Категория материалы в категории На рисунке приведена схема ЦМУ с применением активных фильтров на транзисторах. С помощью таких фильтров можно достичь более качественного частотного разделения каналов и "мягкого" включения ламп. Кроме этого, снижается требуемый уровень входного сигнала. Налаживание приставки начинается с проверки питающих напряжений. Амплитуда сигнала на выходных обмотках трансформатора ТР1 должна быть около 2В. Затем настраивают фильтры каналов. Для этого лучше всего использовать генератор низкой частоты, который подключают ко входу схемы. Начинают с фильтра низких частот (верхний по схеме). Резистор R1 устанавливают в положение, соответствующее минимальному ослаблению сигнала, далее подстроечным резистором R8 регулируют полосу пропускания фильтра, чтобы обеспечивалось максимальное свечение лампы данного канала при подаче от генератора НЧ сигналов с частотами 100...800 Гц. Аналогично настраивают остальные фильтры (1000...6000 Гц, 6000...10000 Гц). При эксплуатации устройства для различных типов входных сигналов необходимо производить подстройку уровней сигнала в каналах резисторами Rl, R2. R3. Это позволяет компенсировать неравномерность частотной характеристики сигнала и обеспечить одинаковую яркость свечения ламп для всех каналов. Трансформатор ТР1 изготавливается на магнитопроводе Ш 10x10 из трансформаторной стали. Обмотка I содержит 200 витков провода ПЭЛ 0,2 , обмотка II — 400 витков ПЭЛ 0.2. Трансформаторные обмотки тщательно изолируются лакотканью. Вместо ТР1 можно применить оптрон. Вместо симисторов КУ208 можно использовать тиристоры КУ202. но при этом требуется выпрямительный мост в цепи питания ламп. Мощность ламп может быть доведена до 2 кВт на канал. В случае увеличения модности ламп на канал до 200 Вт и более, силовые элементы (тиристоры или симисторы) необходимо устанавливать на теплоотводящие радиаторы. radio-uchebnik.ru Данная схема цветомузыки представляет собой типичную аналоговую цветомузыкальную приставку, вроде тех что пользовались большой популярностью в 80-90-х годах, и на мой взгляд, незаслуженно забыты сегодня. Входной сигнал через раздельный трансформатор поступает на восемь активных фильтров, разделяющих сигнал на восемь частотных каналов. Наличие трансформатора обеспечивает гальваническую развязку приставки с работающей с ней аудиоаппаратурой. На выходах фильтров включены выпрямители, вырабатывающие постоянное напряжение, пропорциональное величине сигнала в полосе работы данного фильтра. Это напряжение поступает на затвор тиристора и достигнув необходимой величины открывает его. Теперь подробнее. Сигнал с выхода УНЧ поступает в схему цветомузыки через разделительный трансформатор Т1. В качестве данного трансформатора используется дроссель на Ш-образном сердечнике с двумя обмотками. Обмотки одинаковые, небольшого сопротивления (по 200-300 витков). Аналогичные дроссели используются во многих источниках питания бытовой теле, видео, аудиотехники, а так же компьютерной. Дроссель готовый, но при необходимости его можно намотать и самому. Так как обмотки Т1 низкоомные подключать вход СМУ нужно к выходу УМЗЧ, то есть, параллельно или вместо акустической системы, либо к телефонному выходу для подключения наушников (если при этом не происходит автоматического отключения основных акустических систем). Если же необходимо подавать сигнал исключительно с линейного выхода аппаратуры нужно сделать дополнительный УМЗЧ для работы с светомузыкальной приставкой, например, на основе популярной микросхемы К174УН14 или любой другой УМЗЧ. Без трансформатора подавать сигнал на вход схемы цветмузыки нельзя