Трансформатор Тесла изобрел знаменитый изобретатель, инженер, физик, Никола Тесла. Прибор является резонансным трансформатором, вырабатывающим высокое напряжение высокой частоты. В 1896 году, 22 сентября Никола Тесла запатентовал свое изобретение как «Аппарат для производства электрических токов высокой частоты и потенциала». С помощью этого устройства он пытался передавать электрическую энергию без проводов на большие расстояния. В 1891 году Никола Тесла продемонстрировал миру наглядные эксперименты по передаче энергии от одной катушки к другой. Его устройство извергало молнии и заставляло светиться люминесцентные лампы в руках удивленных зрителей. Посредством передачи тока высокого напряжения высокой частоты ученый мечтал обеспечить бесплатной электроэнергией любое здание, частный дом и прочие объекты. Но, к сожалению, из-за большого потребления энергии и низкой эффективности, широкого применения катушка Тесла так и не нашла. Не смотря на это, радиолюбители из разных уголков планеты собирают небольшие катушки Тесла для развлечений и экспериментов. Также катушки Тесла используют для проведения развлекательных мероприятий и Тесла шоу. В 1987 году советский радиоинженер Владимир Ильич Бровин изобрел генератор электромагнитных колебаний, названный в его честь «качер Бровина», используемый в качестве элемента электромагнитного компаса, работающего на одном транзисторе. Предлагаю вам собрать действующую модель катушки Тесла или качер Бровина своими руками из подручных материалов. Список радиодеталей для сборки Катушки Тесла: Катушка Тесла состоит из двух обмоток. Первичная обмотка L1 содержит 2,5 витка медного провода в полихлорвиниловой изоляции диаметром 2,2 мм. Вторичная обмотка L2 содержит 350 витков в лаковой изоляции диаметром 0,2 мм. Схема катушки Тесла или качера Бровина на одном транзисторе Скачать схему катушки Тесла на одном транзисторе Каркасом для вторичной обмотки L2 служит туба от силиконового герметика. Предварительно удалив остатки герметика, отрежьте часть тубы длиною 110 мм. Отступив по 20 мм от нижней и верхней части, намотайте 350 витков медного провода диаметром 0,2 мм. Провод можно добыть из первичной обмотки любого старого малогабаритного трансформатора на 220В, например, от китайского радиоприемника. Катушка мотается в один слой виток к витку, как можно плотнее. Концы провода следует пропустить во внутрь каркаса через предварительно просверленные отверстия. Готовую катушку для надежности покройте пару раз нитролаком. В поршень вставьте остро заточенный металлический стержень, подпаяйте к нему верхний вывод обмотки и закрепите термоклеем. После чего вставьте поршень в каркас катушки. От носика отрежьте колечко с резьбой, получится гайка, с помощью которой вы легко закрепите катушку на текстолитовой плате, накрутив получившуюся гайку на резьбу выходного отверстия тубы. В дне каркаса просверлите отверстие для светодиода и второго вывода обмотки. В своей катушке я использовал транзистор MJE13009. Также подойдут Транзисторы MJE13006, 13007, 13008, 13009 из советских КТ805, КТ819 и другие аналогичные. Транзистор обязательно разместите на радиаторе, в процессе работы он будет очень сильно греться и по этому предлагаю установить вентилятор и немного усовершенствовать схему. Поскольку, для питания катушки требуется напряжение более 12 вольт. Максимальную мощность катушка Тесла развивает при напряжении питания в 30 вольт. А так, как вентилятор рассчитан на 12 вольт, то в схему следует добавить регулятор напряжения L7812CV или советский аналог КР142ЕН8Б. Ну, а чтобы катушка выглядела более современной и привлекала внимание, добавим пару светодиодов синего цвета. Один светодиод подсвечивает катушку изнутри, а второй подсвечивает катушку снизу. Схема будет выглядеть так. Схема катушки Тесла или качера Бровина с подсветкой и охлаждением Скачать схему катушки Тесла с подсветкой и охлаждением Все компоненты катушки Тесла разместите на печатной плате. Если вы не хотите изготавливать печатную плату, просто разместите все детали катушки Тесла на кусочке МДФ или рифленого картона от бумажной коробки и соедините между собой методом навесного монтажа. Печатная плата катушки Тесла или качера Бровина с подсветкой и охлаждением Скачать печатную плата катушки Тесла или качера Бровина в формате lay Готовая печатная плата будет выглядеть так. Один светодиод припаивается в центре, он подсвечивает пространство под печатной платой. Ножки сделайте из четырех глухих гаек, накрученных на винты. Второй светодиод припаивается под катушкой, он будет подсвечивать ее изнутри. Транзистор и регулятор напряжения обязательно намажьте термопастой и разместите на радиаторе размером 100х60х10 мм. Регулятор напряжения следует изолировать от радиатора с помощью теплопроводящих прокладок и изоляционных шайб. Катушку вставьте в отверстие и затяните с обратной стороны пластиковой гайкой. Первичную обмотку следует мотать в том же направлении, что и вторичную. То есть, если катушку L2 наматывали по часовой стрелке, значит катушку L1 тоже надо мотать по часовой стрелке. Частота катушки L1 должна совпадать с частотой катушки L2. Чтобы добиться резонанса, катушку L1 надо немного настроить. Делаем так, на каркасе диаметром 80 мм наматываем 5 витков оголенного медного провода диаметром 2,2 мм. К нижнему выводу катушки L1 припаиваем гибкий провод, к верхнему выводу прикручиваем гибкий провод, так чтобы его можно было перемещать. Включаем питание, подносим неоновую лампу к катушке. Если она не светится, значит надо поменять местами выводы катушки L1. Далее опытным путем подбираем положение катушки L1 по вертикали и количество витков. Перемещаем провод прикрученный к верхнему выводу катушки вниз, добиваемся максимального расстояния на котором будет зажигаться неоновая лампа, это будет оптимальный радиус действия катушки Тесла. В итоге у вас должно получиться, как у меня 2,5 витка. После экспериментов изготавливаем катушку L1 из провода в