интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Схемы электроснабжения. Схема питающих и распределительных сетей предприятия, производства. Схемы электроснабжения


Схемы электроснабжения. Схема питающих и распределительных сетей предприятия, производства.

Схема электроснабжения строительной площадки показывает связь между источниками питания и приемниками электроэнергии. В качестве источника электроснабжения района, как правило, выбирается государственная или районная энергосистема. Передача электроэнергии к распределительным пунктам или подстанциям осуществляется по питающим линиям.

На рис. 1, а показана схема электроснабжения строительства крупного промышленного предприятия, включающая ГПП и несколько потребительских подстанций (ТП). Источником питания является энергосистема. Электроснабжение может осуществляться от подстанции районной энергосистемы (рис. 1, б).  Распределение  электроэнергии  к  электроприемникам  на  напряжение  до 1000  B  осуществляется  по  распределительным  сетям  низкого  напряжения (рис. 1, в).

Схемы электроснабжения строительных площадок

Рис. 1. Схемы электроснабжения строительных площадок: а – от энергосистемы; б – от районной энергосистемы; в – от потребительской подстанции: ЭС – энергосистема; РЭС – районная система; ГПП – главная понизительная подстанция; ТП – потребительская трансформаторная подстанция; М – нагрузка

Возможно электроснабжение строительных площадок и производств от смежных источников питания, например, от энергосистемы и от собственной электростанции (рис. 2). В качестве собственной электростанции может использоваться энергопоезд.

Напряжение на шинах РП от энергосистемы и собственной электростанции при   этом должно совпадать (рис. 2, а). При несовпадении напряжений применяется трансформация напряжения от энергосистемы через трансформаторы Т1 и Т2 (рис. 2, б). Возможно электроснабжение при двухстороннем питании.

Схемы электроснабжения с двухсторонним питанием повышают надежность электроснабжения, так как при повреждении одной из линий электроснабжение потребителей, питающихся от поврежденной линии, восстанавливается от второй линии через секционный выключатель на стороне низшего напряжения.

Схема электроснабжения от энергосистемы и собственной электростанции

Рис. 2. Схема электроснабжения от энергосистемы и собственной электростанции: а – на одинаковом напряжении; б – с трансформацией напряжения; С – энергосистема; Г – генератор электростанции; РП – распределительный пункт; Т1, Т2 – понижающие трансформаторы; ТП – потребительская трансформаторная подстанция

Напряжение электрических сетей в системе внутреннего электроснабжения может быть 6, 10 и 20 кВ. Наиболее распространенным является напряжение 10 кВ. Оно является более экономичным по сравнению с напряжением 6 кВ по уровню потерь мощности и напряжения в сетях.

Схемы распределения электроэнергии

Рис. 3. Схемы распределения электроэнергии: а – радиальная; б – магистральная

Напряжение 6 кВ используется в системах, где переход на напряжение 10 кВ считается не рациональным в связи с заменой трансформаторов и электроприемников (например, электродвигателей). Напряжение 20 кВ пока применяется только в сетях, близких от ТЭЦ с генераторным напряжением 20 кВ.

Передача электроэнергии от ИП к распределительным пунктам (РП), ТП или  отдельным  электроприемникам  может  осуществляться  по  радиальным

(рис. 3, а), магистральным (рис. 3, б) или смешанным схемам, сочетающим элементы радиальных и магистральных схем.

Радиальные схемы обладают высокой надежностью. Линии электропередач по этим схемам отходят от источника питания «по радиусам» к РП или ТП. Недостатком схемы является то, что при аварийном отключении питающей линии может оказаться обесточенной большая группа потребителей. Этот недостаток устраняется применением резервирования.

При магистральной схеме одна питающая магистраль обслуживает несколько ТП или РП.  Распределение энергии осуществляется путем выполнения ответвлений от воздушной линии к отдельным подстанциям. Питание ТП можно осуществить путем поочередного ввода ЛЭП сначала от РП к одной ТП, затем от нее к другой ТП и т. д. При магистральных схемах уменьшается протяженность сетей, количество выключателей на РП, снижаются потери мощности в сетях, затраты на сооружение сетей.

Недостатком магистральных схем является снижение надежности по сравнению с радиальными схемами, так как при повреждении магистрали обесточенными оказываются все потребители, питающиеся от нее.

Распределение электроэнергии по сквозным двойным магистралям

Рис. 4. Распределение электроэнергии по сквозным двойным магистралям: РП – распределительный пункт; ТП – трансформаторная подстанция; АВР – устройство автоматического резервирования

Надежность электроснабжения повышается при применении двухтрансформаторных  подстанций  и  использовании  сквозных  двойных  магистралей (рис. 4). В этом случае от каждой секции РП две магистрали заводятся поочередно на каждую секцию двухтрансформаторной подстанции ТП. Если на шинах низкого напряжения ТП применить устройство автоматического резервирования, например, на автоматических выключателях, то при выходе из строя любой питающей магистрали высшего напряжения электроэнергия будет подаваться потребителям по второй магистрали путем автоматического переключения на секциях шин низкого напряжения. Такие переключения называются автоматическим включением резерва (АВР).

Распределение электроэнергии в сетях до 1 кВ. Схема электроснабжения  объектов строительства зависит от их категории по надежности и бесперебойности электроснабжения. Для электроснабжения производственных электроприемников применяются радиальные, магистральные и смешанные схемы. Магистральная схема применяется для питания нескольких электроприемников отдельного технологического агрегата, или небольшого количества мелких электроприемников, не  связанных технологическим процессом (рис. 5,  а). По радиальной схеме подключаются наиболее мощные электроприемники или отдельные распределительные пункты.