потому что лампами управляют тиристоры, и вся схема цветомузыки оказывается под потенциалом электросети, что может привести как поражению током через аудиоаппаратуру, так и к повреждению аудиоаппаратуры. Подстроечный резистор R1 служит для общей регулировки уровня сигнала. Плюс, перед каждым полосовым фильтром есть свой дополнительный регулятор (резисторы R2-R9), регулирующий уровень сигнала в своем частотном канале. С помощью этих резисторов можно корректировать чувствительность каналов в зависимости от желания, практически можно сказать что ими регулируется «цветовой тембр», если можно так выразиться. Все активные фильтры построены по одинаковым схемам полосовых фильтров. Они выделяют полосы с центральными частотами, подписанными на схеме. Средняя частота полосы каждого фильтра зависит от емкостей двух конденсаторов, которые должны быть одинаковыми. В остальном все номиналы деталей фильтров совпадают. Фильтры выполнены на операционных усилителях, а они, как известно, требуют двухполярного питания. К сожалению, в выбранной схеме источника питания организовать двухполярное питание хотя и возможно, но все же проблематично. Поэтому решено было питать ОУ от однополярного источника напряжением 12V, а для того чтобы обеспечить их нормальную работу подать на положительный вход половину напряжения питания, полученную с помощью делителя напряжения R40-R41. Таким образом, в схеме цветомузыки есть восемь операционных усилителей, а именно две микросхемы LM324, содержащих по четыре операционного усилителя. После ОУ сигналы выделенных полос поступают на диодные детекторы , каждый на двух диодах, включенных по схеме с удвоением напряжения. На выходных конденсаторах (С4, С8, С12, С15, С19, С23, С27, С31) этих детекторов выделяется постоянное напряжение, поступающее на управляющий электрод тиристоров. Изначально предполагалось параллельно каждому из этих конденсаторов включить по одному резистору сопротивлением 10-50 кОм, но при налаживании выяснилось что при использовании тиристоров MCR106-8 в этом нет никакой необходимости. И резисторы эти были убраны из схемы цветомузыки. Поэтому на схеме нет резисторов с позиционными обозначениями R13, R17, R20, R24, R28, R32, R35 и R39. Если же вы будете использовать другие тиристоры, которые возможно «не захотят» закрываться, эти резисторы придется вернуть на место (одни были подключены параллельно конденсаторам С4, С8, С12, С15, С19, С23, С27, С31), и подобрать экспериментально их сопротивления. При использовании тиристоров MCR106-8 максимальная мощность нагрузки каждого канала может достигать 900W. При мощности до 200W радиатор не требуется, а при более высокой мощности он нужен, так как тиристоры будут перегреваться. Выходные каскады можно сделать и по другим схемам, например, на оптосимисторах. В этом случае напряжения с конденсаторов С4, С8, С12, С15, С19, С23, С27, С31 нужно подавать на базы дополнительных транзисторных ключей, в коллекторных цепях которых будут включены светодиоды оптосимисторов (через необходимые токоограничительные резисторы). Кстати, если в этом случае питать «электронику» от источника напряжением 12V, выполненного на трансформаторе, то в этом случае, так же, нет никакой необходимости во входном трансформаторе, а сигнал можно будет подавать с линейного выхода аппаратуры непосредственно на R1. Источник питания ОУ выполнен по бестрансформаторной схеме на диодах VD17-VD18, конденсаторах С32 и СЗЗ, а так же стабилитроне VD19 (стабилитрон на напряжение 12V и мощность 1W). Все кроме тиристоров собрано на одной печатной плате из одностороннего фольгированного стеклотекстолита. На