полихлорвиниловой изоляции и припаиваем на место. Наслаждаемся результатами своих трудов… После включения питания, появляется стример длиною 15 мм, неоновая лампочка начинает светиться в руках. Так, снимали сагу Звездные войны… Вот он, секрет меча Джидая… В автомобильной лампе появляется небольшая плазма исходящая от нити накаливания к стеклянной колбе лампы. Чтобы значительно увеличить мощность катушки Тесла рекомендую изготовить торроид из медной трубки диаметром 8 мм. Диаметр кольца 130 мм. В качестве торроида можно использовать аллюминиевую фольгу скомканную в шарик, металлическую баночку, радиатор от компьютера и другие не нужные, объемные предметы. После установки торроида мощность катушки значительно увеличилась. Из медной проволоки находящейся рядом с торроидом, появляется стример длиною 15 мм. Теперь катушка Тесла может зажигать большие люминесцентные лампы на 220 вольт. И даже светодиодные… А это плазма возникающая в автомобильной лампочке при нахождении рядом с торроидом. Делать торроид или нет, решать вам. Я всего лишь показал и рассказал вам о том, как я сделал катушку Тесла или качер Бровина на одном транзисторе, своими руками и о том, что у меня получилось. Моя катушка производит ток высокого напряжения высокой частоты, согласно законам физики. Спасибо Николе Тесла и Владимиру Ильичу Бровину за огромный вклад в науку! Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях! Рекомендую посмотреть видеоролик о том, как работает катушка Тесла! sdelaitak24.ru В начале ХХ века электротехника развивалась бешеными темпами. Промышленность и быт получили такое количество электрических технических инноваций, что этого им хватило для дальнейшего развития еще на двести лет вперед. И если постараться выяснить, кому мы обязаны таким революционным рывком в области приручения электрической энергии, то учебники физики назовут десяток имен, безусловно, повлиявших на ход эволюции. Но ни один из учебников не может толком объяснить, почему до сих пор умалчиваются достижения Николы Теслы и кем был на самом деле этот загадочный человек. Содержание: Тесла — это новая цивилизация. Ученый был невыгоден правящей элите, невыгоден и сейчас. Он настолько опередил свое время, что до сих пор его изобретения и эксперименты не всегда находят объяснение с точки зрения современнейшей науки. Он заставлял светиться ночное небо над всем Нью-Йорком, над Атлантическим океаном и над Антарктидой, он превращал ночь в белый день, в это время волосы и кончики пальцев у прохожих светились необычным плазменным светом, из-под копыт лошадей высекались метровые искры. Теслу боялись, он мог запросто поставить крест на монополии по продаже энергии, а если бы захотел, то мог бы сдвинуть с трона всех Рокфеллеров и Ротшильдов вместе взятых. Но он упрямо продолжал эксперименты, до тех пор, пока не погиб при таинственных обстоятельствах, а его архивы были выкрадены и местонахождение их до сих пор неизвестно. О гении Николы Тесла современные ученые могут судить только по десятку изобретений, не попавших под масонскую инквизицию. Если вдуматься в суть его экспериментов, то можно только представить, какой массой энергии мог запросто управлять этот человек. Все современные электростанции вместе взятые не способны выдать такой электрический потенциал, которым владел один единственный ученый, имея в распоряжении самые примитивные устройства, одно из которых мы соберем сегодня. Трансформатор Тесла своими руками простейшая схема и ошеломляющий эффект от его применения, только даст понятие о том, какими методиками манипулировал ученый и, если честно, в очередной раз поставит в тупик современную науку. С точки зрения электротехники в нашем примитивном понимании, трансформатор Теслы — это первичная и вторичная обмотка, простейшая схема, которая обеспечивает питание первички на резонансной частоте вторичной обмотки, но выходное напряжение возрастает в сотни раз. В это сложно поверить, но каждый может убедиться в этом сам. Аппарат для получения токов высокой частоты и высокого потенциала был запатентован Теслой в 1896 году. Устройство выглядит невероятно просто и состоит из: Главное отличие трансформатора Теслы от всех остальных приборов — в нем не применяются ферросплавы в качестве сердечника, а мощность прибора, независимо от мощности источника питания, ограничена только электрической прочностью воздуха. Суть и принцип действия прибора в создании колебательного контура, который может реализовываться несколькими методами: Мы же соберем прибор для получения энергии эфира самым простым способом — на полупроводниковых транзисторах. Для этого нам будет необходимо запастись простейшим комплектом материалов и инструментов: Устройство собирается по одной из прилагаемых схем, номиналы могут меняться, поскольку от них зависит эффективность работы устройства. Сперва наматывается около тысячи витков эмалированного тонкого провода на пластиковый сердечник, получаем вторичную обмотку. Витки лакируются или покрываются скотчем. Количество витков первичной обмотки подбирается опытным путем, но в среднем, это 5-7 витков. Далее устройство подключается согласно схеме. Для получения эффектных разрядов достаточно поэкспериментировать с формой терминала, излучателя искрового свечения, а о том, что устройство при включении уже работает, можно судить по светящимся неоновым лампам, находящихся в радиусе полуметра от прибора, по самостоятельно включающихся радиолампах и, конечно, по плазменным вспышкам и молниям на конце излучателя. Игрушка? Ничего подобного. По этому принципу Тесла собирался построить глобальную систему беспроводной передачи энергии, использующую энергию эфира. Для реализации такой схемы необходимо два мощных трансформатора, установленных в разных концах Земли, работающих с одинаковой резонансной частотой. В этом случае полностью отпадает необходимость в медных проводах, электростанциях, счетах об оплате услуг монопольных поставщиков электроэнергии, поскольку любой