Только радиальные или магистральные схемы применяются редко. Наибольшее распространение получили смешанные схемы, сочетающие и радиальные и магистральные признаки (рис. 5, б).

Схемы электроснабжения производственных потребителей

Рис. 5. Схемы электроснабжения производственных потребителей: а) – магистральная; б) – смешанная; ТП – трансформаторная подстанция; Т1, Т2 – трансформаторы двухтрансформаторной ТП

Схемы осветительных сетей. Электроснабжение светильников общего освещения зданий осуществляется при напряжении 380/220 В переменного тока при заземленной нейтрали и при напряжении 220 В при изолированной нейтрали. Для светильников местного освещения с лампами накаливания применяется напряжение не более 220 В в помещениях без повышенной опасности и не более 42 В в помещениях с повышенной опасностью. Для переносных ручных светильников в помещениях с повышенной опасностью применяется напряжение до 42 В. При стесненных условиях работы питание переносных светильников должно быть при напряжении до 12 В через специально предназначенные трансформаторы.

Схемы электроснабжения осветительной нагрузки в системе электроснабжения цеха (фермы) любого предприятия соответствуют схемам электроснабжения силовой нагрузки, которые рассматривались выше.

При этом к схемам электроснабжения осветительных нагрузок предъявляются следующие требования:

-          электроснабжение осветительной нагрузки должно обеспечиваться совместно с электроснабжением силовой нагрузки или раздельно от электроснабжения силовой нагрузки. Целесообразность совмещения питания электроприемников силовой и осветительной нагрузок должна подтверждаться техникоэкономическими расчетами;

-          схемы питания осветительных установок в зданиях (ремонтные цехи и мастерские, бетонные и растворные заводы, административные помещения) должны допускать автоматизированное управление освещением;

-          схемы питания осветительных установок должны обеспечивать надежность и безопасность электроснабжения.

Аварийное освещение требует создания для него самостоятельной системы электроснабжения, независимой от сети рабочего освещения. Независимым источником питания аварийного освещения является трансформатор, получающий питание от шин, не связанных с шинами рабочего освещения, генератор, приводимый каким-либо первичным двигателем или аккумуляторная батарея.

Схемы питания осветительных сетей показаны на рис. 6 – 8.

Схема совместного питания силовой и осветительной нагрузок от двух подстанций (ТП-1, ТП-2)

Рис. 6.  Схема совместного питания силовой и осветительной нагрузок от двух подстанций (ТП-1, ТП-2)

На рис. 6 приведена схема совместного питания силовой и осветительной нагрузки от двух однотрансформаторных подстанций. Схема совмещенного питания силовой и осветительной нагрузок от одного трансформатора снижает количество трансформаторов по сравнению со схемой раздельного питания этих нагрузок.

На рис 7 приведена схема питания светильников в производственных цехах (ремонтно-механический, столярный, арматурный) от двух трансформаторов.

Схема питания осветительной нагрузки в цехе от двух трансформаторов

Рис. 7.  Схема питания осветительной нагрузки в цехе от двух трансформаторов

В этой схеме чередуются ряды светильников, питающихся от разных трансформаторов. При исчезновении напряжения на одном из трансформаторов потеряет питание половина светильников. Освещенность в цехе снизится на 50%. Это позволяет продолжать работу, выполнять определенные технологические операции, не требующие высокой освещенности.

Схемы наружного и уличного освещения. Электроснабжение светильников  наружного  и  уличного  освещения  осуществляется  по  магистральной схеме с равномерной загрузкой фаз (рис. 8).

Схема наружного и уличного электроснабжения

Рис. 8. Схема наружного и уличного электроснабжения

 

www.eti.su

Схемы электроснабжения и области их применения

Хотя бы раз в жизни мы с вами слышали выражение от специалистов "переключили на резервное питание". Что это значит? Оказывается, речь идет о схеме электроснабжения.

Схема электроснабжения в доме.

Схема электроснабжения в доме.

Основным вопросом распределения электроэнергии является выбор схемы. Правильно составленная схема должна обеспечивать надежность питания потребителей. Все встречающиеся на данный момент схемы представляют собой конструкцию отдельных элементов: фидеров, магистралей и ответвлений.

Фидер - линия, предназначенная для передачи электроэнергии от распределительного устройства к распределительному пункту, магистрали или отдельному электроприемнику.

Магистраль – линия, предназначенная для передачи электроэнергии нескольким распределительным пунктам или электроприемникам, присоединенным к ней в разных точках.

Ответвление – линия, отходящая от магистрали и предназначенная для передачи электроэнергии к одному распределительному пункту или электроприемнику.

Одним из главных вопросов при проектировании сетей электроснабжения является выбор схем.

Основными являются магистральные и радиальные.

На рисунке ниже мы представили наиболее часто встречающиеся на практике схемы:

  • а - радиальная с односторонним питанием.
  • б - радиальная с двухсторонним питанием
  • в - радиально-магистральная (смешанная)
  • г - магистральная с односторонним питанием.

При магистральной схеме снабжения одна линия-магистраль обслуживает несколько распределительных пунктов или приемников, присоединенных к ней в разных ее точках.

Схема электроснабжения

Схема электроснабжения.