плате есть одна перемычка. На основе этой же схемы цветомузыки можно сделать цветомузыкальное устройство, работающее от 12-вольтового источника (например, автомобильной бортовой сети), а экран сделать из разноцветных сверхярких светодиодов. На следующем рисунке приводится четырехканальный вариант схемы цветомузыки. Конечно можно сделать и восемь каналов, но по цвету в свободной продаже есть только четыре типа светодиодов, — красные, желтые, зеленые и синие, так что имеет смысл ограничиться четырьмя каналами. Так как каналов меньше, соответственно изменены частоты и широты полос. Входной сигнал подается без разделительного трансформатора, так как схема цветомузыки низковольтная и может питаться от того источника, что и источник сигнала. Выходные каскады выполнены по схеме усиленных транзисторных ключей. В каждом канале работает по девять сверхярких светодиодов. В схеме цветомузыки можно использовать сверхяркие светодиоды любые, но на прямое напряжение не более 3,5V, при большем номинальном напряжении падения они могут не гореть при питании от источника 12V. Для каждого канала — отдельный цвет светодиодов. Если окажется что яркость свечения светодиодов разных цветов сильно различается, это можно компенсировать подбором сопротивлений резисторов R29-R40. radioelectronika.ru Структурная схема цветомузыкальной установки состоит и предусилителя, фильтров, блока инерции и силовых ключей. Далее по блокам схемы В схеме есть регуляторы уровня раздельные для каждого канала – переменные сопротивления R5, R9, R13, R21. С выхода предварительного усилителя на DА1 сигнал поступает на систему их четырех фильтров DА2-DА7. Активный фильтр DА2 выделяет полосу низкой частоты (ниже 100 Гц). Фильтр DА3 выделяет высокочастотную полосу (выше 3000 Гц). Частоты от 100Гц до 1000Гц выделяет фильтр на DА6 и DА7, а фильтры на DА4 и DА5 выделяют полосу частот 1000Гц до 3000Гц. ну и еще пару фоток ну и видео работы radiostend.ru Цветомузыкальная установка «DECOR» c фильтрами на LMC567CN В схеме четырёхканальной ЦМУ полосовые фильтры построены на тональных декодерах LMC567CN, поэтому частотные каналы имеют узкую полосу пропускания. Фоновый режим реализован на контроллере от китайской новогодней гирлянды. Элементы схемы размещены в корпусе от абонентского громкоговорителя «Россия», а в роли светового излучателя — миниатюрная декоративная люстра, поэтому ЦМУ получила название «DECOR». Связь с источником звука – акустическая посредством микрофона. На корпусе установлены регуляторы для оптимизации работы фильтров, кнопочные выключатели для изменения режимов работы и светодиодные индикаторы наличия управляющих сигналов. Принципиальная схема показана на рисунке: 1. Источник питания. Особенностей не имеет и выполнен на трансформаторе Т1, диодном мостике VD10 и стабилизаторе напряжения DA6. Конденсаторы С27 и С29 сглаживают пульсации. Для включения ЦМУ используют выключатель SA4, при этом напряжение ~220V поступает на симисторные усилители мощности, а напряжение питания +5V от стабилизатора на все узлы схемы. Предохранитель FU1 защищает схему от случайного замыкания в цепи ламп или трансформатора. 