствующее обозначение (+вход) или (- вход). Эти же ИМС, а также КР142ЕН12, КР142ЕН18 могут использоваться в схемах стабилизаторов с регулированием выходного напряжения (рис. 6.3).

Ток делителя R1, R2 Iд>3Iп.

R1=Uвых ном/Iд (6.9)

Используя формулу (6.1) и заменяя Iд из (6.9), получаем:

, (6.10)

Если в таблице П2.3 не указан Iп, Iд принимают равным 5 мА. Рассчитывая делитель в стабилизаторе на ИМС КР142ЕН12, КР142ЕН18, Uвыхном нужно заменить на Uвыхmin. Кроме того, для снижения уровня фона при выходном напряжении, близком к минимальному, рекомендуется в измерительный элемент стабилизатора на ИМС КР142ЕН12, КР142ЕН18 включать сглаживающий конденсатор С3=(2…10) мкФ. При Uвых >25 В, если возможно замыкание входной цепи стабилизатора, следует при наличии конденсатора С3 включить диод VD2 (КД521А), защищающий вход управления микросхемы.

Микросхемы 142ЕН10 и 142ЕН11 – четырехвыводные регулируемые стабилизаторы. ИМС 142ЕН10 включается по схеме рис. 6.2 , а для ИМС 142ЕН11 выводы 3 и 4 соединяются и схема включения преобразуется в рис. 6.3. Ток делителя R1, R2 Iд>3Iп.

, (6.11)

где Uос – напряжение обратной связи; в К142ЕН10 Uос≈2,3 В, а в К142ЕН11 Uос≈1,25 В. Сопротивления R1 и R2 находят из (6.11).

Микросхемы КР142ЕН14 – улучшенный аналог стабилизаторов К142ЕН1 и К142ЕН2. Типовая схема включения ИМС для выходного напряжения 2…7В показана на рис. 6.9, а для выходного напряжения 7…37 В – на рис. 6.10. Поскольку выводы 11 и 12 соединены, все узлы микросхемы питаются от общего источника нестабилизированного напряжения (совместное питание).

Рис. 6.9

Рис. 6.10

Выходное напряжение в схеме рис 6.9:

, (6.12)

а в схеме 6.10:

, (6.13)

В таблице 6.1 приведены расчетные значения сопротивления резисторов R1 и R2 для некоторых типовых значений выходного напряжения. Если необходимо плавно регулировать выходное напряжение, резистор R1 выбирают переменным.

Таблица 6.1.

Uвых

2,4

3

4

5

6

9

12

15

24

27

30

R1,кОм

4,75

4,12

3,12

2,15

1,15

1,87

4,87

7,87

16,19

19,8

22,9

R2,кОм

2,4

3,01

4,02

4,99

6,04

7,15

7,15

7,15

7,15

7,15

7,15

Если замыкание выходной цепи маловероятно, резистор системы защиты определяют по пороговому току нагрузки: R3=0,65/Iпор.

Резистор R4 служит для уменьшения температурного коэффициента выходного напряжения и подавления паразитной генерации.

.

Этот резистор может быть исключен из схемы (R4=0).

Если замыкания цепи нагрузки вероятны и их длительность может быть значительной, используют другую схему включения (рис.6.11).

Рис. 6.11

Резистор схемы защиты:

,

где Iз – остаточный выходной ток замыкания, Iпор– порог срабатывания системы защиты. Резисторы R1 и R2 образуют делитель напряжения измерительного элемента стабилизатора, а резисторы R4 и R 5 –базовый делитель напряжения транзистора системы защиты:

R4=(I3R3/0,65-1)R5 ;R5=(Uвых+0,65)/Iд,

где Iд – ток делителя R4, R5 (рекомендуется выбрать Iд ≈ 0,001А).

Стабилизатор может быть умощнен дополнительным транзистором (рис. 6.12). Сопротивление базового резистора:

R5=Uвых/0,001 (Ом).

Рис. 6.12

Если необходимо обеспечить минимальные потери напряжения на регулирующем транзисторе, можно применить схему, показанную на рис. 6.13.

Рис. 6.13

Сопротивление базового резистора R5 выбирают в пределах 100…200 Ом.

При работе стабилизаторов с умощняющими транзисторами (рис. 6.12, 6.13) необходимо выполнение условий:

IпорUвх≤Pрасс.max; (Iпор/h31э+Iп)Uвх≤ Pрасс.max ,

где h31Э – минимальное значение коэффициента передачи транзистора VT1.

Для стабилизаторов по рис. 6.12, 6.13 подойдут мощные транзисторы, рассчитанные на ток коллектора 5 А и более. При выборе транзисторов необходимо учитывать, что подойдут лишь те экземпляры, у которых h31>50…70.

Во всех схемах стабилизаторов на КР142ЕН14 С1>1 мкФ, С2≥100 пФ, С3>0,01 мкФ (конденсаторы С1и С3 устанавливают при необходимости).

studfiles.net

Стабилизатор напряжения на ОУ | HomeElectronics

Всем доброго времени суток! В прошлой статье я рассматривал RC генераторы синусоидальных (гармонических) колебаний на ОУ. В данной статье я рассмотрю стабилизаторы напряжения, в основе которых лежат операционные усилители. Основное преимущество ОУ при использовании их в стабилизаторах напряжения является то, что ОУ обладает большим коэффициентом усиления (несколько десятков тысяч). Поэтому они позволяют получить нестабильность выходного напряжения порядка 0,001 %.

Основная схема компенсационного стабилизатора напряжения

Большинство современной силовой электроники представлено импульсными источниками питания, которые обладают высоким КПД и небольшими габаритными размерами. Однако линейные стабилизаторы напряжения также находят своё применение, прежде всего в устройствах небольшой мощности, а также в схемах, где не желательны импульсные помехи.

Как известно линейные источники питания разделяются на последовательные и параллельные в зависимости от схемы подсоединения регулирующего элемента относительно выхода. Наибольшее распространение получили последовательные стабилизаторы, так как могут обеспечить КПД и стабилизацию больше чем параллельные, из основных достоинств которых является возможность перегрузки по току и способность выдерживать короткое замыкание.

Кроме схемы подключения регулирующего элемента, стабилизаторы напряжения классифицируются по способу регулирования выходного напряжения: параметрические и компенсационные. Работа параметрических стабилизаторов основана на нелинейных свойствах регулирующих элементах, то есть при значительном изменении тока протекающего через него падение напряжения на регулирующем элементе мало изменяется. Такие стабилизаторы применяются в схемах небольшой мощности до нескольких ватт. Наибольшее распространение получили схемы последовательных стабилизаторов компенсационного типа, структурная схема, которого представлена ниже

 Структурная схема компенсационного стабилизатора последовательного типаСтруктурная схема компенсационного стабилизатора последовательного типа.

В одной из статей я рассказывал о компенсационных стабилизаторах напряжения, выполненных на транзисторах, поэтому напомню принцип его работы. Схема состоит из чётырёх основных частей: источник образцового напряжения И, элемента сравнения ЭС, усилительного элемента У и регулирующего элемента Р. Элемент сравнения сравнивает выходное напряжение U1 с напряжение вырабатываемым источником образцового напряжения и выдаёт ошибку сравнения на усилительный элемент, где происходит усиление ошибки сравнения и вырабатывается управляющий сигнал для регулирующего элемента.

Довольно часто в простых схемах происходит объединение элемента сравнения и усилителя (а иногда и регулирующего элемента в слаботочных схемах) в одно устройство. В современных схемах функции элемента сравнения и усилителя выполняют на ОУ.

Схема стабилизатора напряжения на ОУ

Для построения стабилизатора напряжения используется масштабирующий усилитель на ОУ в неивертирующем включении. Схема такого стабилизатора напряжения показана ниже

Схема стабилизатора напряжения на ОУСхема стабилизатора напряжения на ОУ.

Схема состоит из ОУ DA1, резисторов обратной связи R1 и R2 и источника опорного напряжения UОП. Выходное напряжение будет определяться известной формулой для неинвертирующего усилителя

0906201601

Таким образом, качество стабилизатора напряжения будет определяться качеством источника опорного напряжения, так как ОУ даже с очень хорошими параметрами и высоким коэффициентом усиления не может обеспечить стабильность выходного напряжения.

Существует несколько видов источников опорного напряжения: стабилитрон, источник опорного напряжения со стабилизатором тока и интегральные стабилизаторы напряжения. Рассмотрим их по отдельности.

Использование стабилитрона в качестве источника опорного напряжения

Стабилитрон широко используется практически во всех стабилизаторах напряжения, так как имеет нелинейную вольт-амперную характеристику, что позволяет при широком изменении тока нагрузки практически оставаться стабильным выходному напряжению. Схема стабилизатора напряжения с использованием стабилитрона в качестве источника опорного напряжения показана ниже

использование стабилитрона в качестве источника опорного напряженияСхема, иллюстрирующая использование стабилитрона в качестве источника опорного напряжения.

На данной схеме опорное напряжение задаётся параметрическим стабилизатором напряжения R1VD1, что даёт удовлетворительные результаты в большинстве практических случаях. При этом величина опорного напряжения соответствует величине напряжения стабилизации стабилитрона VD1, а разность между входным напряжением стабилизатора и опорным рассеивается на резисторе R1. Номиналы элементов параметрического стабилизатора выбираются из следующих соотношений

0906201602

где UCT – напряжение стабилизации стабилитрона,

IСТ – номинальный ток стабилизации стабилитрона.

Схема с использование стабилитрона в качестве источника опорного напряжения обеспечивает умеренный уровень стабилизации, составляющий доли процента (обычно 0,1…0,05%), значительно лучшие показатели обеспечиваются, если вместо гасящего резистора R1 применить стабилизатор тока.

Использование стабилизатора тока в источнике опорного напряжения

Достаточно часто стабилизаторы напряжения используются в схемах, где входящие нестабилизированное напряжение может изменяться в пределах нескольких вольт, а иногда и выше. Данное условие приводит к тому, что в схеме параметрического стабилизатора R1VD1, показанного на рисунке выше, приводит к изменению тока проходящего через стабилитрон, тем самым изменяя его напряжение стабилизации в пределах долей вольта. Для недопущения таких изменений в схему источника опорного напряжения вводят стабилизатор тока. Схема стабилизатора напряжения на ОУ со стабилизатором тока в цепи опорного напряжения приведена ниже

Стабилизатор напряжения на ОУ со стабилизатором токаСтабилизатор напряжения на ОУ со стабилизатором тока в цепи опорного напряжения.

В данной схеме вместо гасящего резистора параметрического стабилизатора введён стабилизатор тока R1VD1VT1R2, что позволяет свести колебания тока стабилизации стабилитрона VD2 к нескольким процентам, при колебании входящего нестабилизированного напряжения в пределах десятков процентов. В итоге коэффициент стабилизации источника опорного напряжения достигнет нескольких сотен, в то время как стабилизации обычного параметрического стабилизатора напряжения едва достигает нескольких десятков.

Ещё одним применение данной схемы является регулируемый источник опорного напряжения. Для этого достаточно заменить стабилитрон VD2 переменным резистором, что позволяет при постоянном токе, задаваемым стабилизатором тока, изменяя сопротивление переменного резистора в широких пределах регулировать опорное напряжение, тем самым регулирую выходное напряжение стабилизатора тока.

 Регулируемый стабилизатор напряжения на ОУРегулируемый стабилизатор напряжения на ОУ.

Однако данная схема не может обеспечить такой же стабильности, как схемы на стабилитронах описанные выше, поэтому она применяется крайне редко.

Наибольшую стабильность позволяют получить схемы, где в качестве источников опорного напряжения применяются интегральные стабилизаторы напряжения.

Использование интегральных стабилизаторов напряжения в качестве источников опорного напряжения

Интегральные стабилизаторы напряжения, выпускаемые промышленностью в настоящее время, имеет широкую номенклатуру изделий, и характеризуются высокими техническими параметрами. Так, например, широко применяемая микросхема стабилизатора напряжений серии КР142ЕН выпускаются на различные стабилизируемые напряжения от 5 до 30 В, имеют коэффициент нестабильности по напряжения не менее 0,1 %/В, а коэффициент сглаживания пульсаций не менее 30 дБ. Поэтому они наилучшим образом подходят в качестве источников опорного напряжения в мощных линейных стабилизаторах напряжения. Схема использования их в качестве опорных источников напряжения показана ниже

Использование интегральных стабилизаторов напряжения в качестве источника опорного напряженияИспользование интегральных стабилизаторов напряжения в качестве источника опорного напряжения.

Согласно технической документации микросхемы типа КР142ЕНхх на вход и выход необходимо включить конденсаторы: С1 ≥ 2,2 мкФ, С2 ≥ 1 мкФ.

При использовании интегральных стабилизаторов достаточно просто реализовать регулируемый стабилизатор напряжения, для этого достаточно поставить на выходе источника опорного напряжения переменный резистор, со среднего отвода которого снимать напряжение на операционный усилитель

Регулируемый стабилизатор напряжения с интегральным стабилизатором в качестве опорного напряженияРегулируемый стабилизатор напряжения с интегральным стабилизатором в качестве опорного напряжения.

Вышеописанные схемы стабилизаторов напряжения на ОУ позволяют получить очень хорошие показатели стабильности выходного напряжения. Однако ОУ не могут обеспечить достаточно большой выходной ток (обычно несколько десятков мА), поэтому выходная мощность ограничена долями ваттами, в зависимости от выходного напряжения.

Для того чтобы такие стабилизаторы отдавали больше мощности необходимо на его выходе включить каскад усилителя мощности в виде транзистора.

Увеличение выходной мощности стабилизатора напряжения

Для того чтобы такие стабилизаторы отдавали больше мощности необходимо на его выходе включить каскад усилителя мощности в виде транзистора или нескольких параллельно-последовательных транзисторов, который иногда называют бустером выходного тока. Простейшая схема стабилизатора напряжения на ОУ с бустерным каскадом показана ниже

Стабилизатор напряжения на ОУ с выходным бустерным каскадомСтабилизатор напряжения на ОУ с выходным бустерным каскадом.

В схеме стабилизатора напряжения для увеличения выходной мощности включён бустерный каскад на транзисторе VT1. Для ограничения максимального выходного тока ОУ введён резистор R2, который может быть определён по следующему выражению

0906201603

где UКЭнас – напряжение насыщения коллектор-эмиттер бустерного транзистора,

IВЫХ.МАХ – предельный выходной ток ОУ.

Иногда возникает ситуация когда усиления одного транзистора не хватает для требуемой выходной мощности, поэтому применяют составные транзисторы по схеме Дарлингтона или Шиклаи для увеличения коэффициента усиления по току.

Схемы с одним бустерным транзистором или транзистором Дарлингтона обычно используют для получения выходных токов стабилизатора до нескольких ампер. При необходимости выходного тока большего значения выходной транзистор составляют из нескольких параллельных для увеличения отдаваемой мощности.

Теория это хорошо, но теория без практики - это просто сотрясание воздуха. Перейдя по ссылке всё это можно сделать своими руками

Скажи спасибо автору нажми на кнопку социальной сети

www.electronicsblog.ru

Стабилизатор напряжения и стабилизатор тока

В обсуждениях электрических схем часто встречаются термины «стабилизатор напряжения» и «стабилизатор тока». Но какая между ними разница? Как работают эти стабилизаторы? В какой схеме нужен дорогой стабилизатор напряжения, а где достаточно простого регулятора? Ответы на данные вопросы вы найдёте в этой статье.

Рассмотрим стабилизатор напряжения на примере устройства LM7805.В его характеристиках указано: 5В 1,5А.  Это значит стабилизирует он именно напряжение и именно до 5В. 1,5А — это максимальный ток, который может проводить стабилизатор. Пиковая сила тока. То есть от может отдать и 3 миллиампера, и 0,5 ампер, и 1 ампер. Столько, сколько тока требует нагрузка. Но не больше полутора. Это главное отличие стабилизатора напряжения от стабилизатора тока.

Виды стабилизаторов напряжения

Различают всего 2 основных типа стабилизаторов напряжения:

  • линейные
  • импульсные

Линейные стабилизаторы напряжения

Например, микросхемы КРЕН или LM7805, LM1117, LM350.

Кстати, КРЕН — это не аббревиатура, как многие думают. Это сокращение. Советская микросхема-стабилизатор, аналогичная LM7805 имела обозначение КР142ЕН5А. Ну а ещё есть КР1157ЕН12В, КР1157ЕН502, КР1157ЕН24А и куча других. Для краткости всё семейство микросхем стали называть «КРЕН». КР142ЕН5А тогда превращается в КРЕН142.

Советский стабилизатор КР142ЕН5А. Аналог LM7805.

Стабилизатор LM7805

Наиболее распространенный вид. Недостаток их в том, что они не могут работать на напряжении ниже, чем заявленное выходное напряжение. Если LM7805 стабилизирует напряжение на 5 вольтах, то на вход ему подать нужно как минимум на полтора вольта больше. Если подать меньше 6,5 В, то выходное напряжение «просядет», и мы уже не получим 5 В. Еще один минус линейных стабилизаторов — сильный нагрев при нагрузке. Собственно, в этом и заключается принцип их работы — всё, что выше стабилизируемого напряжения, просто превращается в тепло. Если мы на вход LM7805 подадим 12 В, то 7 потратятся на нагрев корпуса, а 5 пойдут потребителю. Корпус при этом нагреется настолько сильно, что без радиатора микросхема просто сгорит. Из всего этого вытекает ещё один серьёзный недостаток — линейный стабилизатор не стоит применять в устройствах с питанием от батареек. Энергия батареек будет тратиться на нагрев стабилизатора. Всех этих недостатков лишены импульсные стабилизаторы.

Импульсные стабилизаторы напряжения

Импульсные стабилизаторы — лишены недостатков линейных, но и стоят дороже. Это уже не просто микросхема с тремя выводами. Выглядят они, как плата с детальками.

Один из вариантов исполнения импульсного стабилизатора.

Импульсные стабилизаторы бывают трех видов: понижающие, повышающие и всеядные. Наиболее интересные — всеядные. Независимо от напряжения на входе, на выходе будет именно то, которое нам нужно. Всеядному импульснику все равно, что на входе напряжение ниже или выше нужного. Он сам автоматом переключается в режим повышения или понижения напряжения и держит заданное на выходе. Если в характеристиках заявлено, что стабилизатору на вход можно подать от 1 до 15 вольт и на выходе будет стабильно 5, то так оно и будет. Кроме того, нагрев импульсных стабилизаторов настолько незначителен, что в большинстве случаев им можно пренебречь. Если ваша схема будет питаться от батареек или размещаться в закрытом корпусе, где сильный нагрев линейного стабилизатора недопустим — ставьте импульсный. Я использую настраиваемые импульсные стабилизаторы напряжения за копейки, которые заказываю с Aliexpress. Купить можно здесь.

Хорошо. А что со стабилизатором тока?

Не открою Америку, если скажу, что стабилизатор тока стабилизирует ток.Токовые стабилизаторы ещё иногда называют светодиодным драйвером. Внешне они похожи на импульсные стабилизаторы напряжения. Хотя сам стабилизатор — маленькая микросхема, а всё остальное нужно для обеспечения правильного режима работы. Но обычно драйвером называют всю схему сразу.

Примерно так выглядит стабилизатор тока. Красным кружком обведена та самая схема, которая и является стабилизатором. Всё остальное на плате — обвязка.

Итак. Драйвер задаёт ток. Стабильно! Если написано, что на выходе будет ток в 350мА, то будет именно 350мА. А вот напряжение на выходе может меняется в зависимости от требуемого потребителем напряжения. Не будем пускаться в дебри теории о том. как всё это работает. Просто запомним, что вы напряжение не регулируете, драйвер сделает все за вас исходя из потребителя.

Ну так и зачем всё это нужно то?

Теперь вы знаете, чем стабилизатор напряжения отличается от стабилизатора тока и можете ориентироваться в их многообразии. Возможно, вам так и не стало понятно, зачем эти штуки нужны.

Пример: вы хотите запитать 3 светодиода от бортовой сети автомобиля. Как вы можете узнать из статьи о светодиоде, для светодиода важно контролировать именно силу тока. Используем самый распространенный вариант соединения светодиодов: последовательно соединены 3 светодиода и резистор. Напряжение питания — 12 вольт.

Резистором мы ограничиваем ток на светодиоды, чтобы они не сгорели. Падение напряжения на светодиоде пусть будет у нас 3.4 вольта.После первого светодиода остается 12-3.4= 8.6 вольт.Нам пока хватает.На втором потеряется еще 3.4 вольта, то есть останется 8.6-3.4=5.2 вольта.И для третьего светодиода тоже хватит.А после третьего останется 5.2-3.4=1.8 вольта.При желании добавить четвёртый светодиод — уже не хватит.Если напряжение питания поднять до 15В, то тогда хватит. Но тогда и резистор тоже надо будет пересчитать. Резистор — простейший стабилизатор (ограничитель) тока. Их часто ставят на те же ленты и модули. У него есть минус — чем ниже напряжение, тем меньше будет и ток на светодиоде (закон Ома, с ним не поспоришь). Значит, если входное напряжение нестабильно (в автомобилях обычно так и есть), то предварительно нужно стабилизировать напряжение, а потом можно ограничить резистором ток до необходимых значений. Если используем резистор, как токовый ограничитель там, где напряжение не стабильно, нужно стабилизировать напряжение.

Стоит помнить, что резисторы имеет смысл ставить только до определенной силы тока. После некоторого порога резисторы начинают сильно греться и приходится ставить более мощные резисторы (зачем резистору мощность рассказано в статье о этом приборе) . Тепловыделение растёт, КПД падает.

Импульсный стабилизатор тока

Импульсный стабилизатор тока тоже называют светодиодным драйвером. Часто те, кто не сильно разбирается в этом, стабилизатор напряжения называют просто драйвером светодиодов, а импульсный стабилизатор тока — хорошим светодиодным драйвером. Он выдаёт сразу стабильное напряжение и ток. И почти не нагревается. Вот так он выглядит:

Импульсный стабилизатор тока

uscr.ru

Тема 4. Стабилизаторы напряжения и тока

Типы стабилизаторов, их основные параметры, параметрические стабилизаторы напряжения и параметрические стабилизаторы токаследует изучать по /1,2,3/. Изучите работу схем, основные характеристики, коэффициент стабилизации. Степень усвоения проверяется тестированием по этому разделу.

Линейные компенсационные стабилизаторы напряжения и тока.Принцип действия, функциональные и принципиальные схемы, коэффициент стабилизации, нагрузочные характеристики хорошо изложены в /1,2,3,5/. Построение и расчет стабилизаторов на интегральных микросхемах изложен ниже. Проверкой готовности к выполнению лабораторной работы №6 «Линейные стабилизаторы напряжения» являются выполненное домашнее задание и (или) результаты тестирования по этой теме.

Построение и расчет стабилизаторов на интегральных микросхемах

 

Рис. 6.1

Типовая схема включения интегральных микросхем стабилизаторов на фиксированное напряжение приведена на рис. 6.1. Выходной конденсатор С2 (не менее 1 мкФ для танталовых и не менее 10 мкФ для алюминиевых оксидных конденсаторов) обеспечивает устойчивость при импульсном изменении тока нагрузки, снижает уровень пульсации. Входной конденсатор С1 (не менее 2,2 мкФ для танталовых и не менее 10 мкФ для алюминиевых оксидных конденсаторов) необходимо включить для устранения генерации при скачкообразном включении входного напряжения. Эта генерация возникает в стабилизаторе из-за влияния паразитных индуктивности и емкости соединительных проводов, образующих контур ударного возбуждения. В отсутствии С1 амплитуда паразитных колебаний может превысить максимально допустимое входное напряжение, что приведет к пробою перехода коллектор-эмиттер регулирующего транзистора. В тех случаях, когда емкость С2>20мкФ, случайные замыкания входной цепи могут представлять опасность для микросхемы, поскольку импульсы разрядного тока выходных конденсаторов будут создавать на ней импульсы обратного напряжения значительной амплитуды. Для защиты микросхемы от подобных перегрузок необходимо включить диод VD1 (КД510А), шунтирующий ее при замыкании входной цепи.

Регулируемые стабилизаторы напряжения имеют дополнительный вывод, предназначенный для подключения делителя выходного напряжения (четырехвыводные стабилизаторы). С его помощью можно изменять или подстраивать выходное напряжение (рис. 6.2).

Рис. 6.2

Структурная схема DA такая же, как у трехвыводного стабилизатора. На практике регулируемые стабилизаторы могут иметь дополнительные выводы: для подключения умощняющих транзисторов к силовой цепи; для подачи внешнего сигнала, отключающего ИМС; для подключения конденсаторов корректирующих переходные процессы. Регулируемое выходное напряжение можно получить и с помощью трехвыводного стабилизатора (рис. 6.3).

Рис. 6.3

Выходное напряжение:

Uвых=Uвыхном+(Iп+Iд)R2 ,(6.1)

где Uвыхном – выходное напряжение микросхемы; IП – ток, потребляемый стабилизатором, Iд – ток делителя R1,R2.

На рис. 6.4 приведена принципиальная схема стабилизатора с регулированием выходного напряжения на ИМС К142ЕН1, К142ЕН2.

Рис. 6.4

Микросхема выполнена на кристалле 1,7Х1,7 мм. Регулируемый элемент – составной транзистор VT6, VT7. Применение составного транзистора позволяет существенно увеличить коэффициент передачи тока и уменьшить влияние неуправляемого коллекторного тока. Источник опорного напряжения служит для формирования опорного (эталонного) напряжения, с которым сравнивается часть выходного напряжения. Выделенный в результате сравнения сигнал рассогласования обеспечивает процесс автоматического регулирования выходного напряжения стабилизатора. Источник опорного напряжения в интегральном стабилизаторе представляет собой параметрический стабилизатор. В качестве стабилитрона VD1 используется эмиттер-базовый переход транзистора, смещенный в обратном направлении и имеющий характеристику лавинного пробоя. Для улучшения качества эталонного напряжения ток стабилитрона стабилизируется. В качестве стабилизатора тока используется МОП транзистор VT1, у которого закорочены выводы истока и затвора. Для уменьшения выходного сопротивления параметрического стабилизатора на его выход включают эмиттерный повторитель, выполненный на транзисторе VT3, резисторах R1, R2 и диоде VD2. Основным фактором, влияющим на качество опорного напряжения, является нестабильность, вызванная изменением температурных условий интегральной схемы. Для температурной компенсации опорного напряжения в схему параметрического стабилизатора вводят диод VD2.Делитель напряжения (резисторы R1, R2 ) позволяет получать опорное напряжение меньшее, чем напряжение стабилизатора VD1. Усилитель постоянного тока выполнен по дифференциальной схеме и состоит из транзисторов VT4, VT5. МОП транзистор VT2 включен как стабилизатор тока и является коллекторной нагрузкой транзистора VT5. Применение стабилизатора тока в качестве коллекторной нагрузки позволяет увеличить коэффициент усиления каскада.

Для нормальной работы интегрального стабилизатора напряжения, а также для получения заданного значения выходного напряжения к микросхеме подключают дополнительные дискретные элементы: резисторы и конденсаторы. Делитель напряжения, выполненный на резисторах R8, R9, является делителем обратной связи. Необходимую величину выходного напряжения устанавливают при помощи переменного резистора R8. При помощи резисторов R5, R6, R7 обеспечивается работа схемы защиты при заданных перегрузках по току. В данной схеме источник опорного напряжения и усилитель постоянного тока питаются от входного напряжения. При изменении входного напряжения Uвх ( например, увеличении ) в первый момент возрастает выходное напряжение Uвых. Это вызывает повышение напряжений на резисторах делителя R8, R9. Напряжение на нижнем плече делителя UR8,9 сравнивается с напряжением на резисторе R3, которое равно опорному напряжению Uon. Увеличение напряжения UR8,9 приводит к возрастанию токов базы и коллектора транзистора VT5. Ток стока МОП транзистора VT2 IC2 величина постоянная, равная сумме токов IK5+Iб7. При повышении тока IK5 ток базы транзистора Iб7 уменьшается, так как IC2=const. Уменьшение тока Iб7 приводит к уменьшению тока базы транзистора VT6 Iб6 и к увеличению напряжения коллектор – эмиттер. В результате напряжение Uвых уменьшается до своего первоначального значения с определенной степенью точности. При изменении тока нагрузки Iн ( например, понижении ) в первый момент уменьшаются падение напряжения на регулирующем транзисторе VT6 и падение напряжения на внутреннем сопротивлении источника, питающего стабилизатор. Увеличивается выходное напряжение Uвых , что приводит к возрастанию напряжения на нижнем плече делителя UR8,9. В дальнейшем схема работает так, как было показано выше. В стабилизаторе предусмотрена защита от перегрузок по току и от короткого замыкания. Эту функцию в интегральном стабилизаторе выполняет транзистор VT9, который работает совместно с дополнительными внешними резисторами R5, R6, R7.

Напряжение база-эмиттер транзистора VT9: Uбэ9=UR6-Uбэ6-UR5. При нормальной работе транзистора, когда ток нагрузки не превышает заданное максимальное значение, напряжение UR5 мало и напряжение UR6>(UR5+Uбэ6).

В этом случае на базу транзистора VT9 относительно его эмиттера подается отрицательное смещение и он заперт. При перегрузке по току или коротком замыкании на выходе схемы напряжение UR5 возрастает и становится больше напряжения (Uбэ6-UR6). Транзистор VT9 открывается, и на базу составного регулирующего транзистора (VT6, VT7 ) подается отрицательный потенциал с резистора R5. Регулирующий транзистор запирается и ограничивает величину тока нагрузки. При устранении перегрузки схема возвращается в исходное состояние. Изменяя величину сопротивления резистора R5, можно регулировать величину тока, при котором срабатывает защита.

В интегральном стабилизаторе предусмотрена возможность запирать составной регулирующий транзистор внешним сигналом. Если на базу транзистора VT8 интегральной схемы ( вывод 9) от внешнего источника подать положительный сигнал, то транзистор открывается. При этом на базу составного регулирующего транзистора VT6, VT7 подается отрицательный потенциал через открытый транзистор VT8. Составной транзистор запирается. Выходное напряжение стабилизатора падает до нуля.

Качество работы ИСН оценивается следующими параметрами. Нестабильность выходного напряжения при заданном изменении входного напряжения:

, [%/B]. (6.2)

Коэффициент стабилизации – отношение относительных нестабильностей входного и выходного напряжений:

. (6.3)

Нестабильность по току при заданном сбросе тока нагрузки:

, [%/A], (6.4)

где Iвыхном – номинальный ток нагрузки.

Внутреннее сопротивление:

, [Ом].(6.5)

Коэффициент сглаживания пульсации – отношение переменой составляющей входного напряжения к переменной составляющей выходного напряжения.

, [дБ]. (6.6)

Если Ксг не приведено, можно считать Ксг=20lg Кст.

Относительный температурный коэффициент нестабильности напряжения:

[%/oC] , (6.7)

где Uвых0 – значение Uвых при нормальной температуре, а Uвых1 и Uвых2 – при температурах t1 и t2 соответственно;

t1 и t2 – крайние значения температурного интервала (для большинства ИСН t2=125оС, t1=-60оС ).

Падение напряжения на ИСН – Uпд, В.

Ток, потребляемый ИСН – IП, мА.

Температурный коэффициент напряжения:

,[B/oC]. (6.8 )

Допустимая мощность, рассеиваемая в ИСН, определяется в основном потерями на регулирующем элементе Ррасс.. Для увеличения рассеиваемой мощности микросхему устанавливают на теплоотвод. В таблице П2.3 Приложения 2 приведены параметры интегральных микросхем стабилизаторов напряжения.

Построение и расчет стабилизатора напряжения следует начать с выбора микросхемы. Исходные данные, необходимые для расчета: номинальное значение выходного напряжения Uвых; пределы регулирования выходного напряжения Uвыхmin, Uвыхmax; максимальный и минимальный токи нагрузки Iнmax, Iнmin; нестабильность входного напряжения α; нестабильность выходного напряжения Ku=∆Uвых/Uвых или коэффициент пульсаций выходного напряжения Кп; коэффициент стабилизации напряжения KCT= α /Ku; внутреннее сопротивление стабилизатора Rвн; температурный коэффициент γ. Выбор ИМС производится по заданным Uвых, Iвыхmax, Кст (6.3), γ (6.8), Rвн (6.5). При этом следует отдавать предпочтение тем ИМС, которые работают с меньшим количеством внешних элементов. При этом должны быть выполнены условия : Uвых имс≥Uвых; Iвых max имс≥ Iн max; Кст имс>Кст. Независимо от типа выбранной микросхемы определяют минимальное, номинальное и максимальное напряжения на входе стабилизатора:

Uвх min=Uвых max+Uпд; ;Uвх max=Uвх (1+α (+)),

где α (+) , α (-) – наибольшие положительные и отрицательные относительные изменения входного напряжения соответственно.

Возможные пределы изменения КПД:

(предполагается, что ток, потребляемый стабилизатором, мал, т.е. Iвых≈ Iвх)

Элементы принципиальной схемы стабилизатора на ИМС К142ЕН1, К142ЕН2 (рис. 6.5) рассчитываются следующим образом: делитель выходного напряжения R4,R5 выбирается из условия, чтобы через него протекал ток Iд не менее 1,5 мА. Сопротивление резистора R5 определяется уровнем опорного напряжения и составляет обычно 1,2 кОм.

.

Емкость выходного конденсатора С2, повышающего устойчивость стабилизатора и снижающего уровень пульсации выходного напряжения, выбирается из условия С2≥2,2 мкФ. Для повышения устойчивости включается также конденсатор С1≈0,1 мкФ.

Ток через делитель R2,R3 выбирается равным Iд =0,3 мА, а R2=2 кОм. Напряжение Uбэ9 транзистора защиты составляет 0,7 В, поэтому сопротивление, кОм,

.

Рис. 6.5

Зависимость выходного напряжения стабилизатора от тока нагрузки при действии схемы защиты показана на рис. 6.6.

Рис. 6.6.

Напряжение на резисторе защиты R1 открывает транзистор защиты VT9 только при токе Iпор, при этом Iпор≤Iнmax, а сопротивление резистора R1=0,7/Iпор.

Включение последовательно в выходную цепь ИСН резистора R1 увеличивает его внутреннее сопротивление, поэтому R1 выбирают минимально возможным. Схема стабилизатора (рис. 6.7) может работать на повышенном токе нагрузки благодаря включению составного транзистора VT1,VT2.

Рис. 6.7

Расчет стабилизатора производится в следующем порядке. Ток через транзистор VT1

Ik1max=Iн max+Iп ,

где Iп  ток, потребляемый стабилизатором.

Максимальное напряжение на входе стабилизатора с учетом падения напряжения на внутреннем сопротивлении выпрямителя r0

Uвхmm=Uвхmax+(Iнmax-Iнmin)r0.

Величину r0 можно принять равной (0,050,1)Uвх/Iн.

Максимальное напряжение между коллектором и эмиттером транзистора VT1

Uкэ1max=Uвхmm-Uн.

Максимальная мощность, рассеиваемая на регулируемом транзисторе VT1

Pк1=(Uвхmax-Uн)Iк1max.

По данным Uкэ1max, Ik1max, Pk1 выбирают тип регулируемого транзистора.

При этом необходимо учесть, что расчетные величины должны быть меньше предельных величин, указанных в справочнике.

Максимальный ток базы транзистора VT1

Iб1max=Ik1max/h31max.

Если Iб1max меньше номинального тока нагрузки Iном ИМС, то транзистор VT2 вводить в схему не нужно. Вывод I3 ИМС следует соединить с базой VT1, а резистор R1 убрать. Транзистор VT1 является третьим в составном регулируемом транзисторе стабилизатора. Если Iб1max>Iном, включают еще один транзистор VT2, предварительно определив следующие параметры.

Ток через резисторы R2, R3

IR2,3=(1..1,5)Iko2max,

где Iko2max  наибольший обратный ток коллектора транзистора VT2. Если VT2 отсутствует, IR2,3=1мА.

Сопротивление резисторов R2, R3

(R2+R3)=Uн/IR2,3.

Максимальное значение тока эмиттера транзистора VT2

Iэ2 max=(Iб1 max + IR2,3)≈ Ik2 max.

Максимальное напряжение Uкэ2max транзистора VT2

Uкэ2max≈Uкэ1max.

Максимальная мощность, рассеиваемая транзистором VT2,

Рк2=Ik2max∙Uкэ2max.

По величинам Ik2max,Uкэmax, Рк2 выбирают транзистор VT2.

Сопротивление R1=Uн/1mA.

Наибольший ток базы транзистора VT2

Iб2=Ik2max/h31э2max.

Необходимо проверить соблюдение условия Iб2max≤Iвыхmaxимс.

Защита от перегрузки и короткого замыкания осуществляется напряжением, подаваемым с резистора R4 на базу транзистора защиты по току в ИМС.

Сопротивление резистора защиты:

R4=UR4/Iпор,

Отношение R2/R3 следует выбирать таким, чтобы при нормальном токе нагрузки напряжение между выводами 10 и11 ИМС, между базой и эмиттером транзистора защиты по току, было близким к нулю:

U10-11=UR4+Uбэ1-UR2≈0.

Из этого условия определяют сопротивление:

.

Мощность, рассеиваемая на резисторах:

PR=IR2R.

Интегральные стабилизаторы типов К142ЕН3, К142ЕН4 выполнены на кристалле размером 2,2Х2,2 мм. Принципиальная электрическая схема значительно усложнена по сравнению со схемой стабилизаторов К142ЕН1, К142ЕН2 за счет введения двухкаскадного дифференциального УПТ с токостабилизирующими двухполюсниками, что существенно повысило стабильность по напряжению, а наличие мощного регулирующего транзистора обеспечило ток нагрузки ИМС до 1А.

Рис. 6.8

Типовая схема включения стабилизаторов К142ЕН3, К142ЕН4 приведена на рис. 6.8. Назначение элементов: R1  ограничительный резистор выключения микросхем внешним сигналом; R2  ограничительный резистор для регулирования порога срабатывания тепловой защиты в диапазоне температур корпуса микросхемы Тк от +650 до +1450С; R3  резистор защиты от перегрузки по току или короткого замыкания; Ск  корректирующий конденсатор; совместно с выходным конденсатором Сн он обеспечивает устойчивую работу стабилизатора (обычно Ск=0,01 мкФ, Сн≈2,2 мкФ).

Резистор R2, кОм, выбирают из условия:

.

Сопротивление ограничительного резистора, кОм,

,

где Uy амплитуда управляющего импульса включения.

При управлении от микросхемы с ТТЛ- выходом Uy составляет около 5 В.

Сопротивление резистора защиты:

.

Ток, протекающий через выходной делитель R4, R5 Iд>1,5 мА.

Общее сопротивление делителя

.

Напряжение на резисторе R5 должно быть равно образцовому:

Uобр=2,5 В+10%. Тогда ;R4=R4,5-R5.

Фиксированное выходное напряжение можно получить в стабилизаторах на ИМС К142ЕН5, К142ЕН8, КР142ЕН8, К142ЕН9, КР142ЕН17, КР1157, КР1162 (рис. 6.1). Номер входного, выходного и общего выводов указан в таблице П2.3. В зависимости от того, включен ли регулирующий транзистор в плюсовой или минусовой провод, в таблице приводится соответствующее обозначение (+вход) или (- вход). Эти же ИМС, а также КР142ЕН12, КР142ЕН18 могут использоваться в схемах стабилизаторов с регулированием выходного напряжения (рис. 6.3).

Ток делителя R1, R2 Iд>3Iп.

R1=Uвых ном/Iд (6.9)

Используя формулу (6.1) и заменяя Iд из (6.9), получаем:

, (6.10)

Если в таблице П2.3 не указан Iп, Iд принимают равным 5 мА. Рассчитывая делитель в стабилизаторе на ИМС КР142ЕН12, КР142ЕН18, Uвыхном нужно заменить на Uвыхmin. Кроме того, для снижения уровня фона при выходном напряжении, близком к минимальному, рекомендуется в измерительный элемент стабилизатора на ИМС КР142ЕН12, КР142ЕН18 включать сглаживающий конденсатор С3=(2…10) мкФ. При Uвых >25 В, если возможно замыкание входной цепи стабилизатора, следует при наличии конденсатора С3 включить диод VD2 (КД521А), защищающий вход управления микросхемы.

Микросхемы 142ЕН10 и 142ЕН11 – четырехвыводные регулируемые стабилизаторы. ИМС 142ЕН10 включается по схеме рис. 6.2 , а для ИМС 142ЕН11 выводы 3 и 4 соединяются и схема включения преобразуется в рис. 6.3. Ток делителя R1, R2 Iд>3Iп.

, (6.11)

где Uос – напряжение обратной связи; в К142ЕН10 Uос≈2,3 В, а в К142ЕН11 Uос≈1,25 В. Сопротивления R1 и R2 находят из (6.11).

Микросхемы КР142ЕН14 – улучшенный аналог стабилизаторов К142ЕН1 и К142ЕН2. Типовая схема включения ИМС для выходного напряжения 2…7В показана на рис. 6.9, а для выходного напряжения 7…37 В – на рис. 6.10. Поскольку выводы 11 и 12 соединены, все узлы микросхемы питаются от общего источника нестабилизированного напряжения (совместное питание).

Рис. 6.9

Рис. 6.10

Выходное напряжение в схеме рис 6.9:

, (6.12)

а в схеме 6.10:

, (6.13)

В таблице 6.1 приведены расчетные значения сопротивления резисторов R1 и R2 для некоторых типовых значений выходного напряжения. Если необходимо плавно регулировать выходное напряжение, резистор R1 выбирают переменным.

Таблица 6.1.

Uвых

2,4

3

4

5

6

9

12

15

24

27

30

R1,кОм

4,75

4,12

3,12

2,15

1,15

1,87

4,87

7,87

16,19

19,8

22,9

R2,кОм

2,4

3,01

4,02

4,99

6,04

7,15

7,15

7,15

7,15

7,15

7,15

Если замыкание выходной цепи маловероятно, резистор системы защиты определяют по пороговому току нагрузки: R3=0,65/Iпор.

Резистор R4 служит для уменьшения температурного коэффициента выходного напряжения и подавления паразитной генерации.

.

Этот резистор может быть исключен из схемы (R4=0).

Если замыкания цепи нагрузки вероятны и их длительность может быть значительной, используют другую схему включения (рис.6.11).

Рис. 6.11

Резистор схемы защиты:

,

где Iз – остаточный выходной ток замыкания, Iпор– порог срабатывания системы защиты. Резисторы R1 и R2 образуют делитель напряжения измерительного элемента стабилизатора, а резисторы R4 и R 5 –базовый делитель напряжения транзистора системы защиты:

R4=(I3R3/0,65-1)R5 ;R5=(Uвых+0,65)/Iд,

где Iд – ток делителя R4, R5 (рекомендуется выбрать Iд ≈ 0,001А).

Стабилизатор может быть умощнен дополнительным транзистором (рис. 6.12). Сопротивление базового резистора:

R5=Uвых/0,001 (Ом).

Рис. 6.12

Если необходимо обеспечить минимальные потери напряжения на регулирующем транзисторе, можно применить схему, показанную на рис. 6.13.

Рис. 6.13

Сопротивление базового резистора R5 выбирают в пределах 100…200 Ом.

При работе стабилизаторов с умощняющими транзисторами (рис. 6.12, 6.13) необходимо выполнение условий:

IпорUвх≤Pрасс.max; (Iпор/h31э+Iп)Uвх≤ Pрасс.max ,

где h31Э – минимальное значение коэффициента передачи транзистора VT1.

Для стабилизаторов по рис. 6.12, 6.13 подойдут мощные транзисторы, рассчитанные на ток коллектора 5 А и более. При выборе транзисторов необходимо учитывать, что подойдут лишь те экземпляры, у которых h31>50…70.

Во всех схемах стабилизаторов на КР142ЕН14 С1>1 мкФ, С2≥100 пФ, С3>0,01 мкФ (конденсаторы С1и С3 устанавливают при необходимости).

studfiles.net

Мощный стабилизатор напряжения своими руками

Опубликовал admin | Дата 13 марта, 2013

Стабилизатор напряжения на ток 10А

     Здравствуйте уважаемые читатели. Давно хотел опробовать схему мощного, регулируемого стабилизатора напряжения, схема которого представлена в книге «Микросхемы для линейных источников питания и их применение» издательство Додэка 1998г. Схема изображена на рисунке 1.

Стабилизатор на 10А, shema

     На рисунке2 изображена схема, которую собрал я. В ней отсутствуют диод, резистор 2 и конденсатор 2. Резистор R2 необходим для замыкания токов утечки мощных транзисторов. Об установке дополнительных элементов можно подробно ознакомиться в вышеупомянутой книге. Вот небольшая выдержка из данной книги.

Стабилизатор напряжения на LM317, ris-3

Данные испытуемого стабилизатора

Напряжение на входе………………………. 22ВНапряжение на выходе……………………. 14,15ВТок ……………………………………………………... 0... 5АПровал напряжения на выходе………. 0,05В

Напряжение пульсаций не мерил, так как запитывал стабилизатор от БП постоянного тока.И так на вход подал 22В, резистором R5 установил напряжение на выходе 14В – точнее было 14,15. При увеличении тока нагрузки до 5А напряжение на выходе уменьшилось до 14,1В, что соответствует провалу напряжения в 50млВ, что довольно не плохо.

     При падении напряжения на самом стабилизаторе 10В и токе через мощные транзисторы 5А т.е. мощности, выделяемой на них в виде тепла в 50Вт, радиатор данных размеров нагревается до температуры 80 (на фото 1 правда 75 – потом температура поднялась) градусов.

Стабилизатор напряжения для дома, foto-1

     Для кремния это, «как с добрым утром». Но после прогонки стабилизатора при этой температуре в течении примерно часа, скоропостижно умер один из КТ829А (пробой к-э, но при снижении температуры все свойства транзистора восстанавливались, для меня это совсем не единичный случай в моей практике, именно поэтому я всегда испытываю свои поделки при повышенной и пониженной температуре, если предполагается, что они будут работать с возможным изменением климатики), пришлось заменить. Транзисторы у меня все б\у, выпаяны из старых телевизоров. Резисторы, стоящие в эмиттерах мощных транзисторов, больше нужны для контроля коллекторных токов данных транзисторов, чем для их выравнивания. У меня разброс этих токов от транзистора к транзистору изменялся в разы, что потребовало подбора транзисторов. Например ток одного транзистора был 1,64А, а другого – 0,63А. Так, что эти яко бы уравнивающие резисторы в эмиттерных цепях можно после подборки транзисторов спокойно убрать. Стабилизатор собран навесным способом прямо на радиаторе (см. фото 2). При монтаже стабилизатора надо соблюдать некоторые условия.

Регулируемый стабилизатор положительного напряжения, foto-21. Провод идущий от резистора R5 на землю, необходимо припаять непосредственно к выходной клемме блока.2. Конденсаторы С1 и С2 устанавливаются в непосредственной близости с микросхемой стабилизатора.3. Резистор R4 лучше всего припаивать непосредственно на соответствующие выводы микросхемы.4. С1 и С2 лучше танталовые.

     После сборки стабилизатора обязательно проверьте осциллографом выходное напряжение стабилизатора – возможно самовозбуждение оного. Если возникнет возбуд, то возможен сильный разогрев С1 и С2 вплоть до взрыва. При первом включении всегда быстренько пальчиками пощупайте электролиты на предмет повышения их температуры. Стабилизатор нормально работает при входном напряжении 34В, при этом выходное напряжение должно быть не более 24В (зависит от номинала резистора R5 и высчитывается с помощью формулы).Расчет сопротивления, formula-r51Ток может достигать 10А при условии использования двух вентиляторов для принудительного обдува. В общем я уже подумываю на базе этого стабилизатора сделать себе лабораторный БП, дополнив его системами защиты и индикации, ну и естественно вольтметром и амперметром. Успехов всем. До свидания К.В.Ю.

Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".

Просмотров:43 242

www.kondratev-v.ru

Компенсационные стабилизаторы напряжения и тока

Для стабилизации величин напряжений и токов применяют стабилизаторы. Они бывают компенсационными и параметрическими. В данной статье мы рассмотрим компенсационные стабилизаторы.

Компенсационный стабилизатор тока

Принципиальная схема простейшего компенсационного стабилизатора тока, которая очень распространена во всяких схемах, приведена ниже:

Схема компенсационного стабилизатора тока

От схемы параметрического стабилизатора ее отличает то, что стабилизирующим элементом тут является совокупность транзистора Т, резистора RЕ и  источника опорного напряжения Uоп .

Схема функционирует следующим образом: при подаче внешнего напряжения Uвх в цепи устанавливается заданный ток. На RЕ падает напряжение, которое вместе с Uоп обеспечивает между базой и эмиттером условия для этого тока. Когда же по каким либо причинам ток в нагрузке пытается измениться (например, увеличиться из-за увеличения питающего напряжения Uвх), то увеличивается и падение на RE. Увеличение этого падения, поданное на базу положительным знаком, приведет к уменьшению общего тока, который мог бы увеличиться. Иначе говоря, подача положительного напряжения на базу относительно эмиттера увеличивает сопротивление транзистора. И на этом падение будет увеличиваться (при практически не увеличенном токе), чем и будет компенсироваться прирост питающего напряжения.

Компенсационный стабилизатор напряжения

Наиболее распространенная, но и самая простая схема стабилизатора напряжения   приведена ниже:

Наиболее распространенная рабочая схема компенсационного стабилизатора

 Роль источника опорного напряжения в ней играет цепочка Rб -Cт, что представляет собой уже знакомый  нам параметрический стабилизатор напряжения с кремниевым стабилитроном Ст (одновременно на этой схеме показано условное обозначение кремневого стабилитрона). Напряжение Ucт изменяется мало. Ее выбирают несколько большей, чем Uн таким образом, чтобы обеспечить управляющее напряжение UБЕ=Uст — Uн

Напряжение Uн на нагрузке  равняется разнице Uвх— UБЕ. Если Uвх например, увеличивается должен увеличиться общий ток, который увеличит Uн . Однако наименьшее увеличение Uн уменьшит UБЕ, транзистор уменьшит свой ток, что и компенсирует возможное повышение Uн.

Разберем работу этой схемы подробнее. Для этого заменим транзистор его ранее рассмотренной эквивалентной схемой, положив в ней h22Б=0, а стабилитрон заменим его динамическим сопротивлением RД. Полученную таким образом схему:

Наиболее распространенная рабочая схема компенсационного стабилизатора1

Несколько упростим, отбросив резистор с проводимостью h32Б, который зашунтирован значительно меньшим сопротивлением Rб. Получим остаточную расчетную схему:

Расчетная схема компенсационного стабилизатора

По принципу суперпозиции отыщем только отношение ∆Uвх / ∆Uн , что входит множителем в выражение для коэффициента стабилизации.

По методу контурных токов имеем

Uвх + h22БRбIЕ =(Rб +RД)I1— RДIE

                              0= — RД I1 + (RД h21Б +Rн) IE,

Или

∆Uвх = (Rб + RД ) I1— (RД + h31БRб) IE

                            0= — RД I1 + (RД  + h21Б +Rн) IE,

Отсюда

Ток компенсационного стабилизатора

Помножив обе части уравнения на Rн и положив IЕRн=∆Uн имеем

1

Таким образом

Коэффициент стабилизации компенсационного стабилизатора

Как видим, коэффициент стабилизации тем больше, чем меньше Rл и чем больше Rб. Другие составляющие или же заданные (Rн), или принадлежат транзистору и воздействовать на них не возможно (h21Б, h31Б). Чтобы удовлетворить оба требования, необходимо просто подобрать кремневый стабилитрон с возможно меньшим значением Rд и с возможно меньшим значением его тока.

Ниже приведена более сложная схема:

Схема компенсационного стабилизатора тока 1

За основу тут принята предыдущая схема. Для увеличения Kст коллекторный ток транзистора Т1 проходит через резистор R, а падающее на нем напряжение управляет еще одним транзистором Т2, ток которого соединяется с током Т1. Для устранения возможных паразитических связей на выходе подключен конденсатор С относительно большой емкости.

Более сложные схемы стабилизаторов здесь не рассматриваются, однако все они построены по тому же принципу, который рассмотрен в этой статье.

elenergi.ru


Каталог товаров
    .