человек в любой точке планеты мог бы пользоваться электричеством совершенно беспрепятственно и бесплатно. Естественно, что такая система не окупится никогда, поскольку платить за электричество не нужно. А раз так, то и инвесторы не спешат становиться в очередь на реализацию патента Николы Теслы № 645 576. nashprorab.com Катушка Тесла представляет две катушки L1 и L2, которая посылает большой импульс тока в катушку L1. У катушек Тесла нет сердечника. На первичной обмотке наматывают более 10 витков. Вторичная обмотка тысячу витков. Еще добавляют конденсатор, чтобы минимизировать потери на искровой разряд. Катушка Тесла выдает большой коэффициент трансформации. Он превышает отношение числа витков второй катушки к первой. Выходная разность потенциалов катушки Тесла бывает больше нескольких млн вольт. Это создает такие разряды электрического тока, что эффект получается зрелищным. Разряды бывают длины в несколько метров. Чтобы понять, как работает катушка Тесла, нужно запомнить правило по электронике: лучше раз увидеть, чем сто услышать. Схема катушки Тесла простая. Это простейшее устройство катушки Тесла создает стримеры. Из высоковольтного конца катушки Тесла вылетает стример фиолетового цвета. Вокруг нее есть странное поле, которое заставляет светиться люминесцентную лампу, которая не подключена и находится в этом поле. Стример – это потери энергии в катушке Тесла. Никола Тесла старался избавляться от стримеров за счет того, чтобы подсоединить его к конденсатору. Без конденсатора стримера нет, а лампа горит ярче. Катушку Тесла можно назвать игрушкой, кто показывает интересный эффект. Она поражает людей своими мощными искрами. Конструировать трансформатор – дело интересное. В одном устройстве совмещаются разные эффекты физики. Люди не понимают, как функционирует катушка. Катушка Тесла имеет две обмотки. На первую подходит напряжение переменного тока, создающее поле потока. Энергия переходит во вторую катушку. Похожее действие у трансформатора. Вторая катушка и Cs образуют дают колебания, суммирующие заряд. Некоторое время энергия держится в разности потенциалов. Чем больше вложим энергии, на выходе будет больше разности потенциалов. Коэффициент связи обуславливает быстроту передачи энергии из одной обмотки во вторичную. Добротность дает время сохранения энергии контуром. Для лучшего понимания накапливания, большой разности потенциалов контуром, представьте качели, раскачивающиеся оператором. Тот же контур колебания, а человек служит первичной катушкой. Ход качели – это электрический ток во второй обмотке, а подъем – разность потенциалов. Оператор раскачивает, передает энергию. За несколько раз они сильно разогнались и поднимаются очень высоко, они сконцентрировали в себе много энергии. Такой же эффект происходит с катушкой Тесла, наступает переизбыток энергии, случается пробивание и виден красивый стример. Раскачивать колебания качелей нужно в соответствии с тактом. Частота резонанса – число колебаний в сек. Длину траектории качели обуславливает коэффициент связи. Если раскачивать качели, то они быстро раскачаются, отойдут ровно на длину руки человека. Этот коэффициент единица. В нашем случае катушка Тесла с повышенным коэффициентом – тот же трансформатор. Человек толкает качели, но не держит, то коэффициент связи малый, качели отходят еще дальше. Раскачивать их дольше, но для этого не требуется сила. Коэффициент связи больше, чем быстрее в контуре накапливается энергия. Разность потенциалов на выходе меньше. Добротность – противоположно трению на примере качелей. Когда трение большое, то добротность маленькая. Значит, добротность и коэффициент согласовываются для наибольшей высоты качели, или наибольшего стримера. В трансформаторе второй обмотки катушки Тесла добротность – значение переменное. Два значения сложно согласовать, его подбирают в результате опытов. Тесла изготовил катушку одного вида, с разрядником. База элементов намного улучшилась, возникло много видов катушек, по подобию их также называют катушками Тесла. Виды называют и по-английски, аббревиатурами. Их называют аббревиатурами по-русски, не переводя. Чтобы иметь возможность управлять видом, создали прерыватель. Этим устройством тормозили, чтобы было время на заряд конденсаторов, снизить температуру терминала. Так увеличивали длину разрядов. В настоящее время имеются другие опции (играет музыка). В разных конструкциях основные черты и детали общие. Катушки подключены к питанию через землю. Есть вариант подключения питания от другого трансформатора. Этот способ называется «магниферным». Биполярные катушки Тесла производят разряд между концами вторичной обмотки. Это обуславливает замыкание тока без заземления. Для трансформатора в качестве заземления применяют заземление большим предметом, проводящим электрический ток – это противовес. Таких конструкций немного, они опасны, так как имеет место высокая разность потенциалов между землей. Емкость от противовеса и окружающих вещей отрицательно влияет на них. Это правило действует для вторичных обмоток, у которых длина больше диаметра в 5 раз, и мощностью до 20 кВА. Как изготовить что-то эффектное по изобретениям Тесла? Увидев его идеи и изобретения, будет сделана катушка Тесла своими руками. Это трансформатор, создающий высокое напряжение. Вы можете трогать искру, зажигать лампочки. Для изготовления нам нужен медный провод в эмали диаметром 0,15 мм. Подойдет любой от 0,1 до 0,3 мм. Вам нужно порядка двухсот метров. Его можно достать из различных приборов, допустим, из трансформаторов, либо купить на рынке, это будет лучше. Еще вам понадобится несколько каркасов. Во-первых, это каркас для вторичной обмотки. Идеальный вариант – это 5 метровая канализационная труба, но, подойдет что угодно диаметром от 4 до 7 см, длиной 15-30 см. Для первичной катушки вам понадобится каркас на пару сантиметров больше первого. Также понадобится несколько радиодеталей. Это транзистор D13007, либо его аналоги, небольшая