2. Микрофонный усилитель с глубокой АРУ. Выполнен на микромощном операционном усилителе DA1, ток потребления которого задаётся резистором R7. Делитель R3, R4 устанавливает половину напряжения на неинвертирующем входе IN1 (выв.3), а конденсатор С3 дополнительно устраняет пульсации или помехи. Резистор R6, включенный между выходом OUT (выв.6) и инвертирующим входом IN2 (выв.2) задаёт необходимый коэффициент усиления. Электретный микрофон BM1 получает питание через фильтр R1, С1. С выхода OUT DA1 усиленный сигнал через R8 и С5 поступает на активный детектор VT2, R9, С6, который управляет делителем R2, VT1. Конденсатор С6 периодически подзаряжается, увеличивая напряжение на затворе VT1. Это приводит к уменьшению сопротивления перехода сток-исток транзистора, а значит и выходного напряжения усилителя DA1. Инерционность системы АРУ определяется номиналами С6 и R9, а выходное напряжение усилителя регулировкой подстроечного резистора R10. Схема микрофонного усилителя заимствована из [л.1], неоднократно собиралась и показала хорошие результаты работы. 3. Частотные фильтры. С выхода OUT DA1 усиленный и ограниченный на уровне ~300…400mV звуковой сигнал через разделительные конденсаторы С7, С9, С17 и С19 поступает на частотные фильтры, выполненные на микросхемах DA2 – DA5. Микросхема тонального декодера LMC567CN [л.2] выполнена по CMOS-технологии и является функциональным аналогом биполярной микросхемы LM567CN, о которой подробно рассказано в [л.3,4]. Структура микросхемы показана на рисунке: Из структурной схемы видно, что сигналы от ГУН (VCO, Voltage-Controlled-Oscillator) поступают на амплитудный (AMPL DET.) и фазовый (PHASE DET.) детекторы через делители частоты на два. Поэтому, для правильного декодирования, ГУН должен быть настроен для работы с удвоенной частотой входного сигнала. Центральная частота ГУН задаётся резистором Rt (TIMING RESISTOR) и конденсатором Ct (TIMING CAPACITOR), которые подключаются к выводам 5 и 6. Центральную частоту Fosc в зависимости от Ct и Rt рассчитывают по формуле: Fosc = 1 / 1,4 * Rt * Ct Hz (1), тогда частота входного декодируемого сигнала Finput будет определяться из выражения: Finput = Fosc / 2 = 1 / 2,8 * Rt * Ct Hz (2) . Пример: рассчитаем центральную частоту ГУН для фильтра в канале низкой частоты (DA2, см. принципиальную схему) при максимальном и минимальном сопротивлении переменного резистора R12. В формулу (1) значение номинала Rt будем подставлять в килоомах, а Ct – в микрофарадах, поэтому результат получим в килогерцах. . Для R12 = 150К (движок R12 в нижнем по схеме положении): Fosc =1 / 1,4 * (R14 + R12) * С8 = 1 / 1,4 * (68К + 150К) * 0,033мкФ = 1 / 10,0716 = 0,0993кГц, Результат после округления: Fosc = 100Гц. Для R12 = 0 (движок R12 в верхнем по схеме положении): Fosc = 1 / 1,4 * R14 * С8 = 1 / 1,4 * 68К * 0,033мкФ = 1 / 3,1416 = 0,318кГц, Результат после округления: Fosc = 320Гц. Следовательно, частота декодируемого сигнала (Finput = Fosc/2) для фильтра НЧ регулируется в полосе 50Гц – 160Гц. Задав в выражениях (1) или (2) требуемую частоту в килогерцах при известном номинале Rt, можно найти ёмкость Ct или наоборот, имея в наличии известный Ct, можно вычислить необходимый для требуемой частоты номинал Rt: Ct = 1 / 1,4 * Fosc * Rt = 1 / 2,8 * Finput * Rt мкФ (3), Rt = 1 / 1,4 * Fosc * Ct = 1 / 2,8 * Finput * Ct КОм (4). Расчетный результат – это идеальный случай, фактически на результат влияют разбросы параметров устанавливаемых элементов или внешние факторы. В таблице показаны расчётные и измеренные результаты полученных частот Fosc для всех фильтров с номиналами элементов Rt и Ct, указанных на принципиальной схеме ЦМУ: Кроме того, на полосу пропускания декодера влияет ёмкость конденсатора С1, который подключается к выводу 1 (OUTPUT FILTER). Этот конденсатор вместе с внутренним сопротивлением Rвыв.1 = 40КОм формирует выходной фильтр. Чем больше ёмкость С1, тем более узкий диапазон частот лежит в полосе захвата декодера. При выборе ёмкости С1 надо учитывать скорость нарастания выходного напряжения амплитудного детектора и передачу пульсаций на выход компаратора. Говоря проще, при большой ёмкости С1 лампа в канале будет загораться «редко», т.е. только в случае, когда частота входного сигнала будет соответствовать выражению «Finput=Fosc/2». Лампа в канале будет загораться «часто», если конденсатор С1 имеет малую ёмкость, т.е. полоса пропускания будет широкой, и декодироваться будут также сигналы с близкими к «Fosc/2» частотами. Если С1 не устанавливать, то лампа в канале останется постоянно включенной. В схеме ЦМУ ёмкости конденсаторов С11, С14, С21 и С24 подобраны исходя из компромисса между динамичностью работы и разделением каналов. Оптимизация работы фильтров (и, следовательно, ламп в каналах) осуществляется переменными резисторами R12, R13, R18 и R19. Если движок этих резисторов перемещать вверх (по схеме), то центральная частота ГУН будет увеличиваться. Так как ёмкости конденсаторов С11, С14, С21 и С24 не изменяются, то одновременно будут сужаться полосы пропускания фильтров. Таким образом добиваются более чёткого разделения каналов. Резисторами R14, R15, R20 и R21 задано оптимальное разделение при среднем положении движков переменных резисторов. Вывод 2 (LOOP FILTER) является комбинированным – выходным для фазового детектора и входным для управления петлёй ФАПЧ (PLL). Конденсатор С2 вместе с внутренним сопротивлением Rвыв.2 = 80Ком образует циклический фильтр. Если входная частота лежит в полосе захвата петли ФАПЧ, то фазовый детектор вырабатывает сигнал, фильтруемый конденсатором С2 и поступающий в ГУН, из-за чего частота ГУН приводится в соответствие с выражением «Fosc=Finput*2» (обнаружение сигнала). Происходит режим захвата. Конденсатор С2 определяет пропускную способность во всём диапазоне обнаруженных частот (LDBW). При недостаточной ёмкости С2 режим захвата неустойчив, т.к. петля ФАПЧ имеет малое время захвата – выход декодера может переключаться из одного состояния в другое. Увеличение ёмкости С2 повышает помехоустойчивость за счёт более длительного времени захвата и сужения его полосы по сравнению с полосой, лежащей в диапазоне обнаружения. Декодеры в фильтрах ЦМУ работают в музыкальном или речевом диапазонах, напряжение которых имеет непредсказуемые частотные характеристики, поэтому конденсаторы С12, С15, С22 и С25 установлены одинаковой емкости — для повышения помехоустойчивости. Конденсатор С4 (см. структурную схему), подключаемый к выводу 4 (Vs) – блокировочный. Конденсатор на плате должен размещаться как можно ближе к выводу питания, и необходим на частотах выше F=50кГц. В данном случае декодеры работают с частотным диапазоном, имеющим верхнюю границу не более F=20кГц, поэтому конденсатором можно пренебречь. К выходам декодеров OUT (выв.8) подключены нагрузочные резисторы R16, R17, R22 и R23, которые вместе с конденсаторами, соответственно, С13, С16, С23 и С26 образуют интегрирующие цепочки. Их назначение – преобразовать импульсное напряжение на выходе декодеров в сигналы с низким логическим уровнем и длительностью, обеспечивающей включение ламп полным накалом. Внутренние N-канальные полевые транзисторы периодически разряжают конденсаторы, поэтому, пока на входах декодеров присутствуют сигналы, лежащие в полосе захвата, на выходах будут сигналы с низким уровнем напряжения. Эти сигналы поступают на четыре элемента «НЕ» DD1.1 – DD1.4, с выходов которых через развязывающие диоды VD6 – VD9 проинвертированные сигналы поступают на токовые ключи VT4 – VT7. Резисторы R27 – R30 задают низкий потенциал на затворах транзисторов при отсутствии сигналов и закрытых диодах. В стоковую цепь транзисторов через токоограничивающие резисторы R38 – R41 включены светодиоды симисторных оптронов VQ1 – VQ4. Оптроны, в свою очередь, управляют мощными симисторами VS1 – VS4 и обеспечивают гальваническую развязку от сети ~220V. Симисторы управляют включением ламп накаливания EL1 – EL4. Светодиоды HL1 – HL4 отображают наличие управляющего сигнала в каналах и имеют декоративное назначение. 