При радиальной схеме электроснабжения каждая линия является как бы лучом, соединяющим узел сети с единственным потребителем. Ну, а в общем комплексе сети эти схемы могут сочетаться.

Радиальная схема применяется в случаях, когда имеются отдельные узлы достаточно больших сосредоточенных нагрузок, по отношению к которым подстанция занимает центральное месторасположение. При радиальной схеме отдельные мощные электроприемники могут получать питание непосредственно от подстанции. К числу радиальных схем с непосредственным питанием от подстанции относятся все схемы питания электроприемников высокого напряжения либо от распределительного устройства высшего напряжения на подстанции.

К достоинствам радиальных схем можно отнести следующее:

  1. Максимальная простота.
  2. Аварийное отключение радиальной линии не отражается на электроснабжении остальных потребителей.

Но есть и недостатки:

  1. Большой расход кабельной продукции и, следовательно, высокая стоимость системы.
  2. При одиночных радиальных линиях невысока надежность электроснабжения.

Магистральная схема электроснабжения применяется, когда нагрузка имеет сосредоточенный характер, но отдельные ее узлы оказываются расположенными в одном и том же направлении по отношению к подстанции и на сравнительно небольших расстояниях друг от друга. При магистральных схемах с сосредоточенными нагрузками присоединение отдельных групп электроприемников, так же как и при радиальных схемах, производится обычно через распределительные пункты. Размещение распределительных пунктов имеет важное значение.

Здесь можно перечислить следующие требования:

Схема радиального электроснабжения.

Схема радиального электроснабжения.

  1. Протяженность магистралей должна быть минимальной.
  2. Распределительные пункты должны быть размещены в местах, удобных для обслуживания.
  3. Должны быть сведены к минимуму случаи обратного питания электроприемников.

Как и в радиальных схемах, так и в магистральных есть свои преимущества и недостатки.

К преимуществам можно отнести следующее:

  1. Меньше расход кабеля.
  2. Лучшая загрузка линий.

К недостаткам относятся:

  1. Трудности при нахождении места повреждения.
  2. Более низкая надежность электроснабжения.

При выборе схем электроснабжения потребителей руководствоваться надо не только тем, что мы рассмотрели выше. Основным и, пожалуй, главным критерием выбора является категория электроснабжения того или иного потребителя. Все они разделяются на 3 основных категории.

Магистральная схема электроснабжения

Магистральная схема электроснабжения.

1 категория - потребители и электроустановки, перерыв которых в электроснабжении может повлечь за собой опасность для жизни людей, значительный материальный ущерб, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства. К потребителям и электроустановкам 1 категории относятся металлургические предприятия химической и горной промышленности, операционные, установки водоснабжения и канализации. Из состава потребителей и электроустановок 1 категории выделяется особая группа. К данной группе относятся особо важные госучреждения, военные объекты и объекты гражданской обороны.

2 категория - потребители и электроустановки, перерыв электроснабжения которых приводит к массовому недодопуску продукции, массовым простоям рабочих и механизмов, нарушению нормальной деятельности большого количества городских и сельских жителей. К потребителям и электроустановкам 2 категории относятся предприятия машиностроительной и легкой промышленности, учебные, детские дошкольные учреждения.

3 категория - это все остальные потребители и электроустановки.

Потребители и электроустановки 1-й категории должны обеспечиваться электроэнергией от двух независимых, взаимно резервирующих источников питания, и перерыв при нарушении электроснабжения одного из источников питания может быть лишь на время автоматического восстановления питания.

Потребители и электроустановки 2-й категории обеспечиваются электроэнергией от двух независимых, взаимно резервирующих источников питания, и перерыв в электроснабжении должен составлять время, необходимое для включения резервного питания действиями дежурного персонала или выездной бригадой.

И для потребителей и электроустановок 3-й категории электроснабжение может выполняться от одного источника питания при условии, что перерывы в электроснабжении, необходимые для ремонта или замены поврежденного элемента системы, не превышают одних суток.

Поделитесь полезной статьей:

Top

fazaa.ru

Выбор схемы электроснабжения.

Выбор рациональной схемы электроснабжения наряду с выбором напряжения

является одним из главных вопросов, решаемых при разработке проекта реконструкции системы электроснабжения. Оба данных вопроса рассматриваются в неразрывной связи друг с другом.

Проектируемая схема должна включать в себя элементы существующей при соответствии их пропускной способности новым расчетным условиям. Равным образом это касается ТП, РУ высокого напряжения, кабельных линий, токопроводов и других элементов. При необходимости замены кабельных или воздушных линий, их сечения выбираются на основании ТЭР /9/.

Схема распределения электроэнергии строится с соблюдением принципов приближения высокого напряжения к потребителям, отказа от холодного резерва, раздельной работы линии и трансформаторов, глубокого секционирования. Схема

должна быть простой, удобной в эксплуатации, ремонто-пригодной, предусматривать применение комплектного электрооборудования и индустриальных способов монтажа. При выборе схемы обязательно учитывается перспектива развития предприятия на 8-10 лет. Существующая схема внешнего электроснабжения анализируется с точки зрения обеспечения требуемой степени бесперебойности питания. При необходимости добавляются новые линии и трансформаторы.