плата, несколько резисторов, 5, 75 килоом 0,25 Вт. Проволоку мотаем на каркас около 1000 витков без перехлестов, без больших промежутков, аккуратно. Можно управиться за 2 часа. Когда намотка закончена, намазываем обмотку лаком в несколько слоев, либо другим материалом, чтобы она не пришла в негодность. Намотаем первую катушку. Она мотается на каркасе больше и мотается проводом порядка 1 мм. Здесь подойдет провод, порядка 10 витков. Если изготавливать трансформатор простого типа, то состав его – это две катушки без сердечника. На первой обмотке около десяти витков толстого провода, на второй – не менее тысячи витков. При изготовлении, катушка Тесла своими руками имеет коэффициент в десятки раз больше, чем число витков второй и первой обмоток. Выходное напряжение трансформатора будет достигать миллионы вольт. Это дает красивое зрелище в несколько метров. Сложно намотать катушку Тесла своими руками. Еще труднее создать облик катушке для привлечения зрителей. Сначала необходимо определиться с питанием в несколько киловольт, закрепить к конденсатору. При лишней емкости изменяется значение параметров диодного моста. Далее, подбирается промежуток искры для создания эффекта. Получается катушка Тесла своими руками, которую можно изготовить дома, владея элементарными познаниями в электричестве. Вторичная обмотка находится под напряжением, способным убить человека. Ток пробивания достигает сотен ампер. Человек может выжить до 10 ампер, поэтому не нужно забывать о мехах защиты. Без расчетов можно изготовить слишком большой трансформатор, но разряды искры сильно разогревают воздух, создают гром. Электрическое поле выводит из строя электрические приборы, поэтому трансформатор необходимо располагать подальше. Для расчета длины дуги и мощности расстояние между проводами электродов в см делится на 4,25, далее производится в квадрат, получается мощность (Вт). Для определения расстояния корень квадратный от мощности умножается на 4,25. Обмотка, создающая разряд дуги в 1,5 метра, должна получать мощность1246 ватт. Обмотка с питанием в 1 кВт создает искру в 1,37 м длины. Такой метод намотки провода распределяет емкость больше, чем при стандартной намотке. Такие катушки обуславливают приближения витков. Градиент конусообразный, а не плоский, в середине катушки, или с провалом. Емкость тока не изменяется. Из-за сближения участков разность потенциалов между витков во время колебаний повышается. Следовательно, сопротивление емкости при большой частоте в несколько раз снижается, а емкость увеличивается. elektronchic.ru Трансформатор, увеличивающий напряжение и частоту во много раз, называется трансформатором Тесла. Энергосберегающие и люминесцентные лампы, кинескопы старых телевизоров, зарядка аккумуляторов на расстоянии и многое другое создано благодаря принципу работы этого устройства. Не будем исключать его использование в развлекательных целях, ведь «трансформатор Тесла» способен создавать красивые фиолетовые разряды – стримеры, напоминающие молнию (рис. 1). В процессе работы образуется электромагнитное поле, способное воздействовать на электронные приборы и даже на организм человека, а при разрядах в воздухе происходит химический процесс с выделением озона. Чтобы сделать трансформатор Тесла своими руками, необязательно иметь широкие познания в области электроники, достаточно следовать этой статье. Все трансформаторы Тесла ввиду похожего принципа работы состоят из одинаковых блоков: Источник питания обеспечивает первичный контур напряжением необходимой величины и типа. Первичный контур создаёт колебания высокой частоты, генерирующие во вторичном контуре резонансные колебания. В результате на вторичной обмотке образуется ток большого напряжения и частоты, который стремится создать электрическую цепь через воздух — образуется стример. От выбора первичного контура зависит тип катушки Тесла, источник питания и размер стримера. Остановимся на полупроводником типе. Он отличается простой схемой с доступными деталями, и маленьким питающим напряжением. Произведём поиск и подбор деталей к каждому вышеперечисленному узлу конструкции: — Переменный резистор R1 с номиналом 50 кОм. Для удачной сборки не забудьте соединить два контакта этого резистора согласно схеме. — Резистор R2 с номиналом 75 Ом. — Транзистор VT1 D13007 или советский аналог с n-p-n структурой. — Радиатор для охлаждения транзистора можно поискать на мощных транзисторах в неисправной технике. Размер напрямую влияет на качество охлаждения. — Первичная обмотка трансформатора Тесла. Проводником может быть простая медная трубка или провод диаметром 0,5–1 см. Обмотка делается плоской, цилиндрической или конической (рис. 2). После намотки изолируем вторичную катушку краской, лаком или другим диэлектриком. Это предотвратит попадание в неё стримера. Терминал – дополнительная ёмкость вторичного контура, подключённая последовательно. При малых стримерах в нем нет необходимости. Достаточно вывести конец катушки на 0,5–5 см вверх. После того, как собрали все необходимые детали для катушки Тесла, приступаем к сборке конструкции своими руками. Сборку делаем по простейшей схеме на рисунке 4. Отдельно устанавливаем источник питания. Детали можно собрать навесным монтажом, главное исключить замыкание между контактами. При подключении транзистора важно не перепутать контакты (рис. 5). Для этого сверяемся со схемой. Плотно прикручиваем радиатор к корпусу транзистора. Собирайте схему на диэлектрической подложке: кусок фанеры, пластиковый поднос, деревянная коробка и др. Отделяем схему от катушек диэлектрической пластиной или доской, с миниатюрным отверстием для проводов. Закрепляем первичную обмотку так, чтобы предотвратить падение и касание со вторичной обмоткой. В центре первичной обмотки оставляем место для вторичной катушки, с учётом того, что оптимальное расстояние между ними 1 см. Каркас использовать необязательно – достаточно надёжного крепления. Устанавливаем и закрепляем вторичную