интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Схема инверторного сварочного аппарата — схемы оборудования для инверторной сварки. Схемы инверторных сварочных аппаратов


Инверторный сварочный аппарат из старого телевизора

Многим в хозяйстве пригодился бы аппарат для электросварки деталей из черных металлов. Поскольку серийно выпускаемые сварочные аппараты довольно дороги, многие радиолюбители пытаются сделать сварочный инвертор своими руками.

У нас уже была статья о том, как изготовить сварочный полуавтомат, однако на этот раз я предлагаю еще более простой вариант самодельного сварочного инвертора из доступных деталей своими руками.

Из двух основных вариантов конструкции аппарата - со сварочным трансформатором или на основе конвертора - был выбран второй.

Действительно, сварочный трансформатор - это значительный по сечению и тяжелый магнитопровод и много медного провода для обмоток, что для многих малодоступно. Электронные же компоненты для конвертора при их правильном выборе не дефицитны и относительно дешевы.

Как я делал сварочный аппарат своими руками

С самого начала работы я поставил себе задачу создания максимально простого и дешевого сварочного аппарата с использованием в нем широко распространенных деталей и узлов.

В результате довольно длительных экспериментов с различными видами конвертора на транзисторах и тринисторах была составлена схема, показанная на рис. 1.

Простые транзисторные конверторы оказались чрезвычайно капризными и ненадежными, а тринисторные без повреждения выдерживают замыкание выхода до момента срабатывания предохранителя. Кроме того, тринисторы нагреваются значительно меньше транзисторов.

Как легко видеть, схемное решение не отличается оригинальностью - это обычный однотактный конвертор, его достоинство - в простоте конструкции и отсутствии дефицитных комплектующих, в аппарате использовано много радиодеталей от старых телевизоров.

И, наконец, он практически не требует налаживания.

Схема инверторного сварочного аппарата представлена ниже:

Сварочный аппарат обладает следующими основными характеристиками:
Пределы регулирования сварочного тока, А 40...130
Максимальное напряжение на электроде на холостом ходу, В 90
Максимальный потребляемый от сети ток, А 20
Напряжение в питающей сети переменного тока частотой 50 Гц, В 220
Максимальный диаметр сварочного электрода, мм 3
Продолжительность нагрузки (ПН), %, при температуре воздуха 25°С и выходном токе100A130A

6040

Габариты аппарата, мм 350х180х105
Масса аппарата без подводящих кабелей и электрододержателя, кг 5,5

Род сварочного тока - постоянный, регулирование - плавное. На мой взгляд, это наиболее простой сварочный инвертор, который можно собрать своими руками.

При сварке встык стальных листов толщиной 3 мм электродом диаметром 3 мм установившийся ток, потребляемый аппаратом от сети, не превышает 10 А. Сварочное напряжение включают кнопкой, расположенной на электрододержателе, что позволяет, с одной стороны, использовать повышенное напряжение зажигания дуги и повысить электробезопасность, с другой, поскольку при отпускании электрододержателя напряжение на электроде автоматически отключается. Повышенное напряжение облегчает зажигание дуги и обеспечивает устойчивость ее горения.

Маленькая хитрость: собранная своими руками схема сварочного инвертора позволяет соединять делати из тонкой жести. Для этого нужно поменять полярность сварочного тока.

Сетевое напряжение выпрямляет диодный мост VD1-VD4. Выпрямленный ток, протекая через лампу HL1, начинает заряжать конденсатор С5. Лампа служит ограничителем зарядного тока и индикатором этого процесса.

Сварку следует начинать только после того, как лампа HL1 погаснет. Одновременно через дроссель L1 заряжаются конденсаторы батареи С6-С17. Свечение светодиода HL2 показывает, что аппарат включен в сеть. Тринистор VS1 пока закрыт.

При нажатии на кнопку SB1 запускается импульсный генератор на частоту 25 кГц, собранный на однопереходном транзисторе VT1. Импульсы генератора открывают тринистор VS2, который, в свою очередь, открывает соединенные параллельно тринисторы VS3-VS7. Конденсаторы С6-С17 разряжаются через дроссель L2 и первичную обмотку трансформатора Т1. Цепь дроссель L2 - первичная обмотка трансформатора Т1 - конденсаторы С6-С17 представляет собой колебательный контур.

Когда направление тока в контуре меняется на противоположное, ток начинает протекать через диоды VD8, VD9, а тринисторы VS3-VS7 закрываются до следующего импульса генератора на транзисторе VT1.

Далее процесс повторяется.

Импульсы, возникающие на обмотке III трансформатора Т1, открывают тринистор VS1. который напрямую соединяет сетевой выпрямитель на диодах VD1 - VD4 с тринисторным преобразователем.

Светодиод HL3 служит для индикации процесса генерации импульсного напряжения. Диоды VD11-VD34 выпрямляют сварочное напряжение, а конденсаторы С19 - С24 - его сглаживают, облегчая тем самым зажигание сварочной дуги.

Выключателем SA1 служит пакетный или иной переключатель на ток не менее 16 А. Секция SA1.3 замыкает конденсатор С5 на резистор R6 при выключении и быстро разряжает этот конденсатор, что позволяет, не опасаясь поражения током, проводить осмотр и ремонт аппарата.

Вентилятор ВН-2 (с электродвигателем М1 по схеме) обеспечивает принудительное охлаждение узлов устройства. Менее мощные вентиляторы использовать не рекомендуется, или их придется устанавливать несколько. Конденсатор С1 - любой, предназначенный для работы при переменном напряжении 220 В.

Выпрямительные диоды VD1-VD4 должны быть рассчитаны на ток не менее 16 А и обратное напряжение не менее 400 В. Их необходимо установить на пластинчатые уголковые теплоотводы размерами 60x15 мм толщиной 2 мм из алюминиевого сплава.

Вместо одиночного конденсатора С5 можно использовать батарею из нескольких параллельно включенных на напряжение не менее 400 В каждый, при этом емкость батареи может быть больше указанной на схеме.

Дроссель L1 выполнен на стальном магнитопроводе ПЛ 12,5x25-50. Подойдет и любой другой магнитопровод такого же или большего сечения при выполнении условия размещаемости обмотки в его окне. Обмотка состоит из 175 витков провода ПЭВ-2 1,32 (провод меньшего диаметра использовать нельзя!). Магнитопровод должен иметь немагнитный зазор 0,3...0,5 мм. Индуктивность дросселя - 40±10 мкГн.

Конденсаторы С6-С24 должны обладать малым тангенсом угла диэлектрических потерь, а С6-С17 - еще и рабочим напряжением не менее 1000 В. Наилучшие из испытанных мною конденсаторов - К78-2, применявшиеся в телевизорах. Можно использовать и более широко распространенные конденсаторы этого типа другой емкости, доведя суммарную емкость до указанной в схеме, а также пленочные импортные.

Попытки использовать бумажные или другие конденсаторы, рассчитанные на работу в низкочастотных цепях, приводят, как правило, к выходу их из строя через некоторое время.

Тринисторы КУ221 (VS2-VS7) желательно использовать с буквенным индексом А или в крайнем случае Б или Г. Как показала практика, во время работы аппарата заметно разогреваются катодные выводы тринисторов, из-за чего не исключено разрушение паек на плате и даже выход из строя тринисторов.

Надежность будет выше, если на вывод катода тринисторов надеть либо трубки-пистоны, изготовленные из луженой медной фольги толщиной 0,1...0,15 мм, либо бандажи в виде плотно свернутой спирали из медной луженой проволоки диаметром 0,2 мм и пропаять по всей длине. Пистон (бандаж) должен покрывать вывод на всю длину почти до основания. Паять надо быстро, чтобы не перегреть тринистор.

У Вас наверняка возникнет вопрос: а нельзя ли вместо нескольких сравнительно маломощных тринисторов установить один мощный? Да, это возможно при использовании прибора, превосходящего (или хотя бы сравнимого) по своим частотным характеристикам тринисторы КУ221А. Но среди доступных, например, из серий ТЧ или ТЛ, таких нет.

Переход же на низкочастотные приборы заставит понизить рабочую частоту с 25 до 4...6 кГц, а это приведет к ухудшению многих важнейших характеристик аппарата и громкому пронзительному писку при сварке.

При монтаже диодов и тринисторов применение теплопроводящей пасты является обязательным.

Кроме этого, установлено, что один мощный тринистор менее надежен, чем несколько включенных параллельно, поскольку им легче обеспечить лучшие условия отведения тепла. Достаточно группу тринисторов установить на одну теплоотводящую пластину толщиной не менее 3 мм.