Виды схем:

1) Радиальные

2) Магистральные

3) Смешанные

Факторы влияющие на выбор схемы:

1) Категория потребителя по надежности эл.снабжения

2) Расположение цехов относит. Друг друга и источника питания

3) Режим работы эл. Оборудования в цехе, который определяет график нагрузки цеха

 

Радиальная схема — электроснабжение осуществляется линиями, не имеющими распределения энергии по их длинам (рис. 1, а). Такие линии называют радиальными. В электроснабжении городов радиальные линии называют питающими. Линии W1—W4 на рис. 1, а — радиальные. Питание потребителя П1 на рис. 1, а производится двумя линиями W1 и W2. Такая схема называется радиальной с резервированием. С целью повышения надежности, линии W1 и W2 приемников I категории подключают к разным НИП.

Рис.1. Схемы электроснабжения: а— радиальная; б— магистральная; в— смешанная

Магистральная схема — линии, питающие потребителей (приемники), имеют распределение энергии по длине (рис.1 б). Такие линии называют магистральными (линия W). При магистральном подключении ТП (на проходной ТП) целесообразно на некоторых из них на питающих или отходящих линиях использовать силовые выключатели с защитами, с целью локализации поврежденного участка сети и ограничения числа отключенных при этом ТП.

Смешанная схема — электроснабжение осуществляется радиальными и магистральными линиями. На рис.1в линия W1 — радиальная, W2 — магистральная, т. е. схема является смешанной.

Достоинство радиальных схем: максимальная простота; аварийное отключение радиальной линии не отражается на электроснабжении остальных потребителей.

Недостаток: большой расход кабельной продукции обусловливает высокую стоимость системы. Кроме того, при одиночных радиальных линиях невысока надежность электроснабжения.

Магистральные схемы имеют следующие достоинства:

- лучшая загрузка линий, т. к. к каждой линии подключена не одна, а группа ТП;

- меньший расход кабелей;

- на ЦП и РП нужно устанавливать меньшее количество выключателей.

Недостатки одиночных магистралей заключаются в трудностях при отыскании места повреждения магистрали и в более низкой надежности электроснабжения по сравнению с радиальной схемой. Последнее объясняется тем, что на надежность работы магистрали влияют показатели надежности стороны ВН ТП, включая силовые трансформаторы. Применение двухстороннего питания одиночных магистралей (петлевая схема) не решает проблемы обеспечения надежности и решения трудностей при отыскании места повреждения. Двойные магистрали с двухсторонним питанием (двухлучевые схемы) могут обеспечить достаточную надежность электроснабжения всех категорий электроприемников. Это обусловило их широкое распространение в электроснабжении городов.

Сопоставив перечисленные схемы электроснабжения, можно сделать следующие выводы.

1. Наиболее простыми и отвечающими требованиям III категории надежности являются сети, выполненные по радиальной схеме без резервирования и с одиночными магистралями.

2. Требованиям II категории надежности отвечают широко распространенные магистральные многолучевые схемы, чаще всего двухлучевые.

3. Электроснабжение приемников I категории удобно производить с помощью радиальных схем с резервированием, а также двухлучевых схем. Во всех случаях питания приемников I категории должен применяться АВР.

 

Выбор напряжения

На выбор уровня U влияет:

1) Категория помещения по опасности поражения эл. Током

2) Класс электротехнического оборудования по способу защиты

А) класс 0- оборудование в котором защита от поражения эл. Током

обеспечивается основной изоляцией, при этом отсутствует эл. соединение открытых проводящих частей, если такие имеются. При пробое основной изоляции защита должна обеспечиваться окружающей средой.Б) класс1-оборудование, в котором защита от поражения эл. током обеспечивается основной изоляцией и соединением открытых проводящих частей доступных к прикосновению с защитным проводником стационарной установки.

В) класс2- оборудование, в котором защита обеспечивается применением двойной или усиленной изоляцией. В оборудовании этого класса нет ср-в защитного заземления и защитные св-ва окр. Среды не используют в качестве меры защиты.

Г) класс3- оборудование, в котором защита основана на питании от источника безопасного сверхнизкого U и в котором не возникает U выше безопасного сверхнизкого значения.

3) Режим работы нейтрали

4) Тип источников света

5) Высота подвеса светильников

6) Система освещения

 

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru

радиальная схема электроснабжения - это... Что такое радиальная схема электроснабжения?

 радиальная схема электроснабжения

 

радиальная схема электроснабжения-[Интент]

См. также: радиальная линия электропередачиРадиальная схема - схема, в которой линия электропередачи соединяет подстанцию верхнего уровня с подстанцией нижнего уровня (или устройством распределения электроэнергии, приемником электроэнергии) без промежуточных отборов мощности. Радиальные схемы просты, надежны, в большинстве случаев позволяют использовать упрощенные схемы первичной коммутации подстанции нижнего уровня. Аварийное отключение радиальной линии не отражается на потребителях электроэнергии, подключенных к другим линиям. К недостаткам радиальных схем можно отнести более высокую стоимость по сравнению с магистральными схемами, больший расход коммутационной аппаратуры и цветных металлов.

Радиальные схемы следует применять:

  • при сосредоточенных нагрузках;
  • для питания мощных электроприемников с нелинейными, резко переменными, ударными нагрузками, отрицательно влияющими на качество электрической энергии;
  • при повышенных требованиях к надежности электроснабжения.