обмотку. Делаем необходимые соединения согласно схеме. Посмотреть на работу изготовленного трансформатора Тесла можно на видео представленном ниже. Перед включением уберите электронные устройства подальше от места испытания, чтобы исключить их поломку. Помните об электробезопасности! Для успешного запуска по порядку выполняем следующие пункты: Отличительной особенностью мощного трансформатора Тесла являются большое напряжение, большие габариты устройства и способ получения резонансных колебаний. Немного расскажем о том, как работает и как сделать трансформатор Тесла искрового типа. Первичный контур работает на переменном напряжении. При включении, происходит заряд конденсатора. Как только конденсатор заряжается по максимуму, происходит пробой разрядника – устройства из двух проводников с искровым промежутком, наполненным воздухом или газом. После пробоя, образуется последовательная цепь из конденсатора и первичной катушки, называемая LC контуром. Именно этот контур создаёт высокочастотные колебания, которые создают во вторичной цепи резонансные колебания и огромное напряжение (рис. 6). При наличии необходимых деталей, мощный трансформатор Тесла можно собрать своими руками даже в домашних условиях. Для этого достаточно внести изменения в маломощную схему: Искровые трансформаторы Тесла могут достигать мощности до 4,5 кВт, следовательно, создавать стримеры больших размеров. Наилучший эффект получается при достижении одинаковых показателей частоты обоих контуров. Реализовать это можно расчётом деталей в специальных программах – vsTesla, inca и другие. Скачать одну из русскоязычных программ можно по ссылке: http://ntesla.at.ua/_fr/1/6977608.zip. protransformatory.ru Инструменты: нож канцелярский, пистолет с горячим клеем, шило, ножницы и может другой инструмент, который есть почти в каждом доме. sdelaysam-svoimirukami.ru Трансформатор Тесла способен демонстрировать красивые электрические заряды. Они могут иметь большие величины и именно поэтому достаточно часто его используют как декоративное украшение в доме. Он имеет простую конструкцию, которую изготовить может практически каждый. Но вам необходимо помнить о том, что во время работы следует быть осторожным, так как работать вам придется с током. В схему этого устройства входит две обмотки: К первичной обмотке вам необходимо будет подсоединить переменное напряжение. В результате этого вы получите магнитное поле. Поле будет передавать энергию из первичной обмотки на вторичную. Вторичная обмотка при этом должна будет создать колебательный контур, который будет накапливать эту энергию. Определенное время эта энергия будет храниться в контуре в виде напряжения. Трансформатор Тесла может иметь несколько видов катушек, но у них похожие черты. Тороид, который находится в его конструкции способен выполнять три функции. Вот его основные функции: Перед тем как вы решите сделать трансформатор Тесла вам необходимо знать, что основной деталью здесь является вторичная обмотка. Типичное соотношение между ее длиной и диаметром должно составлять 4:1. Защитное кольцо необходимо для того чтобы электроника не вышла из строя. Деталь представляет собою специальное кольцо, которое изготавливают из медного провода. Защитное кольцо также обязательно должно иметь заземление. Первичная обмотка должна иметь небольшое сопротивление, чтобы обеспечивать надежную передачу тока. Точка подключения здесь должна быть подвижной. В этом случае вы легко сможете менять резонансную частоту. Заземление также считается важною деталью для Теслы. В этом случае стримеры будут ударять в землю, и замыкать ток. Именно поэтому если заземление будет надежным, ваши стримеры будут быть в трансформатор. Перед тем как сделать Тесла своими руками вам необходимо знать, как он работает. Тесла работает следующим образом. Трансформатор через дроссель должен заряжать конденсатор. Чем его индуктивность меньше, тем заряд будет происходить быстрее. Через определенное время его напряжение может значительно увеличиться. Дуга, которая находится в разряднике, выступит отличным проводником. Именно поэтому конденсатор и катушка вместе создадут замечательный контур. Силовой трансформатор имеет подобный принцип работы. За счет энергии, которая здесь образуется, будут происходить колебания. Во время колебаний в конденсаторе и в катушке должен произойти обмен энергией. Определенная ее часть исчезнет в виде теплового излучения, а вторая половина проявится в разряднике. Показатели индуктивности будут способствовать созданию еще одного контура. Номиналы всех компонентов следует подирать так, чтобы частота их была одинаковой. Первичный контур должен будет передать свою энергию и со временем она вся будет там. Показатели амплитуды колебаний в этот момент должны быть нулевыми. Весь процесс не закончиться на обмене энергией. Когда дуга полностью исчезнет, остатки энергии могут остаться запертыми. Дальше весь процесс будет постепенно повторяться. Чем сильнее их связь, тем с большей скоростью они будут обмениваться энергией. Благодаря советам, которые мы здесь разместили, вы узнаете, как изготовить трансформатор средних размеров своими руками. Для изготовления вторичной обмотки вам потребуется труба с диаметром в 2 дюйма. Эмалированный провод длиною в 100 метров. ПВХ фитинг диаметром 2 дюйма. Металлический фланец с диаметром в 2 дюйма. Краска для эмали. Болты, гайки, шайбы. Для вторичной обмотки вам также необходима медная трубка. Ее длина должна быть не менее трех метров. Для изготовления конденсатора необходимы следующие детали: Для начала необходимо намотать вторичную обмотку. Конец провода обязательно нужно закрепить вверху трубки. Наматывать ее вам необходимо так чтобы витки не переплетались. Между ними также не должно быть пространства. Катушку можно зафиксировать с помощью малярного скотча. Мотать его необходимо через каждые 20 витков. Вам необходимо плотно обернуть обмотку и закрепить ее с помощью краски. Для намотки витков вы легко сможете изготовить специальное приспособление. Для того чтобы направлять проволоку можно использовать деревянный брусок. На этом этапе вам потребуется подготовить и сделать первичную обмотку. Сделать ее несложно. Для этого нужно установить металлический фланец по центру доски и сделать отверстия для болтов. Первичную обмотку нужно закрепить гайками. Из медной трубы вам потребуется изготовить специальную спираль. Потом ее необходимо растягивать. В итоге у вас должен получиться конус. Изготовление разрядника. Он может представлять собою два болта, которые помещают в открытую деревянную коробку. Монтаж конденсаторов. Сделать их достаточно просто. Для этого обычно используют соленую воду, масло и фольгу. Это все вы набираете в бутылку, а верх обматываете фольгой. После этого в отверстия следует вставить металлическую проволоку. Вам следует перейти к соединению проводов. Делать все нужно как указано на схеме. Обмотка обязательно должна заземляться. Благодаря этому трансформатор Тесла будет защищен от поломки. Количество витков в обмотке должно составлять: Первое испытание обязательно должно проводиться на улице. Другие типы трансформаторов тока также необходимо испытывать. Это обеспечит вам надежную безопасность. После включения должно появиться шоу из разрядов. Трансформатор Тесла должен издавать искры длиною в 15 сантиметров. Читайте: подключение трансформатора тока. vse-elektrichestvo.ru Трансформатор Тесла (принцип работы аппарата рассмотрим далее) был запатентован в 1896-м году, 22 сентября. Аппарат представили как прибор, производящий электрические токи высокого потенциала и частоты. Устройство было изобретено Николой Тесла и названо его именем. Рассмотрим далее этот аппарат подробнее. Суть действия прибора можно объяснить на примере всем известных качелей. При их раскачивании в условиях принудительных колебаний амплитуда, которая будет максимальной, станет пропорциональной прилагаемому усилию. При раскачивании в свободном режиме максимальная амплитуда при тех же усилиях многократно возрастет. Такова суть и трансформатора Тесла. В качестве качелей в аппарате используется колебательный вторичный контур. Генератор играет роль прилагаемого усилия. При их согласованности (подталкивании в строго необходимые периоды времени) обеспечивается задающий генератор либо первичный контур (в соответствии с устройством). Простой трансформатор Тесла включает в себя две катушки. Одна – первичная, другая – вторичная. Также резонансный трансформатор Тесла состоит из тороида (применяется не всегда), конденсатора, разрядника. Последний – прерыватель – встречается в английском варианте Spark Gap. Трансформатор Тесла также содержит "выход" – терминал. Первичная содержит, как правило, провод большого диаметра либо медную трубку с несколькими витками. Во вторичной катушке имеется кабель меньшего сечения. Его витков – около 1000. Первичная катушка может иметь плоскую (горизонтальную), коническую или цилиндрическую (вертикальную) форму. Здесь, в отличие от обычной трансформатора, нет ферромагнитного сердечника. За счет этого существенно снижается взаимоиндукция между катушками. Вместе с конденсатором первичный элемент формирует колебательный контур. В него включен разрядник – нелинейный элемент. Вторичная катушка тоже формирует колебательный контур. В качестве конденсатора выступают тороидная и собственная катушечная (межвитковая) емкости. Вторичная обмотка часто покрыта слоем лака либо эпоксидной смолы. Это делается во избежание электрического пробоя. Схема трансформатора Тесла включает в себя два массивных электрода. Эти элементы должны обладать устойчивостью к протеканию сквозь электрическую дугу больших токов. Обязательно наличие регулируемого зазора и хорошего охлаждения. В резонансный трансформатор Тесла этот элемент может быть инсталлирован в разном исполнении. Терминал может представлять собой сферу, заточенный штырь или диск. Он предназначается для получения искровых предсказуемых разрядов с большой длиной. Таким образом, два связанных колебательных контура образуют трансформатор Тесла. Энергия из эфира – одна из целей функционирования аппарата. Изобретатель прибора стремился достичь волнового числа Z в 377 Ом. Он изготавливал катушки все большего размера. Нормальная (полноценная) работа трансформатора Тесла обеспечивается в случае, когда оба контура настроены на одну частоту. Как правило, в процессе корректировки осуществляется подстройка первичного под вторичный. Это достигается за счет изменения емкости конденсатора. Также меняется количество витков у первичной обмотки до появления на выходе максимального напряжения. В будущем предполагается создать несложный трансформатор Тесла. Энергия из эфира будет работать на человечество в полной мере. Трансформатор Тесла функционирует в импульсном режиме. Первая фаза – конденсаторный заряд до напряжения пробоя разрядного элемента. Вторая – генерация высокочастотных колебаний в первичном контуре. Включенный параллельно разрядник замыкает трансформатор (источник питания), исключая его из контура. В противном случае он будет вносить определенные потери. Это, в свою очередь, снизит добротность первичного контура. Как показывает практика, такое влияние существенно уменьшает длину разряда. В связи с этим в построенной грамотно схеме разрядник всегда ставится параллельно источнику. Его производит внешний источник высокого напряжения на основе низкочастотного повышающего трансформатора. Конденсаторная емкость выбирается так, чтобы она составляла вместе с индуктором определенный контур. Частота его резонанса должна быть равна высоковольтному контуру. На практике все несколько иначе. Когда осуществляется расчет трансформатора Теслы, не учитывается энергия, которая пойдет на накачку второго контура. Напряжение заряда ограничивается напряжением у пробоя разрядника. Его (если элемент воздушный) можно регулировать. Напряжение пробоя корректируется при изменении формы либо расстояния между электродами. Как правило, показатель находится в пределах 2-20 кВ. Знак напряжения не должен слишком "закорачивать" конденсатор, на котором происходит постоянная смена знака. После того как будет достигнуто напряжение пробоя между электродами, в разряднике формируется электрический лавинообразный пробой газа. Происходит разряжение конденсатора на катушку. После этого резко снижается напряжение пробоя в связи с оставшимися ионами в газе (носителями заряда). Вследствие этого состоящая из конденсатора и первичной катушки цепь контура колебания через разрядник остается замкнутой. В ней образуются высокочастотные колебания. Они постепенно затухают, преимущественно вследствие потерь в разряднике, а также ухода на вторичную катушку электромагнитной энергии. Тем не менее колебания продолжаются, пока током создается достаточное количество зарядных носителей для поддержания в разряднике существенно меньшего напряжения пробоя, чем амплитуда колебаний LC-контура. Во вторичной цепи появляется резонанс. Это приводит к возникновению высокого напряжения на терминале. Какого бы типа ни была схема трансформатора Тесла, вторичный и первичный контуры остаются неизменными. Тем не менее один из компонентов основного элемента может быть разной конструкции. В частности, речь идет о генераторе высокочастотных колебаний. Например, в модификации SGTC этот элемент выполняется на искровом промежутке. Трансформатор Тесла высокой мощности включает в себя более сложную конструкцию разрядника. В частности, это касается модели RSG. Аббревиатура расшифровывается как Rotary Spark Gap. Ее можно перевести следующим образом: вращающийся/роторный искровой либо статический промежуток с дугогасительными (дополнительными) устройствами. В таком случае частота работы промежутка подбирается синхронно частоте конденсаторной подзарядки. Конструкция искрового роторного промежутка включает в себя двигатель (как правило, он электрический), диск (вращающийся) с электродами. Последние или замыкают, или приближаются к ответным компонентам для замыкания. Выбор расположения контактов и скорости вращения вала основывается на необходимой частоте следования колебательных пачек. В соответствии с типом управления двигателем различают искровые роторные промежутки асинхронные и синхронные. Также применение искрового вращающегося промежутка значительно понижает вероятность образования паразитной дуги между электродами. В некоторых случаях обычный разрядник заменяют многоступенчатым. Для охлаждения этот компонент иногда помещают в газообразные или жидкие диэлектрики (в масло, к примеру). В качестве типового приема гашения дуги статистического разрядника используется продувка электродов с помощью мощной воздушной струи. В ряде случаев трансформатор Тесла классической конструкции дополняется вторым разрядником. Задача этого элемента состоит в обеспечении защиты низковольтной (питающей) зоны от высоковольтных выбросов. В модификации VTTC используют электронные лампы. Они играют роль генератора колебаний ВЧ. Как правило, это достаточно мощные лампы типа ГУ-81. Но иногда можно встретить и маломощные конструкции. Одной из особенностей в данном случае является отсутствие необходимости обеспечения высокого напряжения. Чтобы получить относительно небольшие разряды, нужно порядка 300-600 В. Кроме того, VTTC почти не издает шума, который появляется, когда трансформатор Тесла функционирует на искровом промежутке. С развитием электроники появилась возможность значительно упростить и уменьшить размер прибора. Вместо конструкции на лампах стали применять трансформатор Тесла на транзисторах. Обычно используется биполярный элемент соответствующей мощности и тока. Как выше было сказано, для упрощения конструкции используется биполярный элемент. Несомненно, намного лучше применить полевой транзистор. Но с биполярным проще работать тем, кто недостаточно опытен в сборке генераторов. Обмотка катушек связи и коллектора осуществляется проводом в 0.5-0.8 миллиметров. На высоковольтной детали провод берется 0.15-0.3 мм толщиной. Делается приблизительно 1000 витков. На "горячем" конце обмотки ставится спираль. Питание можно взять с трансформатора в 10 В, 1 А. При использовании питания от 24 В и более значительно увеличивается длина коронного разряда. Для генератора можно использовать транзистор КТ805ИМ. На выходе можно получить напряжение в несколько миллионов вольт. Оно способно создавать в воздухе внушительные разряды. Последние, в свою очередь, могут обладать многометровой длиной. Эти явления очень привлекательны внешне для многих людей. Любителями трансформатор Тесла используется в декоративных целях. Сам изобретатель применял аппарат для распространения и генерации колебаний, которые направлены на беспроводное управление приборами на расстоянии (радиоуправление), передачи данных и энергии. В начале ХХ столетия катушка Тесла стала использоваться в медицине. Больных обрабатывали высокочастотными слабыми токами. Они, протекая по тонкому поверхностному слою кожи, не вредили внутренним органам. При этом токи оказывали оздоравливающее и тонизирующее воздействие на организм. Кроме того, трансформатор используется при поджиге газоразрядных ламп и при поиске течей в вакуумных системах. Однако в наше время основным применением аппарата следует считать познавательно-эстетическое. Они связаны с формированием разного рода газовых разрядов в процессе функционирования устройства. Многие люди коллекционируют трансформаторы Тесла, чтобы иметь возможность наблюдать за захватывающими эффектами. Всего аппарат производит разряды четырех видов. Зачастую можно наблюдать, как разряды не только отходят от катушки, но и направлены от заземленных предметов в ее сторону. На них также могут возникать коронные свечения. Примечательно, что некоторые химические соединения (ионные) при нанесении на терминал могут изменить цвет разряда. К примеру, натриевые ионы делают спарк оранжевым, а борные – зеленым. Это тускло