Поскольку токоуравнивающие резисторы R14-R18(C5-16 В) при сварке могут сильно разогреваться, их перед монтажом необходимо освободить от пластмассовой оболочки путем обжига или нагревания током, значение которого необходимо подобрать экспериментально.

Диоды VD8 и VD9 установлены на общем теплоотводе с тринисторами, причем диод VD9 изолирован от теплоотвода слюдяной прокладкой. Вместо КД213А подойдут КД213Б и КД213В, а также КД2999Б, КД2997А, КД2997Б.

Дроссель L2 представляет собой бескаркасную спираль из 11 витков провода сечением не менее 4 мм2 в термостойкой изоляции, намотанную на оправке диаметром 12...14 мм.

Дроссель во время сварки сильно разогревается, поэтому при намотке спирали следует обеспечить между витками зазор 1...1.5 мм, а располагать дроссель необходимо так, чтобы он находился в потоке воздуха от вентилятора. Рис. 2 Магнитопровод трансформатора

Т1 составлен из трех сложенных вместе магнитопроводов ПК30х16 из феррита 3000НМС-1 (на них выполняли строчные трансформаторы старых телевизоров).

Первичная и вторичная обмотки разделены на две секции каждая (см. рис. 2), намотанные проводом ПСД1,68х10,4 в стеклотканевой изоляции и соединенные последовательно согласно. Первичная обмотка содержит 2x4 витка, вторичная - 2x2 витка.

Секции наматывают на специально изготовленную деревянную оправку. От разматывания витков секции предохраняют по два бандажа из луженой медной проволоки диаметром 0,8...1 мм. Ширина бандажа - 10...11 мм. Под каждый бандаж подкладывают полосу из электрокартона или наматывают несколько витков ленты из стеклоткани.

После намотки бандажи пропаивают.

Один из бандажей каждой секции служит выводом ее начала. Для этого изоляцию под бандажом выполняют так, чтобы с внутренней стороны он непосредственно соприкасался с началом обмотки секции. После намотки бандаж припаивают к началу секции, для чего с этого участка витка заранее удаляют изоляцию и облуживают его.

Следует иметь в виду, что в наиболее тяжелом тепловом режиме работает обмотка I. По этой причине при наматывании ее секций и при сборке следует между наружными частями витков предусмотреть воздушные зазоры, вкладывая между витками короткие, смазанные теплостойким клеем, вставки из стеклотекстолита.

Вообще, при изготовлении трансформаторов для инверторной сварки своими руками всегда оставляйте воздушные зазоры в обмотке. Чем их больше, тем эффективнее отведение тепла от трансформатора и ниже вероятность спалить аппарат.

Здесь уместно отметить также, что секции обмоток, изготовленные с упомянутыми вставками и прокладками проводом того же сечения 1,68x10,4 мм2 без изоляции, будут в тех же условиях охлаждаться лучше.

Далее обе секции первичной обмотки складывают вместе одну на другую так, чтобы направления их намотки (отсчитываемые от их концов) были противоположными, а концы находились с одной стороны (см. рис. 2).

Соприкасающиеся бандажи соединяют пайкой, причем к передним, служащим выводами секций, целесообразно припаять медную накладку в виде короткого отрезка провода, из которого выполнена секция.

В результате получается жесткая неразъемная первичная обмотка трансформатора.

Вторичную изготовляют аналогично. Разница только в числе витков в секциях и в том, что необходимо предусмотреть вывод от средней точки. Обмотки устанавливают на магнитопровод строго определенным образом - это необходимо для правильной работы выпрямителя VD11 - VD32.

Направление намотки верхней секции обмотки I (если смотреть на трансформатор сверху) должно быть против часовой стрелки, начиная от верхнего вывода, который необходимо подключить к дросселю L2.

Направление намотки верхней секции обмотки II, наоборот, - по часовой стрелке, начиная от верхнего вывода, его подключают к блоку диодов VD21-VD32.

Обмотка III представляет собой виток любого провода диаметром 0,35...0,5 мм в теплостойкой изоляции, выдерживающей напряжение не менее 500 В. Его можно разместить в последнюю очередь в любом месте магнитопровода со стороны первичной обмотки.

Для обеспечения электробезопасности сварочного аппарата и эффективного охлаждения потоком воздуха всех элементов трансформатора очень важно выдержать необходимые зазоры между обмотками и магнитопроводом. При сборке инвертора сварочного своими руками большинство самодельщиков совершают одну и ту же ошибку: недооценивают важность охлаждения транса. Этого делать нельзя.

Эту задачу выполняют четыре фиксирующие пластины, закладываемые в обмотки при окончательной сборке узла. Пластины изготовляют из стеклотекстолита толщиной 1,5 мм в соответствии с чертежом на рисунке.

После окончательной регулировки пластины целесообразно закрепить термостойким клеем. Трансформатор крепят к основанию аппарата тремя скобами, согнутыми из латунной или медной проволоки диаметром 3 мм. Эти же скобы фиксируют взаимное положение всех элементов магнитопровода.

Перед монтажом трансформатора на основание между половинами каждого из трех комплектов магнитопровода необходимо вложить немагнитные прокладки из электрокартона, гетинакса или текстолита толщиной 0,2...0,3 мм.

Для изготовления трансформатора можно использовать магнитопроводы и других типоразмеров сечением не менее 5,6 см2. Подойдут, например, Ш20х28 или два комплекта Ш 16x20 из феррита 2000НМ1.

Обмотку I для броневого магнитопровода изготовляют в виде единой секции из восьми витков, обмотку II - аналогично описанному выше, из двух секций по два витка. Сварочный выпрямитель на диодах VD11-VD34 конструктивно представляет собой отдельный блок, выполненный в виде этажерки:

Она собрана так, что каждая пара диодов оказывается помещенной между двумя теплоотводящими пластинами размерами 44x42 мм и толщиной 1 мм, изготовленными из листового алюминиевого сплава.

Весь пакет стянут четырьмя стальными резьбовыми шпильками диаметром 3 мм между двух фланцев толщиной 2 мм (из такого же материала, что и пластины), к которым винтами прикреплены с двух сторон две платы, образующие выводы выпрямителя.

Все диоды в блоке ориентированы одинаково - выводами катода вправо по рисунку - и впаяны выводами в отверстия платы, которая служит общим плюсовым выводом выпрямителя и аппарата в целом. Анодные выводы диодов впаяны в отверстия второй платы. На ней сформированы две группы выводов, подключаемые к крайним выводам обмотки II трансформатора согласно схеме.

Учитывая большой общий ток, протекающий через выпрямитель, каждый из трех его выводов выполнен из нескольких отрезков провода длиной 50 мм, впаянных каждый в свое отверстие и соединенных пайкой на противоположном конце. Группа из десяти диодов подключена пятью отрезками, из четырнадцати - шестью, вторая плата с общей точкой всех диодов - шестью.

Провод лучше использовать гибкий, сечением не менее 4 мм.

Таким же образом выполнены сильноточные групповые выводы от основной печатной платы аппарата.

Платы выпрямителя изготовлены из фольгированного стеклотекстолита толщиной 0,5 мм и облужены. Четыре узкие прорези в каждой плате способствуют уменьшению нагрузок на выводы диодов при температурных деформациях. Для этой же цели выводы диодов необходимо отформовать, как показано на рисунке выше.

В сварочном выпрямителе можно также использовать более мощные диоды КД2999Б, 2Д2999Б, КД2997А, КД2997Б, 2Д2997А, 2Д2997Б. Их число может быть меньшим. Так, в одном из вариантов аппарата успешно работал выпрямитель из девяти диодов 2Д2997А (пять - в одном плече, четыре - в другом).

Площадь пластин теплоотвода осталась прежней, толщину их оказалось возможным увеличить до 2 мм. Диоды были размещены не попарно, а по одному в каждом отсеке.

Все резисторы (кроме R1 и R6), конденсаторы С2-С4, С6-С18, транзистор VT1, тринисторы VS2 - VS7, стабилитроны VD5-VD7, диоды VD8-VD10 смонтированы на основной печатной плате, причем тринисторы и диоды VD8, VD9 установлены на теплоотводе, привинченном к плате, изготовленной из фольгированного текстолита толщиной 1.5 мм:Рис. 5. Чертеж платы

Масштаб чертежа платы - 1:2, однако плату несложно разметить, даже не пользуясь средствами фотоувеличения, поскольку центры почти всех отверстий и границы почти всех фольговых площадок расположены по сетке с шагом 2,5 мм.