[Ополева Г. Н. Схемы и подстанции электроснабжения: Справочник: Учеб. пособие. - М.; ФОРУМ: ИНФРА-М, 2006] 

Радиальная схема — электроснабжение осуществляется линиями, не имеющими распределения энергии по их длинам. Такие линии называют радиальными. В электроснабжении городов радиальные линии называют питающими. Линии W1—W4  — радиальные. Питание потребителя П1 производится двумя линиями W1 и W2. Такая схема называется радиальной с резервированием. С целью повышения надежности, линии W1 и W2 приемников I категории подключают к разным НИП.

4721Одноступенчатая радиальная схема

Радиальные схемы бывают одно- и двухступенчатыми.

В одноступенчатой радиальной схеме потребители (приемники) непосредственно связаны с ЦПВ двухступенчатой радиальной схеме между ЦП и потребителями (приемниками) имеются дополнительные элементы — РП.

4724

Питание потребителей П1 и П2 производится по одноступенчатой, а ПЗ—П5 — по двухступенчатой схеме через РП. РП питается по двум радиальным линиям W2 и W3, т. е. выполнена радиальная с резервированием схема питания приемников ПЗ—П5.Достоинство радиальных схем: максимальная простота; аварийное отключение радиальной линии не отражается на электроснабжении остальных потребителей.Недостаток: большой расход кабельной продукции обусловливает высокую стоимость системы. Кроме того, при одиночных радиальных линиях невысока надежность электроснабжения.

[http://www.baurum.ru/_library/?cat=construction-networks&id=3864]

 

Тематики

  • электроснабжение в целом

Справочник технического переводчика. – Интент. 2009-2013.

  • радиальная схема расположения скважин при заводнении
  • радиальная толщина края (контактной линзы)

Смотреть что такое "радиальная схема электроснабжения" в других словарях:

  • смешанная схема электроснабжения — [Интент] Смешанная схема — электроснабжение осуществляется радиальными и магистральными линиями. Линия W1 — радиальная, W2 — магистральная. [http://www.baurum.ru/ library/?cat=construction networks id=3864] Тематики… …   Справочник технического переводчика

  • Индукционная тигельная печь — Содержание 1 Общая характеристика индукционных тигельных печей 2 Конструкция индукционной ти …   Википедия

  • СТО Газпром 2-2.3-141-2007: Энергохозяйство ОАО "Газпром". Термины и определения — Терминология СТО Газпром 2 2.3 141 2007: Энергохозяйство ОАО "Газпром". Термины и определения: 3.1.31 абонент энергоснабжающей организации : Потребитель электрической энергии (тепла), энергоустановки которого присоединены к сетям… …   Словарь-справочник терминов нормативно-технической документации

  • Электроснабжение —         служит для обеспечения электроэнергией всех отраслей хозяйства: промышленности, сельского хозяйства, транспорта, городского хозяйства и т. д. В систему Э. входят источники питания, повышающие и понижающие подстанции электрические (См.… …   Большая советская энциклопедия

  • ГОСТ 24291-90: Электрическая часть электростанции и электрической сети. Термины и определения — Терминология ГОСТ 24291 90: Электрическая часть электростанции и электрической сети. Термины и определения оригинал документа: 4 (электрическая) подстанция; ПС Электроустановка, предназначенная для приема, преобразования и распределения… …   Словарь-справочник терминов нормативно-технической документации

  • Хронология Московского метрополитена — Содержание 1 XX век 1.1 1901 1.2 1912 1.3 1931 1.4 …   Википедия

  • Инфраструктура — (Infrastructure) Инфраструктура это комплекс взаимосвязанных обслуживающих структур или объектов Транспортная, социальная, дорожная, рыночная, инновационная инфраструктуры, их развитие и элементы Содержание >>>>>>>> …   Энциклопедия инвестора

  • Трёхфазный двигатель — Трёхфазный синхронный двигатель Трёхфазный двигатель  электродвигатель, который конструктивно предназначен для питания от трехфазной сети переменного тока. Представляет собой машину переменного тока, состоящую из статора с тремя обмотками,… …   Википедия

technical_translator_dictionary.academic.ru

Построение схем внешнего электроснабжения промышленных предприятий и коммунальных хозяйств

Как правило, при напряжениях от 6 до 110 кВ осуществляют электроснабжение промышленных предприятий, но иногда это напряжение может быть и выше. Выбранные схемы электроснабжения должны быть экономичными по потерям электрической энергии, расходам материалов и оборудования, капитальным затратам и эксплуатационным расходам.

Перед выбором схем электроснабжения и напряжений линий питания всегда проводят технико-экономические расчеты, для определения одного, самого экономичного варианта электроснабжения, который даст наименьшие приведенные затраты:

Приведенные затраты систем элекитроснабжения

Где: З – затраты приведенные,  Ин – издержки производства ежегодные, К – капиталовложения, Р – коэффициент эффективности (нормативный) принимаемый 0,15.

Стоить отметить, что данная формула применима при единовременных капитальных вложениях и сроке строительства не превышающим один год. При времени строительства более одного года и постоянных издержках ежегодных в формулу подставляют величину приведенную Кпр.

Схемы электроснабжения коммунальных предприятий

Для коммунальных предприятий наиболее характерным является внешнее электроснабжение на напряжении 6 – 10 кВ.

На рисунке ниже показаны наиболее распространенные схемы питания коммунальных предприятий:

Схемы внешнего электроснабжения на напряжения 6-10 кВ

На данном рисунке показаны схемы питания различных категорий потребителей, от первой до третьей. Давайте рассмотрим подробнее.