светящиеся разветвленные тонкие каналы. Они содержат ионизированные газовые атомы и свободные электроны, отщепленные от них. Эти разряды протекают от терминала катушки или от самых острых частей непосредственно в воздух. По своей сути стример можно считать видимой ионизацией воздуха (свечением ионов), которая создается ВВ-полем у трансформатора. Он образуется достаточно часто. К примеру, если у трансформатора достаточная мощность, при поднесении к терминалу заземленного предмета может образоваться дуга. В некоторых случаях требуется прикосновение предмета к выходу, а затем отведение на все большее расстояние и растягивание дуги. При недостаточной надежности и мощности катушки такой разряд может повредить компоненты. Этот искровой заряд отходит с острых частей или с терминала напрямую в землю (заземленный предмет). Спарк представлен в виде быстро сменяющихся или исчезающих ярких нитевидных полосок, разветвленных сильно и часто. Существует также особый тип искрового разряда. Он называется скользящим. Это свечение ионов, содержащихся в воздухе. Оно происходит в высоконапряженном электрическом поле. В результате создается голубоватое, приятное для глаза свечение около ВВ-компонентов конструкции со значительной кривизной поверхности. В процессе функционирования трансформатора можно услышать характерный электрический треск. Это явление обусловлено процессом, в ходе которого стримеры превращаются в искровые каналы. Он сопровождается резким увеличением количества энергии и силы тока. Происходит быстрое расширение каждого канала и скачкообразное повышение давления в них. В итоге на границах образуются ударные волны. Их совокупность от расширяющихся каналов формирует звук, который воспринимается как треск. Как и другой источник такого высокого напряжения, катушка Тесла может быть смертельно опасной. Но существует иное мнение, касающееся некоторых типов аппарата. Поскольку у высокочастотного высокого напряжения есть скин-эффект, а ток существенно отстает от напряжения по фазе и сила тока очень мала, несмотря на потенциал, разряд в человеческое тело не может спровоцировать ни остановку сердца, ни прочие серьезные нарушения в организме. fb.ruСхема трансформатора Тесла. Трансформатор Тесла - принцип работы. Схемы для катушки тесла
Катушка Тесла своими руками — SDELAITAK24.RU
Трансформатор Тесла своими руками, простейшая схема
Кто вы, мистер Тесла?
Принцип действия аппарата
Конструкция трансформатора Тесла
Схемы трансформатора Тесла
Для чего нужен трансформатор Тесла?
Катушка Тесла своими руками. Схема, принцип работы
Принцип катушки Тесла
Главные свойства катушки Тесла:
Подобие с качелями
Главные катушки Тесла
Главные элементы катушки Тесла
Катушка Тесла своими руками
Безопасность
Расчет катушки Тесла
Бифилярная катушка Тесла
Катушка Тесла своими руками: схема и принцип работы
Составные части и принцип работы
Подбор материалов и деталей
Конструкция и сборка
Включение, проверка и регулировка
Мощная катушка Тесла
Простая Катушка Тесла своими руками
Никола Тесла по истине гениальный изобретатель всех времен. Он практически создал весь современный мир. Без его изобретений мы бы долго не знали о электрическом токе того, что знаем сейчас.Одним из ярких и удивительных изобретений Тесла является его катушка или трансформатор. Который как нельзя лучше демонстрирует передачу энергии на расстоянии.Чтобы провести эксперименты, порадовать и удивить друзей, вы дома можете собрать простой, но вполне работающий прототип. Для этого не понадобиться большое количество дефицитных деталей и много времени.Для изготовления Катушки Тесла вам понадобиться:
Изготовление катушки Тесла своими руками
Первым делом нам необходимо отрезать кусок полипропиленовой трубки длинной примерно 12-20 сантиметров. Диаметр трубы любой, берите какой есть под рукой.Возьмем тонкую проволоку. Зафиксируем изолентой один конец и начинаем наматывать плотно, виток к витку, пока не закроем всю трубку, оставив 1 сантиметров от края. Как намотаем зафиксируем второй конец проволоки тоже изолентой. Можно горячим клеем, но в этом случае придется немного подождать.Берем футляр от дисков и делаем три отверстия под проволоку. Смотрите фото.Вырезаем паз под выключатель с помощью которого будем включать и выключать нашу катушку Тесла.Чтобы смотрелось получше я покрасил коробку аэрозольной краской.Вставляем переключатель. Приклеиваем катушку, намотанную на трубке, горячим клеем в середину банки.Нижний конец проволоки пропускаем через отверстие.Берем провод потолще. Из него сделаем силовую катушку.Обматываем вокруг трубки с проволокой. Делаем не вплотную, на некотором расстоянии. Катушка 4-5 витком. Оба конца, получившейся катушки, пропускаем в отверстия.Далее собираем схему:Транзистор я приклеил на горячий глей к крышке от газировки, которую предварительно приклеил так же на горячий клей. Да вообще все элементы, включая провода и батарейку фиксируем этим клеем.Далее делаем электрод. Берем мячик от пинг-понга, гольфа или другой небольшой шарик и оборачиваем его алюминиевой фольгой. Излишки отрезаем ножницами.Проволоку от верха трубки зачищаем и прикручиваем к фольге шарика. И сажаем все это на горячий клей и на трубку.Вот собственно и все. Если схема собрана правильно - все должно работать без проблем. Если по каким-то причинам этого не произошло, то попробуйте поменять местами концы силовой катушки.Смотрите видео:
Трансформатор Тесла: инструкция по изготовлению
Трансформатор Тесла и основные компоненты для его изготовления
Компоненты трансформатора Тесла
Принцип работы устройства
Практические советы
Последовательность сборки
Испытание прибора
Схема трансформатора Тесла. Трансформатор Тесла
Трансформатор Тесла: принцип работы
Описание
Катушки
Разрядник
Терминал
Действие
Заряд
Генерация
Модификации
RSG
Ламповая катушка
Как сделать трансформатор Тесла?
Применение прибора
Эффекты
Стримеры
Дуговой разряд
Спарк
Коронный разряд
Особенности
Воздействие на человека
Поделиться с друзьями: