интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Реле времени с задержкой после снятия питания. Схемы реле времени с задержкой на включение


включение в систему и выбор

Реле задержки времени предназначено для регулировки последовательности работы определённых элементов электрической схемы. В основном такие устройства используются в приборах, где требуется автоматическое выполнение определённого действия через установленный промежуток времени.

Общая информация об устройстве

Реле – это устройство, которое работает по принципу аккумулятора. По продолжительности рабочего механизма могут быть суточные, недельные, часовые. Устанавливают эти приборы там, где нужен контроль цепей, которые обладают небольшими мощностями. При этом происходит полная изоляция между контрольным и управляемыми проводниками. Реле направлено контролировать одновременно несколько схем, при помощи одного сигнала.

Изначально, реле применялись в междугородных телефонных цепях. Они выполняли функцию усилителя: дублировали сигнал от одного контура к другому и передавали его цепной реакцией. Реле работало в первых компьютерах, выполняло простые команды в логических цепях.

Для чего в реле используется электромагнитное поле? Оно является амортизатором, который замедляет или полностью обесточивает движение, при резком попадании катушки в среду напряжения. Именно это свойство даёт возможность реле задерживать время: замедляется время подключения якоря к катушке напряжения.

Несколько вариантов таких устройств

  • Электронные. Они используются чаще других видов. Устройства могут контролировать процессы с выдержкой времени в доли секунд, при продолжительности бесперебойной работы на несколько тысяч часов. Основными преимуществами являются небольшие габариты, минимальное потребление электроэнергии, наличие разнообразных функциональных программ;
  • С электромагнитным замедлением. Особенностью таких устройств является наличие постоянного тока для работы. Принцип работы заключается в задержке срабатывания устройства, при нарастании основного магнитного тока. Для этого в дополнительной обмотке создаётся дополнительный поток, который препятствует увеличению основного. Такие устройства способны выдерживать включения от 0,07 до 0,11 с, отключения от 0,5 до 1,4 с;
  • Реле с пневматическим замедлением. Оно способно обеспечить выдержку от 0,4 до 180 с. В самом устройстве установлен специальный механизм – пневматический демпфер. Для регулировки времени необходимо изменить сечение отверстия для забора воздуха. В основном используется такой вид реле на промышленных станках, транспортёрах, где необходим последовательный контроль. В них предусмотрено наличие большого числа контактов, которые могут преобразовываться из нормально-разомкнутого состояния в нормально-закрытое. В таких реле легко заменяются катушки, это даёт возможность разместить на одном приборе компактно сразу несколько реле;
  • С часовым или анкерным механизмом. Работа устройства обеспечивается благодаря установленной пружине, которая заводится под электромагнит. Когда на шкале выставляется определённое время, срабатывают контакты, и анкерный механизм начинает свою работу;
  • Моторные реле. Устройство может работать от 10 секунд до нескольких часов. В комплектацию таких устройств, входят: синхронные двигатели, редуктор, электромагнит для сцепления и расцепления двигателя с редуктором и контактами.
  • Контакторное программированное реле. Такой вид используется для коммуникации электрических двигателей и осветительных нагрузок. Для таких реле контакты изготавливаются из сплава серебра. Основной недостаток такого типа – высокий шум при работе. Такие реле используются в приборах для освещения, электродвигателях, отопительных устройствах, конденсаторных батареях тепловых испарителях, вентиляторах, аквариумах, холодильниках и инкубаторах.

Использование реле времени даёт возможность экономить на потреблении электроэнергии, так как свет будет включаться и выключаться автоматически, через установленный промежуток времени.

Как работает реле задержки времени

Благодаря тому, что электрический ток при помощи проводников создаёт магнитное поле, текущее состояние реле реагирует индукторами на все изменения. Местонахождения магнитного поля будет зависеть от формы проводника. Если он сделан под прямым углом, то и поле будет располагаться так же, если в форме катушки, то магнитное поле будет располагаться вдоль всей её длины. Сила магнитного поля напрямую зависит от напряжения тока.

Реле стали популярными, потому что доказали всю эффективность при использовании. Они могут контролировать большие и маленькие напряжения. Катушка реле способна пропускать через себя доли ватт, в то время как контакты проводят сотни ватт энергии нагрузки.

Принцип действия реле напоминает бинарный усилитель включения и выключения. Как показывает практика, одна катушка реле может приводить в действие несколько контактов одного прибора. Это могут быть контакты любой комбинации. Устройство работает с контактами любого вида: ртутными, металлическими, магнитными тростниками.

Из чего состоит реле задержки?

Если устройство представляет собой простое двухканальное электромагнитное реле, то в него входят:

  • проволочная катушка, которая обёрнута вокруг железного мягкого сердечника;
  • якорь из железа, который предназначен для обеспечения низкого сопротивления для магнитного потока;
  • подвижная железная стрелка;
  • один или несколько контактов.

Якорь крепится с помощью шарниров с ярмом и механически связывается и одним или несколькими наборами контактов. Сам якорь удерживает пружина. Она установлена таким образом, чтобы во время отсутствия тока, в магнитной цепи образовывался воздушный зазор. В таком режиме устройства, один из контактов находится в закрытом положении, другой – в открытом. Некоторые из видов устройств имеют большее количество контактов, все зависит от предусмотренных функций.

При поступлении электрического тока, происходит генерация магнитного поля, что позволяет активизировать арматуру с последующим перемещением подвижного контакта. Это позволяет делать разрыва или соединения с неподвижными контактами. При открытых контактах происходит соединение и смыкание контактов, при выключении действия противоположные. При выключенном токе якорь занимает своё первоначальное положение и возвращается под действие силы, которая в несколько раз меньше магнитной, поэтому его положение нормально-расслабленное. Чаще всего эту силу обеспечивает пружина, гравитация применяется только в промышленных установках.

Когда происходит подача тока на катушку, диод проходит через неё и рассеивает энергию из распадающегося магнитного поля при дезактивации. Если этот процесс не запустится, то компоненты схемы получат энергетический всплеск, что повлечёт их выход из строя.

Реле задержки своими руками

Для создания реле с задержкой выключения в 220 В не нужно особых электромеханических знаний, достаточно будет владеть базовыми познаниями в физике и электромеханике. Существует определённое руководство, которое поможет собрать реле самостоятельно.

  1. Для начала необходимо взять гвоздь сотку, и вбить его в деревянную поверхность, таким образом, чтобы половина гвоздя оставалась над поверхностью.
  2. Далее, нужно создать электромагнит. Для этого берётся медная проволока и наматывается вокруг гвоздя, постепенно, виток за витком, снизу вверх. Крепление конца проволоки делается на шапке гвоздя. Для удобства регулировки величины магнитного поля рекомендуется оставлять по несколько сантиметров на каждом конце проволоки.
  3. Следующим этапом станет крепление к доске железной полоски. Её нужно согнуть таким образом, чтобы один из концов был выше верхней части гвоздя.
  4. Один из проводов электромагнита необходимо присоединить к положительной клемме батареи. Другой конец крепится к отрицательной. Таки образом произойдёт соприкосновение гвоздя и железной полоски.
  5. Теперь можно переходить к подключению устройства к питанию. Для этого нужно один из зажимов зафиксировать на нижней части гвоздя, другой на железной полоске. Далее, включается электромагнит, и затем, напряжение.
  6. Такое реле идеально подойдёт для контроля осветительных приборов, отключения или включения небольших устройств. Если присоединить к устройству тиристоры и усовершенствовать таймер, то оно прослужить значительно дольше.
  7. Когда произойдёт включение таймера, то можно задавать определённое время от нескольких секунд до пары часов.

Для реле времени оптимальным считается использование схем на транзисторе. Такие реле отлично подходят для контроля работы дворников на машине, включения и выключения света на улице, работы стиральной машины. Задержка включения реле 220В — отличный вариант, сочетающий в себе бытовые удобства и великолепную экономию.

Оцените статью: Поделитесь с друзьями!

elektro.guru

Реле времени с задержкой выключения 220в: назначение, виды, схемы подключения

Как в быту, так и на производстве существует потребность в отключении потребителей электроэнергии через заданный промежуток времени. Чтобы разорвать электрическую цепь, нужен либо контакт, либо управляемый полупроводниковый прибор. А для формирования заданного отрезка времени потребуется либо секундомер, либо таймер. Все зависит от того, в каком направлении ведется временной отсчет.

Секундомер прибавляет секунды, а таймер отнимает. Разница только в этом. Но интервал времени, если он задан, одинаков для обоих. А контакт или полупроводниковый прибор для коммутации является частью реле – электромеханического или полупроводникового. Если совместить реле с таймером или секундомером, получим реле времени (РВ). Далее об этом устройстве более подробно.

Назначение РВ

Разновидностей РВ существует очень много. Можно использовать один и тот же таймер или секундомер для большого числа коммутаторов различной мощности. И наоборот. Одна и та же система коммутации может быть совмещена с широким спектром моделей таймеров и секундомеров. И то и другое можно увидеть на рынке сегодня. Многие модели реле времени весьма схожи не только внешне, но и по техническому описанию.

Если у читателя возникнет интерес к тому, чтобы наглядно ознакомиться с работой РВ, далеко ходить не надо. Все стиральные машинках, выпускаемые с 60-х годов ХХ века, снабжены реле времени с механическим таймером. Поворотом специального переключателя в этих машинках задавался определенный интервал, и механизм, аналогичный часовому, начинал тикать, отсчитывая секунды. А поворотный переключатель, подобно часовой стрелке, двигался обратно к исходному положению.

В современных электробытовых приборах, которые применяются для приготовления пищи, реле времени также является центральным элементом автоматизации. Это сразу заметно по табло или поворотному переключателю, как в стиральной машине. В целом существует несколько вариантов принципиального построения реле времени. Все они используют те или иные известные науке принципы формирования временного интервала. Рассмотрим некоторые из них.

Базовые варианты

  • Электронный цифровой. РВ этой системы наиболее современные и точные. В них работает генератор, частота которого стабилизирована специальным приспособлением. Наиболее широко применяется для этого кристалл кварца. Скорее всего, читателю уже встречалось название «кварцевый генератор». Он выдает напряжение с постоянной частотой и нечувствителен к изменениям температуры окружающей среды. Вырабатываемый генератором сигнал используется для формирования стабильных импульсов. Они подсчитываются специальными микросхемами. На основании этого формируется сигнал, управляющий коммутатором РВ. Таким способом можно наиболее точно сформировать временной интервал любой длительности.
Электронная модель РВ Электронная модель РВ
  • Электронный аналоговый. Основан на так называемой постоянной времени RC-цепи. Она определяется тем, что для полного заряда (разряда) конденсатора через резистор требуется тем больше времени, чем больше сопротивление резистора. На этом принципе можно создавать достаточно точные и простые по конструкции РВ. Временные интервалы у них получатся в пределах единиц секунд.
  • Электромагнитный, или индукционный. Это два определения одного и того же принципа работы. Он основан на том, что электромагнитное поле не может появляться и исчезать мгновенно. В зависимости от величины индуктивности элемента и специальной конструкции сердечников получается переходный процесс длительностью от сотых долей до нескольких секунд. Проверенная временем система, используемая до сих пор в специальных РВ.
Электромагнитное РВ Электромагнитное РВ
  • Пневматический механизм. Его давно применяют в промышленном оборудовании. Он хорошо решает задачу синхронной работы большого числа исполнительных элементов. Система легко и наглядно настраивается изменением диаметра отверстия для движения воздуха. Чем больше его размеры, тем быстрее поток воздуха заполнит рабочий объем (например, цилиндр с поршнем) этого пневматического механизма и, соответственно, тем меньше интервал времени срабатывания такого РВ. И наоборот. Временной интервал у таких реле – в пределах единиц минут.
Пневматическое РВ Пневматическое РВ
  • Часовой механизм. Его еще называют анкерным. Это самый распространенный из всех вариантов формирователей временного интервала. Он основан на деформации пружины. Ее напрягают при запуске механизма, и упругая сила возврата в исходное состояние, замедленная шестернями и маховиками, обеспечивает тот или иной временной интервал. В конце концов сила пружины перемещает исполнительный контакт, который либо непосредственно разрывает электрическую цепь, либо управляет реле. По работе стиральной машины можно судить, какое время можно задать для такого РВ.
Анкерное РВ Анкерное РВ
  • Электромеханическая конструкция. Работает на основе многополюсного синхронного двигателя. Скорость вращения этого двигателя зависит только от частоты питающего напряжения. Если оно обеспечивается промышленной сетью 220 В, частота получается весьма стабильной. Залогом этой стабильности является масса роторов генераторов на электростанциях. Можно сформировать временной интервал продолжительностью в несколько часов. Имеют промышленное применение в основном в схемах релейной защиты. Можно задать любой временной интервал при отсутствии сбоев в электроснабжении.
Электромеханическое РВ Электромеханическое РВ

Пара схем для умельцев

Если потребуется своими руками сделать реле времени с задержкой выключения 220 В, лучше всего остановиться на техническом решении с использованием электромеханического реле. Это классическое реле обеспечивает гальваническую развязку контактов. А испортить его в ходе, так сказать, опытно-конструкторских работ будет сложнее в сравнении с другими моделями. С гальванической развязкой контактов существуют и другие конструктивные разновидности реле – герконы и оптоэлектронные приборы.

Характеристики герконов Характеристики герконов

Но чтобы надежно отключать токи нагрузки при напряжении сети 220 В реле лучше не использовать. Хотя бы потому, что механические контакты искрят и по этой причине изнашиваются. Поэтому по мере увеличения напряжения и силы тока, которые надо отключать, размеры контактов и самих реле существенно увеличиваются. Симметричный тиристор справится с этой задачей намного лучше. А электромеханическое реле, геркон или оптоэлектронную полупроводниковую сборку целесообразнее использовать для управления симистором.

Реле времени, вероятнее всего, будет использоваться для управления освещением. Это непродолжительный интервал времени. Поэтому для его формирования не имеет смысла применять сложную схему. Для управления любой лампой, применяемой для освещения в домашних условиях, вполне достаточен широко используемый симистор КУ208Г. Идея конструкции такого реле времени с выдержкой выключения 220 В состоит в том, чтобы заменить им выключатель освещения.

Это может пригодиться, например, для того, чтобы включив освещение в коридоре перед входом в подъезд или квартиру, достать ключи и открыть входную дверь. И не думать после этого о том, что свет необходимо выключить. Если использовать наружный выключатель частного дома или подъезда многоквартирного, в сырую погоду это может быть небезопасно. Да и подрастающее поколение может пошалить, постоянно включая свет ради забавы. Или уходя из гаража и закрывая его в темное время суток, лучше выходить на освещенное пространство перед ним, а не в темноту. С наружным выключателем та же ситуация.

Идея схемы основана на создании зарядного тока конденсатора, который одновременно управляет симистором. Пока конденсатор заряжается, симистор открыт и ток через нагрузку (лампу) течет. После того как сила зарядного тока уменьшится и выйдет за пределы порога удержания включенного состояния симистора, этот полупроводниковый ключ разорвет цепь с нагрузкой, и лампа погаснет. Включение схемы осуществляется кнопкой, которая разряжает конденсатор и одновременно включает симистор.

Схема реле времени с задержкой выключения 220 В для двух ламп Схема реле времени с задержкой выключения 220 В для двух ламп

Величина R1 не должна быть менее 500 Ом

В этой схеме используются две одинаковые лампы 127 В и два одинаковых выпрямительных диода с номинальным током 250 мА. Мощность лампы можно выбирать в пределах 25–500 Вт. Две лампы создают условия для того, чтобы управляющий ток одного знака был одинаков при каждом полупериоде. При этом симистор будет работать симметрично на положительной и отрицательной полуволнах. Но можно использовать и одну лампу 220 В в этой схеме.

Схема реле времени с задержкой выключения 220 В для одной лампы Схема реле времени с задержкой выключения 220 В для одной лампы

Величина R1 не должна быть менее 2 кОм

Однако с ней симистор не будет одинаково пропускать обе полуволны тока, и лампа не выдаст номинальный световой поток. Для полноценной работы одной лампы нужна иная схема (см. далее). Для S1 рекомендуем применить кнопку от входного звонка. C1 и R1 по мере увеличения своих номиналов продлевают свечение ламп.

Похожие статьи:

domelectrik.ru

Работа реле времени с задержкой включения

В условиях ускоренного темпа современной жизни, огромным спросом пользуются приборы, способные точно отмерять определенные промежутки времени. Среди них, очень популярны реле времени с задержкой включения, позволяющие не думать о своевременном выполнении каких-либо действий.

Использование реле времени

Каждое реле времени, по своей сути, является устройством, с помощью которого создаются определенные задержки во времени, когда необходимо включить или выключить какой-нибудь процесс в строго определенный момент.

Чаще всего, используются приборы, обеспечивающие временную задержку перед процессом включения. Широкое распространение они получили в области большой автоматики, например, в управлении лифтов, насосов, при слежении за определенными параметрами.

Реле с задержкой выполняют защитные функции при отклонении от нормы какого-либо параметра. В обычных ситуациях, действие защиты происходит мгновенно. При выходе параметра или значения за пределы, производится защитное отключение устройства.

Например, в электротехнике, таким образом обеспечивается безопасность при повышенном напряжении. Кроме того, задержка во времени нужна для проведения правильных аварийных отключений. Очень часто, какие-либо отклонения от нормы, не требуют немедленного отключения. В таких случаях, датчики контроля за параметрами соединяются с реле времени, благодаря чему обеспечивается необходимая задержка.

Самые точные – электронные реле

Наибольшее распространение во многих областях техники получили электронные реле. С помощью этих приборов обеспечивается выдержка, начиная от долей секунды и заканчивая большими сроками от месяца до нескольких лет.  

Такие реле времени с задержкой включения часто используют кварцевую стабилизацию частот. Кроме того, имеется возможность синхронизировать время, в соответствии с внешними эталонными часами с помощью интернета и радиоканалов.

Данный вид реле одновременно исполняет роль микроконтроллера, благодаря различным видам входов и выходов. С их помощью производится обратная связь, мероприятия по программированию, чтобы обеспечить необходимый рабочий алгоритм.

Современные приборы обладают малыми габаритами, низким энергопотреблением и повышенной автономностью. У них имеется память, не зависимая от энергии, а также внутренние источники питания в виде батарей. Выбирая реле времени, очень многие отдают предпочтение именно электронным моделям.

Разработка и чертеж печатной платы

electric-220.ru

cxema.org - Реле времени 220 В с задержкой выключения

Реле времени 220 В с задержкой выключения

Привет друзья!

Сегодня мы с вами детально рассмотрим схему и конструкцию достаточно полезного устройства – реле времени с задержкой выключения нагрузки. Разумеется, устройство можно использовать и для включения нагрузки и для переключения между двумя разными нагрузками. Рабочее напряжение нагрузки может составлять до 220В, максимальный коммутируемый ток – до 5 А. Путем несложных вычислений получаем, что мощность нагрузки может составлять до 1100 Вт.

 

Схема устройства и принцип ее работ

Прежде всего изучим схему реле задержки времени. Важный момент: разработчиком схемы я не являюсь и на авторские права не претендую.

Представленная схема работает следующим образом. При нажатии на тактовую кнопку SW1 осуществляется зарядка конденсатора С1, открывается транзистор VT1 (транзистор VT2 и транзистор VT3 находятся в закрытом состоянии). Поскольку контакты реле (Х3 и Х4) разомкнуты, нагрузка отключена. В процессе разряда конденсатора С1 транзистор VT1 закрывается. В то же время открываются транзисторы VT2 и VT3, и через катушку реле начинает протекать ток, что приводит к замыканию контактов реле (Х3 и Х4) и включению нагрузки.

Можно догадаться, что основным времязадающим элементом является конденсатор С1. Именно от него напрямую зависит максимальное время задержки включения/выключения. Также время срабатывания реле зависит от сопротивления переменного резистора R1. Соответственно для изменения времени задержки достаточно изменить номиналы резистора R1 и конденсатора С1.

Схема питается от источника постоянного тока напряжением 12 В. Потребление тока не превышает 100 мА.

Что касается деталей. Все транзисторы, использованные в схеме, однотипные – BC547. Данные транзисторы могут быть заменены транзисторами с аналогичными параметрами. Например, вместо ВС547 можно вполне успешно применить транзисторы серии КТ3102 с любыми буквенными индексами.

Электромеханическое реле – BS115C с напряжением срабатывания 9В. В принципе, реле может быть любым малогабаритным с напряжением срабатывания от 9 до 12В, например, это может быть реле JQC-3F-1C-9VDC.

Печатная плата реле времени

Устройство собирается на печатной плате из фольгированного стеклотекстолита, размерами 41×35 мм. Для удобства монтажа рекомендую нанести на плату «схему» расположения элементов. Нанесение рисунка расположения элементов может осуществляться все тем же лазерно-утюжным методом.

 

Рисунок печатной платы и расположение элементов

Вот так печатная плата получилась у меня:

Конструкция реле задержки выключения

Устройство может быть собрано в абсолютно любом корпусе подходящих размеров. Не забывайте, что помимо самого реле в корпусе должен уместиться еще и блок питания. В моем случае использован пластиковый корпус для сборки блока питания. Думаю, что аналогичный корпус можно без проблем приобрести практически в любом радиомагазине.

Как можно заметить и плата с реле и блок питания умещаются в таком корпусе просто замечательно. Кстати, в качестве блока питания можно взять зарядное от сотового телефона. Для того, чтобы повысить выходное напряжение такой зарядки, достаточно заменить в ней стабилитрон на большее напряжение. О том, как правильно это сделать, можно найти в Ютубе.

Для максимального удобства пользования реле мной была сделана лицевая панель с надписями и пометками времени срабатывания. Сделать такую панель очень просто - понадобятся лишь навыки работы с графическим редактором и немного терпения.

Вот, собственно, и все. Напоследок для полноты материала предлагаю вам посмотреть видеоролик о данном реле времени и об его сборке. Смотрим:

Автор статьи и видео Антон Писарев

 

  • < Назад
  • Вперёд >

vip-cxema.org

Реле времени с задержкой после снятия питания

Модульное реле времени - это электронный прибор осуществляющий отсчет установленного времени. Конструктивно выполнено в модульном корпусе с креплением на дин-рейку. Основные применяемые функции это задержка включения и выключения, циклическая функция с регулировкой импульса и паузы).

Рассмотрим модели с отсчетом времени после снятия напряжения питания:

Из импортных моделей это: CRM-82TO (ELCO, Чехия)

D6A 3MIN 24-240VAC/DC и D6A 10MIN 24-240VAC/DC (TELE, Австрия) - две модели серии DELTA снимаются с производства, позволяют выставлять задержку в диапазонах 0,1с - 3мин (4 диапазона) и 0,1с - 10мин (4 диапазона) соответсвенно.

В место модели D6A, производитель выпускает модели серии VEO, теперь это многофункциональные реле (cхемы идентичны, расширен диапазон временных задержек, отличие в расположении контактных групп, теперь клеммы питания реле находятся сверху, а контактные группы снизу.)

V2ZA10 3MIN 24-240V AC/DC и V2ZA10 10MIN 24-240V AC/DC, а так же модификации этих реле с литером P, что означает пружинные клеммы.

Так же производитель выпускает промышленные реле GAMMA с функцией задержки выключения по снятию питания, что не является бюджетным решением, это модель G2ZA20 10MIN c оперативным питанием 24-240V AC/DC, или модель с возможностью применения модулья питания серии TR (AC) или импульсного источника питания SNT(DC).

Отечественными производителями на рынке модульной релейной техники представлены модели РВО-26 предназначенное для формирования задержки на отключение встроенного электромагнитного реле через заданное время (от 0,1 сек. до 9,9 мин.) после снятия напряжения питания. (его старший брат, устаревшая модель РВО-П2-26 с декадным переключателем задержки времени.)

модификация: 

Реле времени в классическом корпусе ВЛ-55E1 (аналог ВЛ-55)  отсчет времени начинается с момента снятия питающего напряжения. Реле выполнено в 2-х модификациях: тип 1 - временной диапазон 1...63с и тип 2 - временной диапазон 7,5с...8 минут. Питание реле в отличие от предшественника ВЛ-55 - универсальное (24...220В постоянного или переменного тока), 2 переключающих контакта.

В реле времени модульное ВЛ-55М1 c универсальным питанием (24-220В переменного и постоянного тока) отсчет времени начинается с момента снятия питающего напряжения. Реле выполнено в 3-х модификациях временных диапазонов: 0,1...1с, 1...10с и 3...30с. На данный момент самое бюджетное реле.

ВЛ-155М1 - (Новинка), реле в модульном корпусе,  с диапазоном 0,1...1с, мин и 1...10с, мин.

РВО-26М ACDC24-240B (Новинка) с выдержкой времени после отключения напряжения питания: 0,1-9,9с; 1-99с; 0,1-9,9мин; 1мин-99мин, реле многофункциональное (4 функции).

Реле украинского завода Релсic (г.Киев), 

Так же существуют реле с пневматическими приставками, типа РВП-72 с началом отсчета выдержки времени после снятия напряжения питания на электромагнитный привод.

РВП-72 3122 - с одной пневматической приставкой с началом отсчета выдержки времени после снятия напряжения питания на электромагнитный привод.

РВП-72 3222 - с одной пневматической приставкой с началом отсчета выдержки времени после снятия напряжения питания на электромагнитный привод и дополнительными контактами (1 замыкающий и 1 размыкающий), срабатывающими без выдержки времени.

РВП-72 3323 - с двумя пневматическими приставками, с началом отсчета выдержки времени после подачи и снятия напряжения питания с электромагнитного привода.

Разработка сайтов Интернет - каталог интернет сайтов

 

vserele.ru

Схемы реле времени и задержки выключения нагрузки

Принципиальные схемы реле задержки времени, автоматических включателей и выключателей нагрузки 220В с заданным интервалом времени. Схемы просты в сборке и построены на основе микросхемы LM555.

Реле времени для автоматического отключения нагрузки

Иногда бывает необходимо выключить приемник или лампу подсветки через определенный интервал времени. Эту задачу может решить схема, приведенная на рис. 1.

Рис. 1. Схема таймера для автоматического отключения нагрузки.

Рис. 1. Схема таймера для автоматического отключения нагрузки.

При указанных на схеме номиналах времязадающих элементов задержка отключения составит около 40 минут (для микромощных таймеров это время может быть значительно увеличено, так как они позволяют R2 установить с большим номиналом).

В ждущем режиме устройство не потребляет энергии, так как при этом транзисторы VT1 и VT2 заперты. Включение производится кнопкой SB1 — при ее нажатии открывается транзистор VT2 и подает питание на микросхему. На выходе 3 таймера при этом появляется напряжение, которое открывает транзисторный ключ VT1 и подает напряжение в нагрузку, например на лампу BL1.

Кнопка блокируется, и схема будет находиться в таком состоянии, пока заряжается конденсатор С2, после чего отключит нагрузку. Резистор R3 ограничивает ток разряда емкости времязадающего конденсатора, что повышает надежность работы устройства. Для получения больших интервалов задержки конденсатор С2 необходимо применять с малым током утечки, например танталовый из серии К52-18.

Таймер с увеличенным временным интервалом

Схема устройства аналогичного назначения показана на рис. 2. Она позволяет дискретно изменять время задержки отключения нагрузки от 5 до 30 мин (с шагом 5 мин) при помощи переключателя SA1. Благодаря использованию микромощного таймера, обладающего большим входным сопротивлением, имеется возможность использовать времязадающие резисторы значительно больших номиналов (от 8,2 до 49,2 МОм), что позволяет увеличить и временной интервал: Т= 1,1 * С2 * (R1 + … + Rn).

Рис. 2. Схема таймера с увеличенным временным интервалом для отключения нагрузки.

Рис. 2. Схема таймера с увеличенным временным интервалом для отключения нагрузки.

Схемы реле времени на симисторах

Схемы, позволяющие непосредственно (без реле) управлять отключением сетевой нагрузки, приведены на рис. 3 и 4. В них в качестве коммутатора использован симистор. По сравнению с оригиналом, в приведенных здесь вариантах некоторые номиналы изменены для работы устройств от сетевого напряжения 220 В.

В схеме на рис. 3 включение нагрузки происходит сразу при замыкании контактов SA1, а выключение с задержкой, определяемой номиналами R2-C2 (для указанных на схеме она составляет 11 секунд). Цепь R1-C1 обеспечивает запуск одновибратора при включении.

Рис. 3. Бестрансформаторная схема управления сетевой нагрузкой.

Рис. 3. Бестрансформаторная схема управления сетевой нагрузкой.

Рис. 4. Вариант схемы для автоматического отключения сетевой нагрузки.

Рис. 4. Вариант схемы для автоматического отключения сетевой нагрузки.

Во второй схеме (рис. 4) включение нагрузки будет при первоначальном подключении к сети или при нажатии на кнопку SB1. Для питания микросхемы использовано реактивное сопротивление, которым является конденсатор С1 (он не греется, что лучше по сравнению с гасящим напряжение активным сопротивлением, как это сделано в предыдущей схеме).

Стабилитрон VD1 обеспечивает стабильное напряжение питания микросхемы, а диод VD3 позволяет уменьшить время готовности схемы для частого нажатия на кнопку. Время задержки выключения может регулироваться резистором R3 от 0 до 8,5 мин. Времязадающий конденсатор СЗ обязательно должен иметь маленькую утечку.

Дополнительные вопросы:

Вопрос:

По схеме на рис. 3 есть вопрос. Как будет обеспечена задержка выключения если ключ размыкания отсоединит симистор от сети при его выключении?

Ответ:

Если ключ SA1 будет разомкнут то питание на нагрузку и схему задержки не поступит. При замыкании переключателя SA1 на нагрузку сразу же подается питание, поскольку LM555 сразу же откроет симистор, также через резистор R2 начнет заряжаться конденсатор C2, когда его заряд достигнет определенного уровня — LM555 закроет симистор и нагрузка обесточится, а на схеме по прежнему будет присутствовать напряжение пока не выключить переключатель SA1. После его выключения пройдет некоторое время, C2 разрядится и можно снова включать схему.

Вопрос:

Ребята, а 3-я схема точно работает, кто-нибудь собирал? Собрал, но не работает. Проверил напряжение на стабилитроне ~3 Вольта получается, как только отключаю от микросхемы управляющий вывод тиристора, напряжение становится как положено 15 Вольт.

Все детали использовал как на схеме, кроме диода VD2, вместо него поставил FR207

И еще, 2-х ватное сопротивление R3 явно маловато, греется очень сильно.

Ответ:

Микросхема LM555 включена верно, все должно работать.Отключить тиристор от R4 (схема Рис. 3) и добиться работы схемы реле времени на LM555, на выход можно подключить светодиод через резистор 600-800 Ом. В вашем случае вполне может быть что LM555 подпалена.

Замена для диода КД247Ж (1кВ, 1А) подобрана вполне нормальная — FR207 (1кВ, 2А), можно и FR107(1кВ, 1А).

Чтобы при отладке схемы не иметь постоянно дело с сетью 220В можно отключить стабилитрон и подав с блока питания на выводы 8 и 4 микросхемы напряжение 14-15В произвести наладку схемы.

После отладки подключить стабилитрон и проверить работу подключив к сети 220В. Потом установить резистор R4 — 1кОм и попробовать подключить симистор.

Литература: Радиолюбителям: полезные схемы, Книга 5. Шелестов И.П.

    Таймеры и реле времени

  • Простое реле времени с выдержкой времени один час и более
  • Таймер для заваривания чая
  • Таймер с 24 часовым циклом
  • Реле времени на мыгающем светодиоде
  • Управляемое реле времени (КР1006ВИ1, 561ИЕ16)
  • Схема таймера на микросхеме 176ЛЕ10
  • Таймер КР1006ВИ1 в управлении освещением
  • Сетевое реле времени (КР1182ПМ1)
  • Реле времени на базе генератора с регулируемой скважностью импульсов
  • Таймер из электронных часов ЦАТ-01
  • Схемы реле времени и задержки выключения нагрузки
  • Схема реле времени для мощной сетевой нагрузки
  • Схема таймера для аквариума с узлом кратковременной звуковой сигнализации
  • Электронные часы с жидкокристаллическим индикатором (ЖКИ)
  • Временной компаратор
  • Полупроводниковый выключатель с задержкой
  • Таймер для управления устройствами
  • Схема десятиминутной задержки
  • Десятичасовой таймер на полевом транзисторе
  • Таймер-выключатель для радио
  • Десятиминутный таймер со световой индикацией
  • Предварительно устанавливаемый аналоговый таймер
  • Таймер для варки яиц с мигающим светодиодом
  • Выключатель транзисторного радиоприемника
  • Схема 1,5-минутной задержки
  • Схема 10-секундной задержки с напряжением питания 1,5 В
  • Каскадный таймер на NE555
  • Схема устройства отключения питания
  • Схема таймера со сбросом на CA555
  • Таймер с минимальным током потребления
  • Последовательный таймер на трех микросхемах 555
  • Стабильный таймер на 4 транзисторах
  • Схема последовательного таймера на микросхеме 556
  • Длительная задержка отключения для двигателя
  • Простой таймер на 10 сек на транзисторах
  • Таймер с задержкой на 10 часов (4 транзистора)
  • Каскадный таймер с автоматическим перезапуском на NE555
  • Схема задержки с мощным транзистором LM195
  • Преобразователь время-напряжение
  • Высокоточный 1-секундный таймер
  • Схема 30-секундной задержки после запуска на микросхеме 9602
  • Таймера для сохранения энергии источника питания
  • Схема последовательного таймера на 4 часа
  • Схема таймера с задержкой в 1 год
  • Таймер с задержкой от миллисекунды до 1 часа (3140, 555)
  • Таймер с выбором режима работы на один час
  • Схема таймера для радиопередатчика
  • Звуковой сигнализатор с оповещением через 90 сек для АМ-трансиверов
  • Схема последовательного таймера на микросхеме XR-2242
  • Регистратор событий на основе таймера
  • Таймер с интервалом в 10 минут с цифро-знаковым индикатором
  • Простой таймер для включения и выключения нагрузки на NE555
  • Схема таймера с задержкой от микросекунды до часа
  • Схема таймера с задержкой от 0 до 5 минут
  • Схема таймера от 0 до 10 минут с точностью 1 сек
  • Реле с большой временной задержкой, использующий малую емкость конденсатора
  • Счетчик для определения продолжительности выполнения программы
  • Бюджетный одночасовой таймер на микросхеме NE555
  • Таймер с десятью фиксированными интервалами
  • Схема реле времени с задержкой от 2 до 5 минут
  • Последовательный таймер для тестирования внешних устройств (NE555)
  • Таймер с задержкой 10 минут на основе SN74121
  • Схема таймера с индикацией от 1 до 10 секунд или от 1 до 10 мин
  • Схема простого таймера на транзисторе и тиристоре
  • Таймер на четыре часа управляющий симистором на микросхеме CA3094A
  • Реле времени с задержкой от 3 минут до 4 часов
  • Моностабильный таймер 555 с длительной задержкой
  • Реле времени на полевом транзисторе U199
  • Реле времени с задержкой более 1 минуты
  • Дистанционное цифровое программирование таймера
  • Схема таймера на транзисторной сборке СА3096АЕ с задержкой 1 минута
  • Схема XR-2556 сдвоенного таймера с независимыми задержками
  • Схема последовательного трехступенчатого таймера на SN52555
  • Схемы автоматических выключателей телевизоров
  • Реле времени с выдержкой до 30 минут
  • Реле времени для фотопечати
  • Цифровое реле времени с высокой стабильностью
  • Электронные часы с бестрансформаторным питанием от сети
  • Приставка — секундомер к микрокалькулятору
  • Схема автоматического запуска для магнитофона
  • Простой таймер со звуковой сигнализацией
  • Таймер для ограничения времени работы устройств (CD4060B)
  • Схема таймера для фотоэкспозиции (CD4060B, CD4040)
  • Схема простого реле времени на двух транзисторах КТ3102
  • Универсальный циклический таймер на микросхемах CD4521
  • Схема таймера для управления вентилятором (К561ТЛ1, КТ815)
  • Реле времени для включения нагрузки с питанием от 220В (CD4060, CD4011)
  • Часы на люминесцентных индикаторах ИВ-11 (К176ИЕ18, К176ИЕ13)
  • Цифровые часы на микросхемах HCF4521, HCF4026BEY

Интересные схемы:

radioslon.chernykh.net

устройство, виды, схема для выполнения своими руками

Наиболее простым и несложным прибором, позволяющим автоматизировать различные действия, является реле времени с задержкой выключения на 220 В. Изменение рекламы на вывесках, контроль поливочных систем, включение приборов в определённое время, подача электричества, воды — всё это и многое другое возможно осуществить, используя такое несложное устройство. Современные реле несложны в настройках режимов работы и позволяют их выполнить даже людям, не разбирающимся в технике.

Назначение, виды и принцип работы

Реле времени — это прибор, предназначенный для автоматизации действий в зависимости от установленного интервала времени. Другими словами, устройство позволяет отсрочить запуск процесса на какой-то промежуток времени. Конструктивно прибор состоит из следующих частей:

  • управляющая;
  • выдерживающая;
  • исполнительная.

Управляющая часть обеспечит запуск при появлении разрешающего сигнала, поступающего на элементы схемы. Выдерживающая часть переводит прибор в режим паузы, а исполнительная уже непосредственно коммутирует подключённую к выходу нагрузку.

Простое реле времени с задержкой включения 220 В предназначено для управления отсрочкой по времени, например, отключение света через пять минут после его включения. Наиболее распространёнными типами реле являются: электромеханическое, электромагнитное, программируемое.

В простых случаях применяют первые два вида реле, использующие одну настройку. Программируемый тип обладает расширенными возможностями. Основная его способность заключается в возможности создания цикличности действия и гибкости настройки. Благодаря чему такое реле является универсальным для любой сферы применения и настраивается с высокой точностью. Оно может управляться дистанционно, комплектоваться удобной системой индикации, а также использоваться в схемах вместо импульсного реле.

По способу расположения разделяются на отдельностоящие, встраиваемые и модульные. Отдельностоящие — это независимые устройства, выполняемые в отдельном корпусе с выносным устройством питания. Например, реле времени для фотопечати. Встраиваемые устройства представляю собой плату и механизм без корпуса. Они составляют единое целое с другими сложными приборами, например, таймер-программатор в микроволновой печи или накладной выключатель с выдержкой времени. Модульные приборы выпускаются с креплениями, выполненными под din-рейку, и предназначены они для расположения в щитовых шкафах.

Электромагнитный тип устройства

Используется в линии постоянного тока. Преимущество электромагнитных реле заключается в низкой цене, а недостаток — в ограниченном ресурсе работы. Основными частями, из которых состоит устройство, являются:

  • катушка;
  • магнитопровод;
  • якорь;
  • траверс;
  • пружина.

Между якорем и сердечником располагается стойкая к намагничиванию прокладка. Основное её назначение защита якоря от контакта с сердечником. Движение якоря в катушке создаётся магнитным полем в результате прохождения электрического тока по её виткам. Если прокладки не будет, то пружина не преодолеет действия остаточной намагниченности и подвижные контакты на траверсе не разомкнутся. Толщина прокладки влияет на время задержки срабатывания.

Регулировка задержки времени происходит выставлением величины натяжения пружины. Для этого в конструкции предусмотрен регулировочный винт. Выдержка времени осуществляется закорачиванием или отключением катушки реле.

При закорачивании катушки магнитное поле исчезает или достигает малой величины. После отключения подачи питания из-за замыкания катушки в контуре образуется самоиндукция, поддерживающая некоторое время значение тока. Магнитное поле, а значит и сила, удерживающая якорь, начинает постепенно уменьшаться.

Для того чтобы величина магнитного поля при отключении катушки медленно уменьшалась, применяются так называемые демпферы, образующие вторичный контур. Материалом для их изготовления служит медь или алюминий. При исчезновении магнитного поля в демпфере индуктируется ток, чем меньше его масса, тем и время выдержки меньше. Используя разные съёмные демпферы, изменяют и время задержки.

Реле с пневматической и анкерной задержкой

Главной частью этого типа является электромагнит. Он применяется как постоянного, так и переменного тока. В качестве устройства задержки используется пневмонический демпфер или часовой. Достоинство такого метода работы устройства его независимость от формы запитывающего сигнала и температуры окружающей среды. Основной элемент анкерной конструкции пружина, степенью сжатия которой управляет электромагнит. Пневматические реле разрешают регулировать время в пределах от 0,4 до двух минут с точностью десять процентов. Для анкерных устройств время паузы составляет от 7 до 20 секунд с той же точностью.

Кроме электромагнита, пневматическое реле содержит:

  • пневматический замедлитель;
  • колодку;
  • резиновую диафрагму;
  • иглу регулировки.

Электромагнит, срабатывая, опускает колодку под давлением пружины. Скорость опускания зависит от диаметра отверстия, через него воздух поступает в верхнюю часть. Изменяя скорость подачи воздуха и регулируя размер отверстия, изменяют и время задержки.

Приборы моторного типа

Устройства позволяют коммутировать мощную нагрузку. Точность работы составляет пять процентов, при этом они могут совершить более 1 тыс. циклов срабатывания. Время задержки достигает 30 минут. В конструкции применяется электродвигатель с регулируемыми оборотами. При подаче питания на двигатель происходит его запуск, через муфту вращение передаётся на диски с кулачками. Последние и воздействуют на выходные клеммы.

В зависимости от расположения кулачков происходит замыкание или размыкание контактов. Время задержки определяется начальным положением дисков. Как только питание пропадает, диски под действием возвратной пружины возвращаются в исходное состояние. Время возврата не превышает секунду.

Электронная задержка времени

Цифровые приборы наиболее функциональные и распространённые типы реле. Их достоинство в обработке сигналов цифровым способом, что позволяет получить высокую степень точности. Выпускаются такие реле времени с задержкой выключения на 12 В, 24 В, 220 В и других величин. Работа устройства не зависит от изменения величины и частоты входного сигнала. Этот типа прибора наиболее безопасен в эксплуатации, так как имеет гальваническую развязку с цепью питания.

Принцип работы основан на использовании переходных процессов в резистивно-ёмкостных и индуктивных цепях. Для формирования задержки применяются специализированные микросхемы, позволяющие программировать таймеры. Программирование таймера сводится к установке времени. Оно может быть аналоговым либо цифровым.

Управляя величиной напряжения на конденсаторе, формируется интервал времени. Он равен его значению от момента подачи сигнала на цепочку, до достижения требуемого уровня напряжения на конденсаторе. Разряд конденсатора происходит по экспоненциальной функции. Для увеличения времени задержки используется автоколебательная схема, а степень точности достигается добавлением в схему кварца. Устройство с небольшими задержками времени выполняется на основе одного цикла заряд-разряд, а с более длинными из нескольких.

Для получения напряжения требуемого для различных частей схемы, на её входе располагается преобразователь. Кроме этого, он формирует уровень опорного напряжения. Таким образом, в цифровых реле задержка времени задаётся зарядно-разрядной цепочкой и компаратором. Подсчёт числа импульсов генератора и изменение величины времени, осуществляется с помощью счётчика. Получая импульсы от генератора, счётчик проводит их подсчёт. Дешифратор анализирует состояние счётчика и формирует сигнал, пересылаемый в исполнительный блок.

Основные характеристики устройства

В специализированных торговых точках встречаются устройства задержки с различными характеристиками, выпускающиеся разными производителями. Качество продукции от именитых производителей подтверждается сертификатами и гарантируемым ими сроком работы. Из популярных компаний выделяются: Hager, Аско, Eaton, ABB, Schneider, Новатек. Независимо от типа и модели, реле времени характеризуются следующими параметрами:

  • Напряжение питания. Значение уровня сигнала необходимого для работы прибора, единица измерения вольт.
  • Максимальный ток. Величина тока, которую может пропустить через себя устройство без повреждения узлов своей схемы, измеряется в амперах.
  • Диапазон времени. Время срабатывания.
  • Расчётное напряжение. Значение величины коммутируемого сигнала и его форма.
  • Рабочая температура. Среднее значение составляет от -20 до 50 °C.
  • Функциональность. Выпускаются одноканальные устройства и многоканальные с независимым управлением.
  • Наибольшее сечение кабеля возможное для коммутации.
  • Степень защиты. Должно соответствовать значению не ниже IP 24.
  • Способ регулировки. Цифровой или аналоговый.
  • Дополнительные возможности. Устройства с реле времени могут включать в себя различные датчики. Например, при использовании датчика движения прибор среагирует на попадание объекта в его поле действия. При этом каждое движение поддерживает это освещение. Как только движение прекращает регистрироваться, свет через некоторое время выключится.
  • Способ монтажа. Могут располагаться в щитке, устанавливаться в розетку или монтироваться вместо обычного выключателя.

Для цифровых устройств выделяют ещё и период программирования. Например, электронное реле времени на 220 В программируется на неделю или сутки, что позволяет установить оптимальные настройки работы.

Подключение прибора обычно не вызывает проблем. Устройство включается в разрыв линии подходящей к нагрузке. С каждым реле временем должна идти инструкция от производителя с подробной схемой подключения и её описанием. При этом она может быть изображена и на самом корпусе прибора.

Самостоятельное изготовление

При желании можно сделать таймер включения и выключения электроприборов своими руками. Перед тем как приступить к исполнению, нужно определиться с задачами, найти схему устройства и требуемые радиодетали. Схемы существуют разной степени сложности.

Схема реле на транзисторе

Простая схема реле задержки выключения 12 В собирается на одном транзисторе, и не содержит дефицитных деталей. Эта очень простая к повторению схема. После сборки не требует настройки. Такое устройство будет работать не хуже приобретённого в магазине.

В качестве VT1 используется любой транзистор n-p-n проводимости. При подаче питания конденсатор заряжаться. При достижении на нём пороговой величины напряжения, транзистор открывается и срабатывает реле K1. Изменяя значение С1 и R2, регулируется время включения. Задержка включения в таком исполнении достигает 10 секунд. Для того чтобы при снятии питания реле оставалось замкнутым некоторое время, параллельно питанию схемы устанавливается конденсатор большой ёмкости.

Управление задержкой на микросхеме

Простая схема управления светом, вентилятором, или другой нагрузкой может быть собрана на NE555. Специализированная микросхема NE555 есть не что иное, как таймер. Выходной ток устройства 200 мА, ток потребления 203 мА. Погрешность таймера не превышает один процент и не зависит от изменения сигнала в сети 220 вольт.

Схема работает от источника постоянного напряжения. Уровень сигнала питания схемы выбирается в диапазоне от 9 до 14 Вольт. Цепочка, состоящая из резисторов R2, R4 и конденсатора C1 задаёт время задержки. Рассчитать это время можно воспользовавшись формулой t = 1.1*R2*R4*C1. После нажатия кнопки SB1 происходит замыкание контактов K1.1. Через время t они разомкнутся. Для того чтобы таймер начинал отсчёт времени не от момента нажатия на кнопку, а в момент отпускания, понадобится использовать кнопку с нормально замкнутыми контактами.

Время подстройки легко регулировать с помощью переменного резистора R2. Такую схему удобно собрать на плате, выполненной из текстолита или гетинакса. После правильной сборки и при исправных радиодеталях схема работает сразу.

Оцените статью: Поделитесь с друзьями!

elektro.guru


Каталог товаров
    .