На рисунке а) показана третья категория надежности, поскольку питаются потребители только от одной линии, а это значит, что резерв отсутствует в случае обесточивания питающей линии. В данной категории возможно отключение потребителей на время ремонтных работ.

На рисунке б) показана вторая категория надежности электроснабжения, но данная схема также может быть применена и к третьей категории надежности электроснабжения. При обесточивании одной из линий всю нагрузку примет на себя вторая линия, однако для этого необходимо выполнить переключения коммутирующих аппаратов Р1 – Р2 – Р3. Все переключения выполняются вручную, поэтому перерыв электроснабжения допускается на время, необходимое бригаде электромонтеров для проведения соответствующих работ. Иногда для переключения могут понабиться выезд бригады на подстанцию, в случае если на ней нет обслуживающего персонала.

Также нужно знать, что проводить операции с высоковольтными разъединителями можно только в  случае отсутствия в цепи нагрузочного тока, так как его наличия приведет к возникновению дуги, что при высоких напряжениях и таких мощностях может иметь очень печальные последствия.

В виде исключения разъединителями трехполюсными разрешают включать и отключать:

  • Зарядный ток кабельных линий и сборных шин при условии, что напряжение не более 10 кВ, а длина линии не более 10 км;
  • Ток замыкания на землю до 30 А для линий с напряжением не более 10 кВ;
  • Ток холостого хода трансформатора силового при условии, что его мощность не более 1000 кВА и напряжение питания не более 10 кВ;
  • Измерительные трансформаторы напряжения;
  • Токи уравнительные линий, при условии, что разность напряжений на разъединителе после отключения не превысит 2% номинального;

На рисунке в) изображена схема первой категории электроснабжения. Здесь выключатели В1 – В2 – В3 осуществляют подключение обесточенных шин РП ко вводу, который остался под напряжением. Выключатели сделают это в автоматическом режиме с минимальным временем отключения питающего напряжения от силовых шин РП.

Схемы электроснабжения крупных промышленных предприятий

Электроснабжение таких предприятий, имеющих суммарную мощность потребителей электрической энергии в десятки, а иногда и сотни киловатт, осуществляют на напряжениях 35, 110 кВ, но иногда при особенно удаленных или очень крупных предприятиях электроснабжение может осуществляться линиями в 220 кВ.

Для таких предприятий характерны следующие схемы электропитания:

  • Наличие одной или двух линий высокого напряжения с сооружением ГПП – главной питающей подстанции;
  • Схема «глубокого ввода»;

В случае сооружения ГПП, которая понижает высокое напряжение с 35-110 кВ до 6-10 кВ, от которой получают питания распределительные пункты РП  6-10 кВ, а также трансформаторные подстанции.

Две питающие линии от двух независимых источников – наиболее распространенные схемы ГПП:

Схемы внешнего электроснабжения крупных предприятий с ГПП

Каждая из этих линий и, соответственно, их трансформаторы выбираются на полную расчетную мощность предприятия (с учетом перегрузок согласно ПУЭ). Это позволит осуществить резервирование электропитания в случае аварии на какой-то из этих линий.

Схемы указанные выше применяют для предприятий имеющих потребителей первой и второй категории.

Схема, изображенная на рисунке а), имеет определенные ограниченные оперативные возможности – она исключает подачу питания от одной линии на два трансформатора и от двух линий на один трансформатор. Этот недостаток устраняется с помощью схемы «моста», одна из разновидностей которой показан на рисунке б).

Она применяется на ГПП, где по условиям экономического режима эксплуатации производится  частое отключение и включение одного из трансформаторов.

Также все чаще в системах электроснабжения практикуется подключение линий высокого напряжения и трансформаторов без сборных шин и высоковольтных выключателей, которые стоят не дешево. Для обеспечения такого подключения применяют специальные аппараты – отделители и короткозамыкатели.

Короткозамыкатель – специальный высоковольтный аппарат, который предназначен для дистанционного быстрого замыкания накоротко и на землю фаз электрической линии.

Отделитель – специальный аппарат, который предназначается для отключения поврежденной высоковольтной линии после окончания протекания в ней токов короткого замыкания.

При этом нужно помнить, что замыкание ножей короткозамыкателя производится автоматически, а отключение вручную. В отделители все строго наоборот.

Питание крупного предприятия с использованием отделителей и короткозамыкателей показано на рисунке в). Отсутствие высоковольтных выключателей на ГПП со стороны 35-110 кВ значительно снижает затраты на сооружение и эксплуатацию ГПП. Отключение сети в случае аварии на линии 35-110 кВ производится выключателями на подстанции, откуда приходят линии питания ГПП.

Подстанция может подключатся к питанию с помощью радиальных линий, как это показано на рисунке, или же ответвлениями от транзитных линий электропередач ЛЭП. Работает данная система следующим образом – при замыкании в подходящих проводах или повреждении трансформатора срабатывает релейная защита и замыкает короткозамыкатель элемента, который подвергся повреждению. Срабатывание короткозамыкателя приводит к автоматическому отключению головного выключателя питающего центра, который и разорвет аварийный ток. После этого, с определенной выдержкой времени, произойдет отключение отделителя.

У отделителя имеется блокировка, связанная с головным выключателем, которая предотвращает отключение отделителя ранее, чем выключателя, так как отделитель не предназначен для коммутации токов нагрузки, тем более аварийных токов.

После того, как произведется отключение от сети поврежденного элемента, происходит повторное подключение головного участка ЛЭП, и питание неповрежденных трансформаторов, других подстанций, подключенных к этой линии, восстанавливается.

Схемы «глубокого ввода»

Рост энергопотребления цехов при увеличении объема выпусков продукции привел к созданию более экономичных и надежных схем внешнего электроснабжения, которые получили название «глубокого ввода».

При использовании глубокого ввода линии питания с напряжением 35-110 кВ заводятся непосредственно на распределительные подстанции РП, которые сооружаются при крупных цехах, расположенных друг от друга на значительных расстояниях. В таком случае предприятие не имеет главной питающей подстанции ГПП, главного распределительного пункта ГРП, что создает довольно таки значительную экономию при сооружении и обслуживании систем электроснабжения.

elenergi.ru

Магистральные схемы электроснабжения в сетях с напряжением выше 1000 В

В магистральных схемах, в отличии от радиальных, где питание каждой цеховой подстанции осуществляется отдельной линией с высоким напряжением от ГПП (ГРП) или распределительных пунктов РП, питание электроприемников осуществляется одной линией (кабельной или воздушной) и она заводится поочередно на каждую трансформаторную подстанцию (но не более чем на 5-6).

Магистральная схема с напряжением питания 6-10 кВ питающая цеховые трансформаторные подстанции ЦТП показана ниже:

Магистральная схема питания цеховых подстанций

Из схемы мы видим, что ЦТП могут подключать к общей высоковольтной магистрали через высоковольтный выключатель (в нашем случае масляный ТП-1), предохранители высоковольтные и разъединители (ТП-2), а также предохранители и выключатели нагрузки ТП-3. Применение разъединителей с предохранителями или же выключателей в первую очередь обуславливает мощность трансформатора.

Большим плюсом магистральной схемы по сравнению с радиальной есть ее стоимость – она намного дешевле, чем радиальная. Но есть также и один очень огромный минус – в случае аварии на любом участке магистральной схемы произойдет отключение головного выключателя 6-10 кВ, что приведет к обесточиванию всех подстанций.

Для устранения данного недостатка надежности электроснабжения устраивают общую резервную магистраль, пример которой показан ниже:

Магистральная схема электроснабжения с резервной магистралью на напряжение 6-10 кВ

При использовании такой магистральной схемы электроснабжения питание ЦТП производят по рабочим магистралям, а вот при возникновении неисправностей или аварий на какой-то магистрали, она отключается от питания (с двух сторон) и питание переводится на резервную магистраль, которая находится под напряжением постоянно. Приведенную схему могут использовать для питания потребителей II и III категории. Минус такой схемы магистрального электроснабжения в том, что резервная линия используется только в аварийных режимах, в нормальном режиме она не используется.

Еще одним видом магистральной схемы электроснабжения, предназначенной для питания потребителей II категории, является схема разомкнутой кольцевой магистрали:

Схема разомкнутой кольцевой магистрали

Полукольца следует питать от различных секций ГПП или ГРП.

Также одной из характерных схем внутреннего магистрального электроснабжения предприятий является схема с двухсторонним питанием. Она довольно гибкая и удобная:

Магистральная (разомкнутая) схема с двухсторонним питанием

При нормальном режиме работы данная система разомкнута. Расчет сечения кабелей производится с расчетом на возможную передачу всей мощности учитывая перегрузки. Поэтому при возникновении повреждения какого-либо участка в любой точке схемы электроснабжение восстанавливается довольно быстро (только после нахождения участка, на котором произошла авария). Такую схему можно применить для питания II и III категорий надежности электроснабжения. При размыкании место размыкания может быть выбрано произвольно, но для того, чтоб получить минимальные потери мощности при передаче электроэнергии  размыкание желательно проводить в точке токораздела.

Также при проектировании следует предусмотреть блокировки от несинхронных подключений (параллельное подключение двух питающих линий, которое не предусмотрено нормальным режимом работы сети).

Для потребителей I категории магистральное электроснабжение практически не применяется. Для таких потребителей наивысшую степень надежности проявляет автоматизированное радиальное электроснабжение.

elenergi.ru

Схема электроснабжения предприятия - Energy

Схема электроснабжения предприятия

 Начальный этап в схеме электроснабжения предприятия заключается в поступлении электроэнергии от самой ближней понижающей электрической подстанции. Зачастую проводником выступает высоковольтная линия с напряжением 6-10 кВт. Если необходимо резервное питание, то линий пускают две, и они являются автономными. Это очень практично, так как когда возникает ситуация, что одна из линий обесточена, есть возможность, используя автоматический ввод резерва, переключится на вторую.

Также подключается система компенсации реактивной мощности к электрической подстанции. Комплектующими этой системы являются конденсаторные батареи и при помощи емкостей (их определенного количества, для чего учитывается величина реактивной составляющей) осуществляют автоматическое подключение электричества по средствам высоковольтных линий. Одним словом, происходит подключение к комплектной трансформаторной подстанции. Непосредственно с этого момента начинается питание всего предприятия.

Пример электроснабжения промпредприятия

 

От всех участков, требующих электроэнергии, к комплектной трансформаторной подстанции идут кабели, по которым осуществляется распределение электроэнергии. Но, так как на каждом предприятии различные приемники электроэнергии, как по своим характеристикам, так и по количеству, появилось множество разновидностей схемы электроснабжения промышленных предприятий. Это радиальная, магистральная и смешанная схемы. Чаще всего применяется радиальная и магистральная схемы.

Пример использования предприятием радиальной схемы электроснабжения

   

  В случае, если в схеме электроснабжения предприятия нагрузки находятся в разных местах от центра питания, целесообразно использовать именно радиальную схему распространения электроэнергии. Такая схема электроснабжения промышленного предприятия делится на двухступенчатую и одноступенчатую.

  Если у предприятия небольшая мощность, которую необходимо распределить, и оно занимает немного места (маленькие предприятия), лучше всего в таких случаях применять принципиальную схему электроснабжения предприятия одноступенчатую. 

 Для предприятий больших или средних размеров находят свое применение как одноступенчатые, так и двухступенчатые схемы внешнего электроснабжения промышленных предприятий. Выбор ступеней зависит от того, какие приемники электроэнергии используются. Это означает, что для снабжения больших постоянных нагрузок (комплекс устройств, включающий в себя разнообразные агрегаты, электрические печи и тому подобные), целесообразно осуществлять их электроснабжение от центра (ГПП, ТЭЦ), т.е. применять одноступенчатые схемы радиального типа распределения. Если возникает потребность в электроснабжении значительного количества цехов или электрических приемников большой мощности, в таких случаях находят свое применение двухступенчатые схемы. Необходимо это для того, чтобы не перегружать множеством разводящих линий центр питания.  

 

       

 

 Важным моментом при использовании двухступенчатых радиальных схем для сети второй ступени выступает применение промежуточного реле постоянного тока. Вся основная аппаратура сосредоточена на промежуточном реле, а на цехах устанавливаются только соединения с трансформатором. Зачастую одно реле обеспечивает питанием пять цехов. Необходимо также учесть (когда выбирается мощность реле) мощность, которая необходима для послеаварийного режима. От него должно отходить около десяти линий. Процесс изменения соединений в электрических цепях, и их защита усложняется, если в радиальных схемах используется больше двух степеней распределения. Но, когда возникает необходимость расширения предприятия, либо необходимость в дополнительных подстанциях – тогда практикуется многоступенчатое соединение.  

 

 Широко применяется в таких схемах разделение на секции всех составляющих систем электроснабжения от главной понизительной подстанции и теплоэлектроцентрали до коммутационных узлов электроустановок в цехах. Для аппаратов каждой секции предполагается наличие обычных схем автономного включения резерва. Для крупных промежуточных реле и КТП питание электроэнергией осуществляется двумя радиальными линиями или более (работают отдельно для каждой секции). Если происходит неисправность одной, вторая полностью обеспечивает электроснабжение и первой и второй категории электроприемников. Применение общей резервной магистрали, осуществляющей резервирование радиальных схем промежуточного реле и основной подстанции предусмотрено лишь тогда, когда основной источник питания вышел из строя и необходимо задействовать другой.

 

 Выгодна такая схема будет, если подстанции находятся близко друг к другу и, в тоже время, далеко от центра питания. Так как, уменьшатся, в разы, затраты на кабеля.

 

Пример применения магистральной схемы электроснабжения предприятия

     

 

 Когда распределены нагрузки и подстанции расположены упорядоченно, больше всего подойдет использование магистральной схемы. В таком случае, не будет протяжных отводов и течения энергии в обратном направлении, так как магистрали будут проходить прямо от источника к потребителю. При возникновении аварийных ситуаций, магистральные схемы более практичны и дешевле обходятся, нежели радиальные. Также большое их преимущество заключается в том, что выбор сечения кабельных линий (из-за большей загрузки), при нормальных условиях, приближается к сечению кабельных линий во время аварийных ситуаций. А у радиальных линий сечение кабеля больше необходимого сечения нормального прохождения тока.

 

 К одной линии магистрали подсоединяется не одна, а несколько подстанций, что позволяет сэкономить на помещениях, необходимых для установки аппаратов. Если сопоставить приведенные выше преимущества с радиальными схемами обеих ступеней, станет очевидным их преимущество, особенно для питания маленьких и средних трансформаторов. Число трансформаторов, которые присоединяются к магистрали зависит от их размера (чем больше они, тем меньше их количество).

 

Выбор смешанной схемы электроснабжения предприятия

     

 

 В таких схемах хорошо соединились элементы магистральных и радиальных схем. Характерным выступает применение в таких схемах замкнутых сетей. У таких электрических сетей есть свои положительные и отрицательные моменты. Отрицательным моментом выступает значительное повышение мощности тока при возникновении коротких замыканий и необходимости обязательной установки выключателей, по обеим сторонам линий. Но, так как приемники подключаются обязательно, как минимум, к двум источникам питания и благодаря равномерной загрузки сети (уменьшаются потери электроэнергии) такие характеристики и показатели максимально эффективно влияют на качественное электроснабжения крупных предприятий.

 

 Хочу обратить внимание на то, что при правильном выборе схемы электроснабжения предприятия, руководствуясь выше предложенными примерами и с учетом всех его рабочих и технических характеристик, во много раз становится легче проводить ремонт и обслуживание всей системы электроснабжения. В свою очередь это позволяет в короткие сроки устранять неисправности и тем самым улучшать общую производительность предприятия.   

Ниже вы можете воспользоваться онлайн-калькулятором для рассчёта стоимости проектирования сетей электроснабжения:

 

     

Поделитесь ссылкой

 

Дата публикации: 04.10.2014

energy-systems.ru


Каталог товаров
    .