4. Фоновый режим. В фоновый режим ЦМУ переключится автоматически при очень тихом звуке или его отсутствии. Режим представляет собой восемь световых эффектов, формируемых микросхемой DD2 «FLASHER CONTROL», размещённой на платке из текстолита и залитой компаундом. Внешний вид DD2 показан на фото, а подробности в [л.5]. Выходы инверторов DD1.1 – DD1.4 объединены через диоды VD2 – VD5 по схеме «ИЛИ». Сигналы складываются на резисторе R26, который устанавливает низкий уровень напряжения на входе элемента DD1.6 при закрытых диодах. При отсутствии звукового сигнала конденсаторы, подключенные к выводам 8 декодеров, заряжаются до напряжения питания. Когда напряжение достигнет порога переключения элементов DD1.1 – DD1.4, на выходах установится напряжение лог.0. Диоды VD2 – VD5 закроются. Низкий уровень с резистора R26 переключает элемент DD1.6 и на его выходе устанавливается напряжение лог.1. Это напряжение через резистор R24 заряжает конденсатор С28 до порога переключения элемента DD1.5. Постоянная времени при указанных на схеме номиналах R24, C28 составляет Т=0,8…1,2сек. и предназначена для задержки включения фонового режима при кратковременных перерывах между звуковыми фрагментами. После переключения элемента DD1.5 на его выходе появляется лог.0 и транзистор VT3 закрывается. С катода VD11 полуволны выпрямленного напряжения с периодом следования Т=0,02сек. через резистор R33 поступают на вход SYNC (выв.10) контроллера DD2. Резистор R25 обеспечивает низкий уровень напряжения в моменты перехода сетевого напряжения через ноль. На выходах OUT1 – OUT4 (выв.8–выв.5) формируются прямоугольные импульсы с изменяемой скважностью согласно текущей программе. Через развязывающие диоды VD13 – VD16 эти импульсы поступают на транзисторы VT4 – VT7. Резистор R32 определяет рабочий ток DD2: Iраб = Uпит/R32 = 5V/6800 Ом = 0,74mA. При появлении в помещении звука достаточной громкости на резисторе R26 сформируется напряжение с высоким логическим уровнем и элемент DD1.6 переключится — на его выходе появится лог.0, который через прямосмещённый диод VD1 быстро разрядит конденсатор С28. На выходе DD1.5 сформируется лог.1 и транзистор VT3 откроется. Своим переходом сток-исток он зашунтирует вход синхронизации. Работа DD2 заблокируется и на выходах OUT1 – OUT4 установится низкий уровень напряжения. Диоды VD13 – VD16 закроются, и схема световых эффектов не будет влиять на работу ЦМУ. 5. Назначение выключателей SA1, SA2, SA3 и кнопки SB1. Если замкнуть выключатель SA1, то конденсатор С6 быстро зарядится до напряжения питания, которое поступит на затвор транзистора VT1 и полностью его откроет. Сигнал с микрофона BM1 не поступит на DA1, поэтому фоновый режим выключаться не будет. Таким образом, выключатель SA1 предназначен для включения световых эффектов на постоянное время работы. Если замкнуть выключатель SA2, то на затвор транзистора VT3 перестанет поступать напряжение с выхода элемента DD1.5 и работа контроллера DD2 блокироваться не будет. В этом случае на затворы транзисторов VT4 – VT7 управляющие сигналы поступают как от декодеров, так и от контроллера. Таким образом, выключатель SA2 предназначен для микширования работы ЦМУ и световых эффектов. Если замкнуть выключатель SA3, то диоды VD11, VD12 вместе с диодами отрицательного плеча мостика VD10 образуют двухполупериодный выпрямитель. На вход синхронизации SYNC DD2 с катодов диодов VD11 и VD12 поступят полуволны выпрямленного напряжения с периодом следования Т=0,01сек. Это удвоит частоту работы контроллера. Таким образом, выключатель SA3 увеличивает в два раза частоту переключения ламп и скорость смены световых эффектов Кнопка SB1, подключенная к входу SEL (выв.2) контроллера, предназначена для выбора желаемого светового эффекта. 