Большой точности разметки и сверления отверстий плата не требует, однако следует помнить что отверстия в ней должны совпадать с соответствующими отверстиями в теплоотводящей пластине.

Перемычку в цепи диодов VD8, VD9 изготовляют из медного провода диаметром 0,8...1 мм. Припаивать ее лучше со стороны печати. Вторую перемычку из провода ПЭВ-2 0,3 можно расположить и на стороне деталей.

Групповой вывод платы, обозначенный на рис. 5 буквами Б, соединяют с дросселем L2. В отверстия группы В впаивают проводники от анодов тринисторов. Выводы Г соединяют с нижним по схеме выводом трансформатора Т1, а Д - с дросселем L1.

Отрезки провода в каждой группе должны быть одинаковой длины и одинакового сечения (не менее 2,5 мм2). Рис. 6 Теплоотвод

Теплоотвод представляет собой пластину толщиной 3 мм с отогнутым краем (см. рис. 6).

Лучший материал для теплоотвода - медь (или латунь). В крайнем случае, при отсутствии меди, можно использовать пластину из алюминиевого сплава.

Поверхность со стороны установки деталей должна быть ровной, без зазубрин и вмятин. В пластине просверлены отверстия с резьбой для сборки ее с печатной платой и крепления элементов. Через отверстия без резьбы пропущены выводы деталей и соединительные провода. Через отверстия в отогнутом крае пропущены анодные выводы тринисторов. Три отверстия М4 в теплоотводе предназначены для его электрического соединения с печатной платой. Для этого использованы три латунных винта с латунными гайками.

После окончательной регулировки аппарата соединения пропаивают. Рис. 7 Чертеж теплоотвода в сборе с платой

Теплоотвод привинчивают к печатной плате со стороны деталей с зазором 3,2 мм (это высота стандартной гайки М4). После этого монтируют резисторы R7-R11, R14-R19, тринисторы VS2-VS7 и диоды VD8, VD9.

Указанную на схеме емкость батареи конденсаторов С19-С24 следует считать минимально необходимой. При большей емкости зажигание дуги облегчается.

Резисторы крепят на длинных выводах с целью их наилучшего охлаждения. Рис. 8. Размещение узлов

Однопереходный транзистор VT1 обычно проблем не вызывает, однако некоторые экземпляры при наличии генерации не обеспечивают, необходимую для устойчивого открывания тринистора VS2, амплитуду импульсов.

Все узлы и детали сварочного аппарата установлены на пластину-основание из гетинакса толщиной 4 мм (подойдет также текстолит толщиной 4...5 мм) на одной его стороне. В центре основания прорезано круглое окно для крепления вентилятора; он установлен с той же его стороны.

Диоды VD1-VD4, тринистор VS1 и лампа HL1 смонтированы на уголковых кронштейнах. При установке трансформатора Т1 между соседними магнитопроводами следует обеспечить воздушный зазор 2 мм Каждый из зажимов для подключения сварочных кабелей представляет собой медный болт М10 с медными гайками и шайбами.

Головкой болта изнутри прижат к основанию медный угольник, дополнительно зафиксированный от проворачивания винтом М4 с гайкой. Толщина полки угольника - 3 мм. Ко второй полке болтом или пайкой подключен внутренний соединительный провод.

Сборку печатная плата-теплоотвод устанавливают деталями к основанию на шести стальных стойках, согнутых из полосы шириной 12 и толщиной 2 мм.

На лицевую сторону основания выведены ручка тумблера SA1, крышка держателя предохранителя, светодиоды HL2, HL3, ручка переменного резистора R1, зажимы для сварочных кабелей и кабеля к кнопке SB1.

Кроме этого, к лицевой стороне прикреплены четыре стойки-втулки диаметром 12 мм с внутренней резьбой М5, выточенные из текстолита. К стойкам прикреплена фальшпанель с отверстиями для органов управления аппаратом и защитной решеткой вентилятора.

Фальшпанель можно изготовить из листового металла или диэлектрика толщиной 1... 1,5 мм. Я вырезал ее из стеклотекстолита. Снаружи к фальшпанели привинчены шесть стоек диаметром 10мм, на которые наматывают сетевой и сварочные кабели по окончании сварки.

На свободных участках фальшпанели просверлены отверстия диаметром 10 мм для облегчения циркуляции охлаждающего воздуха. Рис. 9. Внешний вид инверторного сварочного аппарата с уложенными кабелями.

Собранное основание помещено в кожух с крышкой, изготовленный из листового текстолита (можно использовать гетинакс, стеклотекстолит, винипласт) толщиной 3...4 мм. Отверстия для выхода охлаждающего воздуха расположены на боковых стенках.

Форма отверстий значения не имеет, но для безопасности лучше, если они будут узкими и длинными.

Общая площадь выходных отверстий не должна быть менее площади входного. Кожух снабжен ручкой и плечевым ремнем для переноски.

Электрододержатель конструктивно может быть любым, лишь бы он обеспечивал удобство работы и легкую замену электрода.

На ручке электрододержателя нужно смонтировать кнопку (SB1 по схеме) в таком месте, чтобы сварщик мог легко удерживать ее нажатой даже рукой в рукавице. Поскольку кнопка находится под напряжением сети, необходимо обеспечить надежную изоляцию как самой кнопки, так и подключенного к ней кабеля.

P.S. Описание процесса сборки заняло много места, но на самом деле все гораздо проще, чем кажется. Любой, кто хоть раз держал в руках паяльник и мультиметр, без проблем сможет собрать этот сварочный инвертор своими руками.

electro-shema.ru

Схема простого сварочного инвертора - электросхема инверторного сварочного аппарата

Схема простого сварочного инвертора – электросхема инверторного сварочного аппарата для дома 1Схема простого сварочного инвертора разделяется на силовую, то есть как раз ту, которая выдает ток на дугу, и управляющую части. Инвертор по сути своей – это блок питания, достаточно мощный, позволяющий поддерживать работу дуги. По рабочим схемам напоминает импульсный блок питания, у них весьма схожая работа по преобразованию энергии.

По какому принципу работает электросхема инверторного сварочного аппарата?

Схема работает по тому же принципу, что и, например, блок питания в персональном компьютере. В процессе работы происходит преобразование тока и напряжения, причем несколько раз и в разных параметрах.

В работе прослеживаются несколько четких этапов:

  1. Напряжение в розетке составляет 220V, поэтому сначала происходит выпрямление переменного напряжения.
  2. Вступает в работу преобразователь, постоянное напряжение переводится в переменные высокие частоты.
  3. Напряжение высокой частоты постепенно понижается до нужных значений.
  4. В свою очередь, на этом этапе, уже пониженное напряжение нуждается в выпрямлении.

Весь процесс кажется немного нелогичным, но у этого есть свои причины.

Ранее в сварочных инверторах использовались трансформаторы, очень мощные, работающие за счет обмотки трансформатора и имеющие, из-за этого, размеры и вес, делающие сварочные аппараты громоздкими и неудобными в применении.

Инверторные же аппараты удалось существенно уменьшить и облегчить с помощью увеличения частоты работы до 70-80 кГц и удешевить, поскольку меди на обмотку и других материалов уходит в разы меньше.

Схема простого сварочного инвертора – электросхема инверторного сварочного аппарата для дома 2

Схема инвертора

Электросхема сварочного инвертора состоит из транзисторов, мощных, берущих на себя большую часть работы. Частота тока в сети составляет всего 50 Гц, транзисторы же переключаются с высокой частотой, поэтому необходимо обеспечить их подачей постоянного напряжения. Вот тут и вступает в работу выпрямитель, как раз занимающийся тем, чтобы поступающий ток имел постоянные параметры.

Достигается этот эффект диодным мостом и фильтрующими конденсаторами. Диодный мост очень мощный, поэтому есть необходимость ставить его в паре с охлаждающим радиатором. На нем, в свою очередь, установлен предохранитель от перегревания, который при достижении критических температур размыкается. Необходим он для того, чтобы избежать поломки прибора от перегрева. Таким образом, на первом этапе мы получаем на выходе с выпрямителя постоянный ток, имеющий значение более 220V.

Схема простого сварочного инвертора – электросхема инверторного сварочного аппарата для дома 3

Важным элементом схемы является фильтр электромагнитной совместимости, ставится он перед выпрямителем и защищает сеть от высокочастотных помех, появляющихся из-за работы инвертора.

Сам инвертор состоит из двух транзисторов на радиаторах для контроля тепла. Для понижения же напряжения схема простого сварочного инвертора успешно работает с трансформатором высокой частоты. Далее транзисторы коммутируют постоянное напряжение через обмотку трансформатора, величины достигают примерно 340V.

Если совсем по-простому, то роль трансформатора в том, что первичная обмотка выдает большое напряжение и маленький ток, а с вторичной обмотки уходит меньшее напряжение, но максимальный ток, показатели могут быть около 120 ампер.

Выходной выпрямитель – это диоды с высокими показателями быстродействия, сдвоенные, с общим катодом. Электросхема инверторного сварочного аппарата нуждается в именно быстродействующих диодах, суть их работы в том, что они очень шустро открываются и закрываются, нужно это для того, чтобы защитить сами диоды и весь прибор от перегревания и выхода из строя.

Когда инвертор включается, начинают заряжаться конденсаторы, поскольку в этот момент зарядный ток очень велик, настолько, что может вывести из строя диодные мосты, то применяется схема ограничения заряда, еще она называется «мягкий пуск». Работа его основывается на резисторе, имеющем высокое сопротивление, как раз он и принимает на себя основной удар и отвечает за ограничение тока в схеме.

Схема простого сварочного инвертора – электросхема инверторного сварочного аппарата для дома 4

Самостоятельный подход к ремонту и эксплуатации

Самые важные элементы схемы уже описаны, остается лишь добавить, что сварочный инвертор — прибор не очень сложный, при желании и заинтересованности его можно собрать своими руками. По запросу: схемы сварочных инверторов скачать, можно найти огромное количество готовых схем и видеороликов о самостоятельной сборке сварочных инверторов и их ремонте на нашем сайте.

Если вы понимаете сам принцип работы аппарата, то, достав нужные запчасти, можно очень экономно подойти к вопросу, покупать ли инвертор, чинить его самим или отнести в мастерскую.

Схема простого сварочного инвертора – электросхема инверторного сварочного аппарата для дома 5

Поделитесь со своими друзьями в соцсетях ссылкой на этот материал (нажмите на иконки):

swarka-rezka.ru

Схема инверторного сварочного аппарата и его функциональные возможности

Инверторный сварочный аппарат имеет схему работы, которая позволяет во время сварки пользоваться надежным оборудованием. Производственная технология инверторов дает возможность получения качественного результата, который проявляется в виде сварочного аккуратного шва. Современный инвертор является превосходной заменой трансформаторного аппарата.

Схема устройства инверторного сварочного аппарата

Схема устройства инверторного сварочного аппарата.

Основные характеристики инвертора

Инверторы представлены в широком ассортименте на рынке приборов для проведения сварки. С помощью этих аппаратов производится аргонодуговая и ручная электродуговая виды сварок. Для каждого инвертора характерны свои схемы и их особенности, базирующиеся на применении преобразователей импульсов высокой частоты.

Поскольку сварочный инвертор является сравнительно новым оборудованием, то применяемые высокие технологии и элементные базы, которые выпускают ведущие производители для устройств, могут обеспечить эффективное действие схем аппаратов. Благодаря этому появляется возможность получать стабильность дуги, которая способна отлично держаться.

Сварочные инверторные аппараты обладают легкостью и компактностью. Их в любой момент можно передвинуть с одного места на другое, чтобы возобновить проведение сварочных операций. Масса инвертора позволяет использовать прибор в любом положении, которое является удобным для выполнения работ в определенном рабочем пространстве.

Функциональные возможности инверторных устройств для сварки и их составляющие

Схема инвертора

Рисунок 1. Схема инвертора.

Схема инвертора представлена на рис. 1. Аппарат потребляет ток 30-32 А, работая от сети 220 В. При сварке сила тока будет достигать уровня 250 А. Данное значение является достаточным, чтобы можно было применять штучный электрод до 5 мм. Производимая длина дуги будет составлять при этом 1 см. Уровень коэффициента полезного действия аппарата по сравнению со значением КПД промышленных образцов не должен быть меньше 95%.

В блок инвертора входят следующие элементы:

  1. Блоки питания под силовую и слаботочную часть.
  2. Блок термозащиты.
  3. Элементы индикации и управления.

Схема инвертора предполагает наличие ШИМ-контроллера с трансформатором тока, датчиком тока нагрузки и блоком. В схеме управления охлаждающими вентиляторами можно отметить наличие температурных датчиков, вентиляторов и блока.

Описание основных элементов схемы

Рассматривая каждый элемент схемы, можно начать с первичного выпрямителя, работа которого связана с напряжением сети переменного тока в 220В. Питание от элемента передается той части оборудования, которая является силовой. При этом сеть переменного тока должна иметь частоту 50 Гц. Сборка первичного выпрямителя основана на применении диодных мостов, простого фильтра-конденсатора.

Схема дросселя сварочного инвертора

Схема дросселя сварочного инвертора.

В сборке за счет зарядной цепи нелинейного типа, в схему которой входит шунтирующий тиристор, происходит лимитирование тока при включенном приборе. В схему включается также и токоограничивающий резистор. В схеме любого профессионального инвертора содержится силовая часть устройства, которая имеет оптимальную технологию.

Делая выбор аппарата, следует обратить внимание на данный элемент. Устройство силовой части осуществляется в соответствии с топологией следующих элементов:

  1. Мостового конвертера.
  2. Однотактного прямоходового мостового конвертера.
  3. Полумостового конвертера.

Силовая часть имеет соответствующие параметры и стоимость, которые позволяют при использовании инвертора применять топологию ОПМК. Источником питания для инвертора является сеть с одной фазой и наибольшим пределом тока в 150 А.

На основе определенных функций инвертора производится выбор электрической схемы устройства ШИМ-контроллера. Вместе с тем принципиальную схему выбирают, когда это позволяет стабилизировать регулировку рабочего тока относительно среднего значения нагрузки.

Измеряется ток через резистивный шунт либо трансдьюсер. За счет регулирования инвертора на основании средних значений нагрузок получают нормальную устойчивость у преобразователя.

Элементы принципиальной схемы прибора

Схема источника питания инверторного сварочного аппарата

Схема источника питания инверторного сварочного аппарата.

Среди важных элементов, относящихся к принципиальной схеме инвертора, можно выделить блок термоконтроля, позволяющий обеспечить защиту силового элемента, являющегося ключевым, от возможного перегрева. Данная функция блока термоконтроля распространяется и на устройство силового трансформатора.

Вентиляторы прибора должны действовать под управлением блока, отвечающего за контроль температуры за счет схемы. Блок термоконтроллера функционирует на основе схемы ООС (отрицательной обратной связи) относительно напряжения и нагрузки.

В схему входит температурный датчик с установленным уровнем температуры, который должен достигать только 75°, а после этого срабатывает система зашиты устройства. Устройство датчика устанавливается на силовой трансформатор. Контролирующая функция над температурой радиатора охлаждения, который относится к силовому транзистору, принадлежит интегральному датчику.

Знание технологических особенностей инвертора заслуживает такого же внимания, как и понимание его принципиальной схемы. Данным устройствам присущи следующие технологические особенности, связанные с преимуществами сварочного аппарата:

Принцип работы инвертора

Принцип работы инвертора.

  1. Повышенный уровень уникальности показателей.
  2. Точность настроек аппарата.
  3. Шов обладает уникальными характеристиками.
  4. Отличная система защиты от перегрузок.
  5. КПД имеет высокий уровень, который равен 95% и больше.
  6. Качественное выполнение работ при сложном соединении соответствующих материалов.
  7. Нормальное использование функций управления, предоставляемых электрической дугой.
  8. Выдаваемое напряжение имеет значительный резерв.
  9. Шов формируется на качественном уровне и является ровным.
  10. Стабильность каждого параметра дуги.
  11. Отсутствует процесс разбрызгивания металла в больших количествах.
  12. Сварка не требует последующей обработки.
  13. Можно воспользоваться штучными электродами и проволокой.

Прибор оснащен первичной обмоткой, мотающейся ПЭВ 0,3 мм, что предусматривает 100 витков. В состав цепей, которые являются вторичными, входит обмотка проводами, измеряющимися в витках (в):

  1. ПЭВ 1,0 мм — 15.
  2. ПЭВ 0,2 мм — 15.
  3. 2 одинаковые обмотки ПЭВ 0,35 мм — 20.

Мотать обмотку можно, учитывая общую ширину каркаса, что улучшает стабильность всех показателей. Первичную обмотку обязательно полностью экранируют. Намотка во вторичных обмотках должна совпасть с первичной. Изолировать намотку можно лакотканью либо малярным скотчем. На рис. 1 можно увидеть принципиальную схему устройства.

Силовой трансформатор инвертора

Схема трансформатора с первичной и вторичной обмоткой

Схема трансформатора с первичной и вторичной обмоткой.

Трансформатор должен быть рассчитан на работу аппарата, если частота составляет 41 кГц. В наличии должен быть двойной комплект Ш 20х28, имеющий марку 2000 НМ. Наилучшим вариантом является марка 2500 НМС с зазором 0,05 мм. Если частота составляет 41 Гц, то во вторичной обмотке имеется 12 витков, включая медную жесть, сечение которой 10 мм², 4 витка, включая медную жесть, ее сечение составляет 30 мм².

Если частота трансформатора равна 55 кГц, то вторичные обмотки будут присутствовать. Для обматывания медной ленты применяется термоизоляционная бумага (как вариант применяется лента для кассовых аппаратов), которая должна обладать толщиной в 0,25 мм и 0,75 мм при ширине 40 мм. Для изоляции каждого слоя используется фторопластовая лента, что позволяет улучшить значения показателей проводимости. Обе обмотки имеют выходные концы, которые качественно зачищены и припаяны.

С целью выполнения кольцевого трансформатора пользуются кольцевым ферритом К30х18х7, который оснащен продетым в кольцо проводом первичной обмотки трансформатора. Его вторичная обмотка включает 85 витков, имеющих сечение 0,5 мм².

Для компактной схемы исполнения используются микропроцессоры, что вместе с другими характеристиками инвертора делает его принципиально незаменимым как в бытовом отношении, так и в промышленном. Для сварочного инвертора характерна не только мобильность, но и наличие других характеристик:

  1. Приемлемый уровень потребляемой мощности.
  2. Антиприлипание электрода является режимом с возможностью плавной регулировки тока для сварки.
  3. Надежная защита от перегревов или перегрузки.
Схема сварочного выпрямителя

Схема сварочного выпрямителя.

Прибор используется при напряжении сети в 220 В, а сила тока составляет 30 А. Сварка должна производиться в специальной маске сварщика для защиты лица. Любой профессионал в области сварки должен уметь легко устанавливать требуемые значения тока с последующим регулированием силы в диапазоне от 30 до 200 А при сварке.

Сварочный инвертор (Edon MIG-250) в базовой схеме содержит следующие элементы:

  1. Выпрямитель низкой частоты.
  2. Силовой трансформатор.
  3. Инвертор.
  4. Выпрямитель высокой частоты.
  5. Рабочий шунт.
  6. Блок управления.

Входное переменное напряжение в 220 В должно преобразовываться на начальном этапе за счет используемых выпрямителей в постоянное.

Затем в приборе возникает импульсное переменное напряжение, так как происходят частотные преобразования при использовании ШИМ-схем. Напряжение при этом становится высокочастотным и достигающим 200 кГц. Уменьшенные габаритные размеры и масса импульсного трансформатора позволяют передавать исходную мощность к выходу аппарата.

Технологические преимущества сварочного инвертора SSVA-180P

Способы подключения сварочного инвертора

Способы подключения сварочного инвертора.

Для сварочного аппарата марки SSVA-180P характерны следующие достоинства, которые повышают качество сварных соединений:

  1. Ровное и качественное формирование сварочного шва без разбрызгивания металла.
  2. Уникальные параметры и точность настроек перед началом сварки.
  3. Высокие защитные показатели схемы инвертора, обеспечивающие сохранность прибора от перегрузок.
  4. Качественные показатели схемы, связанной с принудительным охлаждением блока аппарата, который является силовым.
  5. Высокий КПД, значение которого превышает 95%.
  6. Качественная работа с такими видами материалов, которые являются трудносвариваемыми.
  7. Наличие резерва напряжения, которое позволяет устойчиво поддерживать горение электрической дуги.
  8. Наличие автоматического и ручного режима при управлении динамикой дуги.

Все это позволяет снизить расходы на электроды, обработку, специальную проволоку при выполнении больших объемов работ в среднем на 9-12%.

Поскольку в основе схем инверторов заложены соответствующие технологии широтно-импульсной модуляции, это позволяет производителям ежегодно заниматься разработкой и поставкой новейшего оборудования данного типа. Для каждого вида аппарата в зависимости от способа сварки предусмотрена соответствующая схема. Особый спрос отмечается на следующие виды аппаратов, для которых характерны:

  1. Дуговая ручная сварка (ММА) за счет использования штучного электрода «Монолит».
  2. Аргонодуговая сварка (TIG) при постоянном или переменном токе.
  3. Полуавтоматическая сварка (MIG/MAG).
  4. Плазменно-дуговая резка (PAC), которая относится к новейшим видам передовых технологий.
Схема внутреннего устройства сварочного инвертора

Схема внутреннего устройства сварочного инвертора.

Если подробно рассмотреть каждый из способов, то дуговая ручная сварка получила широкое применение за счет малых объемов потребления электроэнергии и значительно сниженного веса. Профессионал может с легкостью перемещать прибор, подключая его в любую точку. Инвертор может быть подключен одновременно с генератором, который обеспечивает выработку переменного напряжения в 220 В.

Аргонодуговая сварка добавляет к преимуществам используемой схемы более широкие возможности, которые связаны с точным регулированием различных параметров установленного режима. Работы выполняются при использовании электрода из вольфрама, что является важным преимуществом. Оно позволяет точно выполнять все требования, которые предъявляются к качеству выполняемого шва и его внешнему виду.

Инверторная схема устройства, которое работает на полуавтоматической сварке, связана с уникальной возможностью выбора соответствующего способа переноски металла следующими путями:

  1. Капельным.
  2. Струйным.
  3. С периодическим замыканием и др.

Такой способ работы инверторного сварочного аппарата способен полностью устранить процесс разбрызгивания металла с целью компенсации недостатков данного способа сварки. Плазменно-дуговая резка связана с обеспечением высокой стабильности дуги аппаратом во время его работы или паузы. Для данной схемы характерна высокая скорость резки, что обеспечивает аккуратную и ровную кромку. Дальнейшая обработка при этом не требуется, поскольку аппарат уже является готовым к выполнению нового качественного задания.

В основе некоторых схем заложены особенности резонансного инверторного сварочного аппарата, работа которого связана с самоограничением в мощности.

Настройки взаимосвязаны с установкой максимального тока, что позволяет потребителю не волноваться за возможное короткое замыкание при значительной нагрузке.

moyasvarka.ru

Самый простой сварочный инвертор своими руками: схема, устройство

Инвертор является достаточно сложным инструментом для сварки, который заслужил в последнее время огромную популярность. Отличные рабочие характеристики обусловлены большим количеством технических узлов, в общей массе составляющей одно устройство. Чтобы добиться высокого качества получаемого шва, надежности работы и хороших технических характеристик мировые производители стараются внедрять новые разработки и делать мощную, но при этом экономичную технику. Но оказывается, что можно сделать самый простой сварочный инвертор своими руками.

Простой сварочный инвертор своими руками

Простой сварочный инвертор своими руками

Естественно, что здесь не стоит ожидать высоких современных характеристик от таких устройств. Но вполне возможно создать все самостоятельно, так как все комплектующие для этого находятся в свободном доступе и при наличии полного комплекта и подходящей схемы можно создать недорогую компактную модель. Здесь нужно осуществить правильный подбор, исходя из расчетов мощности и других параметров. Иными словами, все детали должны быть взаимосовместимы друг с другом, как по своему типу, так и по параметрам. К примеру, самой уязвимой частью устройства являются транзисторы, поэтому, к их выбору стоит подходить с особым вниманием.

Преимущества

  • Простой сварочный инвертор своими руками обходится значительно дешевле, чем готовые модели сварочных аппаратов;
  • При самостоятельной сборке намного легче ремонтировать технику, если с ней случатся какие-либо неполадки;
  • Можно самостоятельно регулировать комплектацию, исходя из предпочтений, технических требований и бюджета.

Недостатки

  • Простой сварочный инвертор, сделанный своими руками, оказывается не столь надежным в работе, даже в сравнение с бюджетными видами техники;
  • На создание аппарата придется потратить значительное количество времени, что не всегда экономически выгодно;
  • Здесь отсутствуют дополнительные функции, которые помогут улучшить качество создаваемого шва;
  • Техника обладает узким диапазоном регулировки сварочного тока и прочих параметров;
  • Как правило, в них присутствуют проблемы с системой охлаждения;
  • Корпус создается не столь безопасно, как в заводских моделях, так что использование подобных устройств может оказаться опасным для жизни.

Устройство и схема простого инвертора

Схема простого сварочного инвертора помогает определиться, что именно должно входить в состав устройства. Естественно, что это является не единственным вариантом и возможны замены. Некоторые предпочитают создавать более сложные варианты, основываясь на схемах готовых заводских моделей,  таких как сварочный инвертор Сварог Pro Arc 180 или Ресанта 250, внося свои изменения. Здесь представлена наиболее простая для самостоятельного воплощения схема.

Схема простого инвертора

Схема простого инвертора

Методика расчета

Перед тем как начать делать самый простой инвертор сварочный, нужно рассчитать его мощность. Это делается путем умножения силы тока , которой должно обладать устройство, на напряжение, при котором будет гореть дуга. К примеру, для тока в 160 А, который будет возможен на напряжении дуги в 24 В, мощность должна быть 3840 Вт.

Даже простой сварочный инвертор на одном транзисторе может иметь коэффициент полезного действия в 85%. Таким образом, мощность перекачиваемая транзисторами должна составлять 4517 Вт

Исходя из этой величины, можно определить силу тока, коммутируемую транзисторами во время работы. Чтобы это осуществить, следует найти разделить мощность на напряжение в сети. 4517/220 = 20 А.

Чтобы при 20 А можно было поддерживать напряжение в 220 В, в схеме должен присутствовать фильтр емкостью 100 мкФ. Если через транзисторы проходит большой ток, то он начинает нагревать их. Как правило, скорость отвода тепла при помощи радиаторов является недостаточной, а перегревание приведет к разрушению техники. Чтобы избежать подобных неприятностей, транзисторы стоит подбирать с запасом, чтобы их рабочий ток при 1000 градусов Цельсия составлял, как минимум, 20 А.

Простой в повторении и изготовлении сварочный аппарат должен иметь напряжение на транзисторах не более, чем напряжение в источнике питания. Очень важным параметром является частота транзисторов. Для представленных выше параметров подходят изделия с частотой в 100 кГц. Напряжение на них должно быть 500 В. Это могут быть как обыкновенные полевые, так и IGBT транзисторы. Единственной проблемой при их установке является отсутствие специального крепежа.

Чтобы транзистор нормально работал, между его открытием и закрытием должна выдерживаться пауза. Время паузы должно быть около 1,2 мс. Исключением можно считать только транзисторы Mosfet, пауза в которых допускается в 0,5 мс.

Необходимые инструменты и материалы

Для того, чтобы создать простой сварочный инвертор на одном транзисторе, следует иметь следующий набор инструментов:

  • Набор отверток;
  • Вольтметр;
  • Мультиметр;
  • Паяльник;
  • Осциллограф.

Это основные инструменты, при помощи которых происходит сборка, контроль и измерения. Помимо этого следует иметь еще материалы, которые нужны будут для создания самого аппарата. Для этого понадобятся:

  • Резисторы с различным уровнем сопротивления;
  • Катушка индуктивности;
  • Конденсаторы;
  • Оптопара;
  • Стабилитрон;
  • Выпрямительные диоды;
  • Диоды Шоттке;
  • Трансформатор с двумя обмотками;
  • Реле;
  • Подстроечные резисторы;
  • Диодный мост;
  • Защитные диод;
  • Линейный регулятор;
  • Вентилятор системы охлаждения;
  • Преобразователь переменного тока в постоянный.

Технология изготовления и рекомендации по настройке

Следует подать ток на схему, чтобы проверить, как срабатывает реле замыкания резистора. Далее идет проверка платы ШИМ, есть ли в ней прямоугольные импульсы, которые могут появляться после того, как сработает реле. Если импульсы имеются, то их ширина, в соотношении с нулевой паузой должна составлять 44%.

Нужно убедиться, что напряжение на транзисторах не превышает допустимое, иначе все это может привести к поломке. Затем питание подается на диодный мост, чтобы проверить правильность его изготовления и работоспособности.

Проверка напряжения на транзисторе

Проверка напряжения на транзисторе

Во время настройке нужно убедиться в правильности намотки трансформатора, а также в его корректном подключении и возможности управлять им. Это один из основных элементов, задающих регулировку параметров, но в то же время самый сложный по исполнению за счет наличия обмотки.

Намотанный вручную трансформатор в 100 витков

Намотанный вручную трансформатор в 100 витков

Техника безопасности

Все процедуры должны производиться только при отключенном электропитании. Каждую деталь желательно измерить заранее, чтобы во время включения она не сломалась из-за перенапряжения. Во время работы следует соблюдать основные правила электробезопасности.

 

svarkaipayka.ru

Схема инверторного сварочного аппарата, настройка

Для сварочных работ используется специальное оборудование, схемы отдельных моделей сильно отличаются друг от друга. Наиболее часто используемым является инвертор. Это оборудование отличается точностью, работать с ним предельно просто. Схема этого устройства не слишком сложна, многие умельцы предпочитают собирать такие аппараты своими руками.

Схема устройства сварочного инвертора

Схема устройства сварочного инвертора.

Работа эта трудоемкая, требует определенных навыков и внимания. Перед тем как начинать сборку, необходимо составить будущую схему сварочного аппарата, определить, какие именно элементы и узлы необходимы. После сборки обязательно надо проверить работоспособность оборудования, безопасность его использования. При проведении сварочных работ обязательно следует использовать специальные защитные перчатки и маску.

Схема сварочного аппарата

Функциональная схема источника питания инверторного сварочного аппарата

Рисунок 1. Функциональная схема источника питания инверторного сварочного аппарата.

Сварочный инвертор имеет максимальный ток питания в 32 А, 220 В. Для сварки — 250 А. Это обеспечивает работу высокого качества при длине дуги в 1 см. КПД инвертора не ниже, чем у заводских вариантов. Схема блока питания, которая используется для такого сварочного аппарата, включает:

  • трансформатор, в основе которого лежит феррит 7*7 или 8*8;
  • первичная обмотка должна иметь 100 витков из провода с сечением 0,3 мм;
  • первый слой вторичной обмотки делается из 15 витков, сечение провода составляет 1 мм;
  • второй слой вторичной обмоткой включает также 15 витков, сечение провода равно 0,2 мм;
  • третий слой вторичной обмотки делается из 20 витков, сечение провода равно 0,35 мм.

При выполнении обмотки необходимо следить, чтобы провод заполнял все пространство, это даст стабильное напряжение. Пример схемы приведен на рис.1. Общая схема сварочного аппарата включает в себя 2 трансформатора на 41 кГц, но можно применять и на 55 кГц. После этого идет прокладка и дроссель типа L2, специальный токовый трансформатор. Используются дополнительно вентиляторы для охлаждения.

Вернуться к оглавлению

Намотка трансформатора

Схема дросселя сварочного инвертора

Схема дросселя сварочного инвертора.

Схема сборки предусматривает намотку трансформатора, делается это с использованием меди. Ее ширина равна 40 мм, а толщина — 0,3 мм. Понадобится и термобумага для обертки. Подойдет обычная кассовая, ее толщина должна составлять 0,05 мм. Такая бумага обладает необходимым качеством, она прочная, при намотке не рвется. Обычный провод для работы не подходит, так как он перегреется, при этом все токи будут вытесняться на поверхностную часть, нижние слои не будут задействованы.

Вторичная обмотка состоит из 3 медных лент, они между собой разделяются специальной фторопластовой пленкой, которая при нагреве темнеет. Не рекомендуется для обмотки использовать обычные провода ПЭВ с сечением 0,5-0,7 мм. Такие провода круглые, во время обмотки они оставляют большое количество воздушных зазоров, т.е. теплообмен замедляется. Схема обязательно предусматривает наличие вентилятора на 0,13 А 220 В, можно использовать и иные значения.

Вернуться к оглавлению

Сборка сварочного инвертора

Схема подключения инвертора к аккумулятору

Схема подключения инвертора к аккумулятору.

Для сборки инверторов рекомендуется примерять вентиляторы и радиаторы, которые есть в компьютерных блоках. Купить их не составит труда, стоимость такого оборудования демократичная. Косой мост будет собираться из 2 радиаторов, при этом надо верхнюю часть моста ставить на одном радиаторе, а нижнюю располагать на другом. Диоды монтируются на радиаторы при помощи специальной прокладки из слюды. Если используется мост IRG4PC50W, то вместо слюды потребуется специальная теплопроводящая паста.

Все выводы транзисторов, диодов надо устанавливать таким образом, чтобы они шли навстречу один одному. Между радиаторами ставится плата, она предназначена для соединения всех цепей питания будущего оборудования с отдельными деталями моста. При этом надо помнить, что цепь питания составляет 300 В. Чтобы выбросы трансформатора ушли в цепь, схема предусматривает наличие припоя на плате, конденсаторов на 0,15 мк. Все остальные части соединяются между собой проводниками. Используются снабберы с конденсаторами, они помогают глушить все выбросы трансформатора резонансного типа, уменьшать потери IGBT.

Вернуться к оглавлению

Проведение настройки

Схема намотки сварочного трансформатора

Схема намотки сварочного трансформатора.

Настройка инверторного сварочного аппарата проводится после окончания сборки. На ШИМ подается питание в 15 В, также рекомендуется подать питание и на вентилятор. Выполняется подключение реле К1 через резистор R11. Это позволяет исключить сильные всплески во время подачи рабочего напряжения в 220 В. Проверяется четкость срабатывания реле, после чего по истечении 2-10 сек на ШИМ подается рабочее питание. Не должно возникать прямоугольных импульсов, особенно после того, как сработали реле.

После этого на мост подается питание, равное 15 В. Это дает возможность убедиться в том, что его схема собрана правильно. На холостом ходу ток потребления будет до 100 мА. Плюс необходимо убедиться, что фазировка обмоток проведена правильно.

На ШИМ понижается тактовая частота, пока на нижнем ключе не появится загиб, то есть пока не наступит перенасыщение узла. Полученное значение делится на 2, число прибавляется к значению частоты, что и составляет рабочую частоту для платы ШИМ и самого сварочного трансформатора. Если во время настройки лампочка реле светится при токе в 150 мА, то схема собрана верно. Если же она светится слишком ярко, то сборка проведена неправильно либо наблюдается пробой обмоток. Для снижения уровня помех необходимо все питающие провода скрутить, они должны быть как можно короче.

Вернуться к оглавлению

Проверка агрегата в действии

После того как инверторный сварочный аппарат полностью готов, необходимо проверить его работоспособность. Для этого оборудование следует включить, постепенно добавлять ток и проверять напряжение осциллографом. Значения напряжения нижнего ключа не должны превышать 500 В, допустимый максимум равен 550 В при условии выброса. Если схема соблюдена правильно, то значение не превышает 350 В.

Во время проверки необходимо учесть, что когда шина издает максимальный шум, то подавать ток не следует.

Следующим этапом проверки будет непосредственно сварка. Первые 10 сек работы сварочного аппарата ничего делать не надо, затем следует проверить радиаторы. В течение следующих 20 сек надо соблюдать холодный режим, в течение 60 сек — теплый. Затем нужно взять 2 длинных электрода под выбранный тип сварки, полностью израсходовать их. Проверяется состояние трансформатора, он должен быть горячим, но не сильно, так как высокий уровень нагрева свидетельствует о том, что схема сборки была нарушена. Обычно после того, как подряд сгорели 3 электрода, радиаторы нагреваются достаточно сильно. Небольшой кулер охлаждает их до приемлемого состояния уже в течение 2 минут, после чего можно продолжать работу с высоким уровнем качества.

Схема сварочного инвертора трудоемка. Чтобы собрать инвертор, придется иметь некоторый опыт. Предварительно необходимо определить, какие именно материалы и инструменты потребуются для работы, после чего приступать к сборке. После ее окончания оборудование надо проверить, чтобы убедиться в его работоспособности и правильности конструкции.

moiinstrumenty.ru

конструкция силовой и управляющей части

Все схемы сварочных инверторов состоят из силовой и управляющей части.

Устройство инверторного сварочного аппарата

Устройство инверторного сварочного аппарата.

На сегодняшний день пользуются популярностью аппараты для сварки инверторного типа. Популярность связывается с их низкой стоимостью. Конструкции имеют большое количество достоинств, однако время от времени они, как и другие приспособления, нуждаются в ремонте. Для того чтобы выполнить ремонт инвертора, понадобится знать его устройство и главные функциональные блоки.

Сама конструкция для сварки являет собой блок питания большой мощности. Принцип его действия схож с импульсными блоками питания, к которым можно отнести, к примеру, блоки питания компьютеров АТ и АТХ. Сходства заключаются в способе преобразования энергии.

Энергия в устройстве для сварки преобразуется следующим образом:

  1. Выпрямляется переменное напряжение электрической сети 220 В.
  2. Преобразуется непрерывное напряжение в переменное с высокой частотой.
  3. Понижается интенсивность с высокой частотой.
  4. Выпрямляется пониженное напряжение.
Преобразование тока в сварочном инверторе

Преобразование тока в сварочном инверторе

Раньше в качестве главного компонента сварочного инвертора использовался силовой трансформатор большой мощности. Он снижает временное напряжение электрической сети, в результате чего можно получить от повторной обмотки большие токи (10-100 А), которые понадобятся для сварки. Если выполнить понижение интенсивности на повторной обмотке трансформаторной конструкции, то будет возможность во много раз увеличить ток, который сможет отдать нагрузке повторная обмотка. В результате будет уменьшено количество витков повторной обмотки, а диаметр провода для обмотки вырастит.

Трансформаторные конструкции имеют большую мощность. Они работают на частоте 50 Гц, имеют большие габариты и вес.

Для устранения подобного недостатка разрабатываются инверторные устройства для сварки. В данных устройствах рабочий диапазон увеличивается до 65-80 кГц, в результате чего размеры и общий вес конструкции уменьшены. Рабочая частота преобразования увеличена в 4 раза, что снижает габариты примерно в 2 раза. В результате сокращаются расходы меди и остальных материалов на сооружение приспособления.

Частота временного тока электрической сети всего 50 Гц, поэтому может возникнуть проблема с рабочей частотой устройства 65-80 кГц. Для этого используется схема сварочного инвертора, в составе которой есть транзисторы большой мощности. Подобные приспособления могут переключаться с частотой 65-80 кГц. Чтобы транзисторные изделия могли работать, надо подавать на них непрерывное напряжение, которое можно получить от выпрямительного приспособления.

Схема трансформатора инвентора

Схема трансформатора инвентора.

Интенсивность электрической сети будет выпрямляться мостом большой мощности и сглаживаться конденсаторными изделиями для фильтрации. В итоге на выходе выпрямительного изделия и фильтра получится непрерывное напряжение более 220 В. Это начальный этап преобразования.

Данная интенсивность и будет использоваться в качестве источника питания для инверторной схемы. Транзисторные изделия инвертора большой мощности подключаются к трансформаторной конструкции для понижения. Транзисторные изделия переключаются с большой частотой в 65-80 кГц, в связи с чем трансформаторная конструкция тоже будет работать на данной частоте. Для работы на больших частотах нужны меньшие трансформаторные устройства. Поэтому трансформатор будет сжат до небольших размеров, при этом мощность его остается неизменной.

С преобразованием возникают некоторые сложности, поэтому в схеме сварочного инвертора присутствуют и другие детали, которые предназначаются для того, чтобы устройство работало стабильно.

Схема сварочного инвертора и конструкция силового блока

Внешний вид сварочной платы с указанием размещения главных компонентов схемы можно увидеть на рис. 1. Первым делом следует разобраться в схеме силовой части, которую можно увидеть на рис. 2.

Схема сварочной платы

Рисунок 1. Схема сварочной платы.

Схема сварочного инвертора состоит из таких компонентов:

  • помеховый фильтр;
  • реле медленного пуска;
  • конденсаторные элементы;
  • сетевое выпрямительное устройство;
  • датчик тока;
  • кулер;
  • трансформаторная конструкция для понижения;
  • радиаторы.

Вернуться к оглавлению

Сетевой выпрямитель сварочного инвертора

Первым делом переменный ток 220 В выпрямляется мостом большой мощности, после чего фильтруется электролитическими конденсаторными элементами. Это нужно для того, чтобы временный ток электрической сети с частотой 50 Гц превратился в постоянный. Конденсаторные элементы С21 и С22 необходимы для того, чтобы сглаживать пульсации выпрямляемого напряжения, которые всегда будут после диодного выпрямительного элемента. Выпрямительное приспособление реализовывается по стандартной схеме диодного моста. Он выполняется по сборке PD1.

Нужно заметить, что на конденсаторных элементах фильтра интенсивность будет практически в 1,5 раза больше, чем на выходе моста. Следовательно, если после подобного моста получается 220 В напряжения с пульсациями, то на конденсаторных элементах получится уже 310 В непрерывного напряжения. В большинстве случаев рабочее напряжение ограничивают отметкой в 250 В, так как интенсивность в сети в некоторых случаях завышена. Поэтому на выходе фильтра получится 350 В. В итоге конденсаторные элементы будут иметь вольтаж в 400 В, при этом будет некоторый запас.

Схема силовой части инвентора

Рисунок 2. Схема силовой части инвентора.

На печатной плате устройства для сварки элементы сетевого выпрямительного элемента занимают большое количество места. Диодный мост для выпрямления монтируется на радиаторную конструкцию для охлаждения. Через данную сборку будут протекать огромные токи, в результате чего диоды нагреваются. Чтобы защитить мост, на радиаторном устройстве следует установить термический предохранитель, который будет размыкаться в случае превышения температуры радиаторной конструкции более 90°С.

В выпрямительном приспособлении используются сборки типа GBPC 3508. Данная сборка рассчитывается на прямой ток 35 А и вольтаж 800 В.

После моста устанавливаются несколько электролитических конденсаторных элементов, емкость каждого из которых составляет 680 мкФ, а рабочий вольтаж — 400 В. Емкость конденсаторных приспособлений будет зависеть от модели используемого устройства. Непрерывная интенсивность с выпрямительного изделия и фильтра будет подаваться на устройство.

Вернуться к оглавлению

Устройство помехового фильтра и инвертора

Чтобы помехи высоких частот, которые будут возникать во время функционирования инвертора для сварки, не смогли попасть в электрическую сеть, перед выпрямительным изделием понадобится установить фильтр электромагнитной совместимости. Согласно схеме, подобный фильтр состоит из элементов С1, С8, С15 и дроссельного изделия на кольцевом проводе Т4.

Схема помехового фильтра

Схема помехового фильтра.

Устройство инвертора собирается по схеме косого моста. В данном случае применяется несколько ключевых транзисторных изделий высокой мощности. В качестве главных транзисторных приспособлений могут использоваться как IGBT-элементы, так и MOSFET. Подобные компоненты надо будет установить на радиаторное приспособление, чтобы можно было отводить тепло.

Непрерывная интенсивность будет коммутироваться транзисторными изделиями Q5 и Q8 через обмотку трансформаторной конструкции Т3 с частотой намного большей, чем частота электрической сети. Частота переключений может быть 10-50 кГц. В данном случае будет создан временный ток, как и в электрической сети, однако он будет иметь частоту в 10-50 кГц.

Чтобы защитить транзисторные изделия от нежелательных выбросов интенсивности, следует применить RC-цепочки.

Чтобы понизить интенсивность, в схеме предусматривается высокочастотный трансформаторный элемент Т3. При помощи транзисторных изделий Q5 и Q8 через начальную обмотку трансформаторной конструкции Т3 будет коммутироваться интенсивность, которая сможет поступать от выпрямителя. В результате получится непрерывное напряжение в 310-350 В.

Благодаря транзисторным изделиям непрерывная интенсивность будет преобразовываться во временную.

Трансформаторные изделия не могут преобразовывать постоянный ток.

С повторной обмотки в трансформаторном приспособлении Т3 можно будет снять уже намного меньшую интенсивность (порядка 65-70 В). В данном случае максимальный ток будет достигать 125-130 А, потому целесообразно использовать трансформаторное приспособление Т3. Через начальную обмотку будет протекать маленький ток, но большого напряжения. С повторной обмотки можно снять маленькое напряжение, но ток в данном случае будет большим.

Вернуться к оглавлению

Схема выходного выпрямительного приспособления сварочного инвертора

Данный элемент собирается на основе мощных диодов с одним катодом.

Приспособления будут выпрямлять временный ток высокой частоты. В случае выполнения ремонтных работ рекомендуется заменять диоды в выходном элементе для выпрямления именно на быстродействующие.

Каждый сварочный инвертор имеет свою схему, однако основные элементы везде одинаковы.

moiinstrumenty.ru

Схема инверторного сварочного аппарата - оборудование для инверторной сварки

инвертор1Сварочные работы больше не привилегия профи, и специальные знания по сварке могут пригодиться не только сварщикам. Схема инверторного сварочного аппарата – в нашей статье.Иметь сварочный аппарат – это уже не прихоть, а необходимость тем большая, чем больше хозяйство. Починить что-нибудь, не прибегая к помощи приглашенного сварщика – это дело чести настоящего хозяина. Понятно, что такая информация как схема сварочного аппарата, будет полезна домашнему мастеру.

Отличия инверторов от традиционных сварочных аппаратов

Традиционный сварочный аппарат – трансформаторного типа. Он способен преобразовать силу тока, повысив в несколько раз — до тысяч ампер. Трансформатор предназначен для разных видов сварки и считается более универсальным. При этом он имеет ряд недостатков.

инвертор2

Главный недостаток трансформатора – нестабильность дуги, которая зависит от колебаний напряжения сети. С помощью переменного тока, выдаваемого трансформатором, сделать качественный шов очень непросто. Поэтому применяют дополнительное оборудование – выпрямитель, который имеет немалый вес.

В отличие от трансформатора инвертор, вырабатывающий постоянный ток, не зависит от входного напряжения, обеспечивая устойчивую дугу. При этом, чем больше частота напряжения, тем меньше габариты аппарата. То есть, инвертор дает нам следующие преимущества:

  • Компактность и небольшой вес;
  • Низкая энергоемкость;
  • Регулировка силы тока;
  • Чистота и качество сварного шва.

Теперь, когда мы поняли, в чем отличия инвертора, посмотрим, какова схема инверторного сварочного аппарата.

Схема работы инвертора

Рассмотрим, какова схема сварочного аппарата. Сварочный инвертор состоит: из выпрямителя, преобразователя, трансформатора, а также — выходного выпрямителя и управляющей схемы. В общем, схема инверторной сварки следующая.

инвертор3

Когда включается инвертор, ток попадает в первичный выпрямитель, где превращается в постоянный того же напряжения, что и в сети – 220 вольт. В инверторном блоке ток снова становится переменным, но уже с другой частотой – в несколько десятков килогерц (не 50 Гц как в сети). Для этого служат высокочастотные транзисторы и тиристоры.

Ток высокой частоты попадает на трансформатор, который понижает напряжение, но повышает силу тока. Кроме того, трансформатор уменьшает потери тока (КПД около 90%) и обеспечивает стабильную подачу напряжения.

Вторичный выпрямитель снова преобразует переменный ток в постоянный. И далее ток попадает уже на электрод. Такова в целом схема инверторного сварочного аппарата. Конечно, устройство его гораздо сложнее.

Важнейший элемент — управляющий блок на основе микропроцессоров. Основной элемент блока — микросхема ШИМ-контроллера. Координируя работу всех узлов аппарата, блок обеспечивает стабильность напряжения на выходе и, соответственно, сварной дуги. В частности, переменный резистор в схеме блока регулирует силу тока сварки.

инвертор4

Такая схема инверторной сварки позволяет не только менять полярность тока на электроде, но и получать другие самые разнообразные характеристики сварки. Инверторы – компактные, легкие, удобные в работе – позволяют варить самые разнообразные металлоконструкции из черного металла.

Схема точечной сварки

Точечная сварка – это, если коротко, такой процесс, когда детали соединяются не сплошным швом, а в нескольких точках. Применяется такой вид сварки для деликатного соединения тонких деталей; используется в машиностроении, авиационной и других видах точной промышленности.

В общем, схема точечной сварки следующая. Это термоэлектрический процесс, в ходе которого ток пропускается через детали, подлежащие соединению, и нагревает их в необходимых точках. При этом прочность соединения зависит от силы тока и времени воздействия, усилия сжатия деталей, их структурой. Преимущества точечной сварки очевидны:

  1. Легкое, прочное и долговечное соединение.
  2. Возможность работы с деликатными материалами.
  3. Низкое безопасное напряжение.
  4. Высокая скорость работы.

Схема точечной сварки состоит в том, что ток контролируемой силы подается медными электродами, диаметр которых определяет плотность энергии. Под действием тока образуется сварное ядро из расплавленного металла – диаметром от 4 до 12 мм. При этом различают различные режимы сварки: мягкий и жесткий.

инвертор5

Мягкий предполагает плавный нагрев заготовок небольшой силой тока относительно продолжительное время. Соответственно, при этом энергии потребляется меньше, и для такой сварки нужны аппараты меньшей мощности – более дешевые. Мягкий метод применяется при сварке деталей, которые необходимо закалить.

Жесткий метод отличает более высокие значения силы тока, значительным давлением и большей продолжительностью процесса сварки. Сварные аппараты подбирают исходя из задачи, соединение какого типа необходимо сделать, и различаются они типами встроенных трансформаторов. Помимо компактных приборов существуют также многофункциональные сварочные станки.

Поделитесь со своими друзьями в соцсетях ссылкой на этот материал (нажмите на иконки):

swarka-rezka.ru


Каталог товаров
    .