6. Детали и конструктив. Микрофон BM1 типа МКЭ-3 устанавливался в отечественных кассетных магнитофонах и обладает довольно широким частотным спектром F = 50…15000Гц. Допускается установка двухвыводных электретных микрофонов, при этом последовательно с плюсовым выводом необходимо установить дополнительный резистор, задающий рабочий ток и исключающий влияние конденсатора С1 на выходной сигнал. Операционный усилитель КР140УД1208 можно заменить на ОУ типа КР140УД1408. Транзисторы КП501А меняются на КП504А, КП505А или токовые ключи КР1014КТ1А(В), транзистор КТ3107А на КТ361Б. Диоды КД102 можно применить с любой буквой или заменить кремниевыми маломощными, например, типа КД103, КД521 или КД522. Выпрямительный мостик КЦ407А можно заменить любым с минимальным прямым током через диоды I=100mA или диодами в мостовом включении. Вместо микросхемы К561ЛН2 можно использовать любые микросхемы КМОП-структуры с функциями «НЕ», «И-НЕ», «ИЛИ-НЕ» с учётом числа логических элементов в одном корпусе. Оптроны АОУ163А и симисторы BT137-600 меняются на соответствующие импортные или отечественные аналоги. Вообще, узел управления лампами может быть реализован по любой известной схеме. Цоколёвка используемых элементов приведена на рисунке: Лампы EL1 – EL4 производства PHILIPS с цоколем Е14 и мощностью 40Вт. Лампы имеют цветную колбу, которая внутри с тыльной стороны покрыта зеркальным напылением. В качестве светоизлучателя приспособлена китайская декоративная потолочная люстра. На корпус (абонентский громкоговоритель «Россия») она крепится в перевёрнутом виде. Предварительно на корпусе устанавливается крепёжное соединение: Далее устанавливается люстра и фиксируется гайками-колпачками: На задней и боковой стенках корпуса расположены выключатель (кнопка с фиксацией) SA3, предохранитель FU1 и микрофон BM1: Провода от ламп, проходят через отверстия в текстолите, выполняющего роль крепёжной пластины. Переменные резисторы размещены на верхней половинке корпуса и соединяются с платой многожильным шлейфом: Общий вид на элементы, расположенные на плате: Фрагмент, показывающий установку микрофона BM1, выключателя SA3 и контроллера DD2: Вид на трансформатор Т1, на плату с оптронами VQ1 – VQ4 и симисторами VS1 – VS4: Сборка ЦМУ «DECOR» завершена: Список литературы: 1. «Радиолюбителям. Полезные схемы» И.П. Шелестов, книга 4, изд. «СОЛОН-Р», Москва, 2001; 2. «LMC567 Low Power Tone Decoder» National Semiconductor, даташит, June 1999; 3. «РАДИО» журнал, «СДУ на тональных декодерах» статья в №11, 2011; 4. «LM567/LM567C Tone Decoder» National Semiconductor, даташит February 2003; Автор — Александр Борисов. не в сети 1 день lightportal.infoРадиосхемы Схемы электрические принципиальные. Фильтры для цветомузыки схемы
Цветомузыка с активными транзисторными фильтрами
Самодельные цветомузыкальные устройства
Схема. Цветомузыка. Приставка. - Сайт радиолюбителей и радиомастеров. Схемы и сервис мануалы.
ЦМУ 4-х канальная — Radiostend
Вложения
comments powered by HyperComments
Цветомузыкальная установка «DECOR» c фильтрами на LMC567CN — LightPortal
Автор публикации
Radan
0 Комментарии: 886Публикации: 168Регистрация: 30-11--0001
Поделиться с друзьями: