интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Регулируемый источник питания из БП ATX на TL494. Часть 1 — железо. Регулировка напряжения в импульсном блоке питания схемы


Переделка компьютерного блока питания - Блоки питания - Источники питания

 

Подробное описание.

 

Хороший лабораторный блок питания - это довольно дорогое удовольствие и не всем радиолюбителям оно по карману.Тем не менее в домашних условиях можно собрать не плохой по характеристикам блок питания, который вполне справится и с обеспечением питания различных радиолюбительских конструкций, и так же может служить и зарядным устройством для различных аккумуляторов.Собирают такие блоки питания радиолюбители, как правило из компьютерных БП АТХ, которые везде доступны и дешевы.

В этой статье уделено мало внимания самой переделке АТХ, так как переделать компьютерный БП для радиолюбителя средней квалификации в лабораторный, или для каких то иных целей, обычно не составляет особого труда, а вот у начинающих радиолюбителей возникает по этому поводу много вопросов. В основном какие детали в БП нужно удалить, какие оставить, что добавить, чтобы такой БП превратить в регулируемый, ну и так далее.

Вот специально для таких радиолюбителей, я хочу в этой статье подробно рассказать о переделке компьютерных блоков питания АТХ в регулируемые БП, которые можно будет использовать и как лабораторный блок питания, и как зарядное устройство.

Для переделки нам понадобится исправный блок питания АТХ, который выполнен на ШИМ контроллере TL494 или его аналогах.Схемы блоков питания на таких контроллерах в принципе отличаются друг от друга не сильно и все в основном похожи. Мощность блока питания не должна быть меньше той, которую планируете в будущем снимать с переделанного блока.

Давайте рассмотрим типовую схему блока питания АТХ, мощностью 250 Вт. У блоков питания "Codegen" схема почти не отличается от этой.

highslide.js

Схемы всех подобных БП состоят из высоковольтной и низковольтной части. На рисунке печатной платы блока питания (ниже) со стороны дорожек, высоковольтная часть отделена от низковольтной широкой пустой полосой (без дорожек), и находится справа (она меньше по размеру). Её мы трогать не будем, а будем работать только с низковольтной частью.Это моя плата и на её примере я Вам покажу вариант переделки БП АТХ.

Низковольтная часть рассматриваемой нами схемы, состоит из ШИМ контроллера TL494, схемы на операционных усилителях, которая контролирует выходные напряжения блока питания, и в случае их несоответствия - даёт сигнал на 4-ю ножку ШИМ контроллера на выключение блока питания.Вместо операционного усилителя на плате БП могут быть установлены транзисторы, которые в принципе выполняют ту же самую функцию.Дальше идёт выпрямительная часть, которая состоит из различных выходных напряжений, 12 вольт, +5 вольт, -5 вольт, +3,3 вольта, из которых для наших целей будет необходим только выпрямитель +12 вольт (жёлтые выходные провода).Остальные выпрямители и сопутствующие им детали необходимо будет удалить, кроме выпрямителя "дежурки", который нам понадобится для питания ШИМ контроллера и куллера.Выпрямитель дежурки даёт два напряжения. Обычно это 5 вольт и второе напряжение может быть в районе 10-20 вольт (обычно около 12-ти).Мы будем использовать для питания ШИМа второй выпрямитель. К нему также подключается и вентилятор (куллер).Если это выходное напряжение будет значительно выше 12-ти вольт, то вентилятор подключать к этому источнику нужно будет через дополнительный резистор, как будет далее в рассматриваемых схемах.На схеме ниже, я пометил высоковольтную часть зелёной линией, выпрямители "дежурки" - синей линией, а всё остальное, что необходимо будет удалить - красным цветом.

highslide.js

Итак всё, что помечено красным цветом - выпаиваем, а в нашем выпрямителе 12 вольт меняем штатные электролиты (16 вольт) на более высоковольтные, которые будут соответствовать будущему выходному напряжению нашего БП. Также необходимо будет выпаять в цепи 12-ой ножки ШИМ контроллера и средней части обмотки согласующего трансформатора - резистор R25 и диод D73 (если они есть в схеме), и вместо них в плату впаять перемычку, которая на схеме нарисована синей линией (можно просто замкнуть диод и резистор не выпаивая их). В некоторых схемах этой цепи может и не быть.

Далее в обвязке ШИМа на первой его ноге оставляем только один резистор, который идёт к выпрямителю +12 вольт.На второй и третьей ноге ШИМа - оставляем только Задающую RC цепочку (на схеме R48 C28).На четвёртой ноге ШИМа оставляем только один резистор (на схеме обозначен как R49. Да, ещё во многих схемах между 4-ой ногой и 13-14 ножками ШИМа - обычно стоит электролитический конденсатор, его (если он есть) тоже не трогаем, так как он предназначен для мягкого старта БП. В моей плате его просто не было, поэтому я его поставил.Ёмкость его в стандартных схемах 1-10 мкФ.Потом освобождаем 13-14 ножки от всех соединений, кроме соединения с конденсатором, и также освобождаем 15-ю и 16-ю ножки ШИМа.

После всех выполненных операций у нас должно получиться следующее.

highslide.js

Вот как это выглядит у меня на плате (ниже на рисунке).Дроссель групповой стабилизации я здесь перемотал проводом 1,3-1,6 мм в один слой на родном сердечнике. Поместилось где то около 20-ти витков, но можно этого не делать и оставить тот, что был. С ним тоже всё хорошо работает.На плату я так же установил другой нагрузочный резистор, который у меня состоит из двух параллельно включенных резисторов по 1,2 кОм 3W, общее сопротивление получилось 560 Ом.Родной нагрузочный резистор рассчитан на 12 вольт выходного напряжения и имеет сопротивление 270 Ом. У меня выходное напряжение будет около 40-ка вольт, поэтому я поставил такой резистор.Его нужно рассчитывать (при максимальном выходном напряжении БП на холостом ходу) на ток нагрузки 50-60 мА. Так как работа БП совсем без нагрузки не желательна, поэтому он и ставится в схему.

Вид платы со стороны деталей.

Теперь что необходимо будет нам добавить в подготовленную плату нашего БП, чтобы превратить его в регулируемый блок питания;

В первую очередь, чтобы не пожечь силовые транзисторы, нам нужно будет решить проблему стабилизации тока нагрузки и защиту от короткого замыкания.На форумах по переделке подобных блоков, встретил такую интересную вещь - при экспериментах с режимом стабилизации тока, на форуме pro-radio, участник форума DWD привёл такую цитату, приведу её полностью:

"Я как-то рассказывал, что не смог получить нормальную работу ИБП в режиме источника тока при низком опорном напряжении на одном из входов усилителя ошибки ШИМ контроллера.Более 50мВ - нормально, а меньше - нет. В принципе, 50мВ это гарантированный результат, а в принципе, можно получить и 25мВ, если постараться. Меньше - ни как не получалось. Работает не устойчиво и возбуждается или сбивается от помех. Это при плюсовом напряжении сигнала с датчика тока.Но в даташите на TL494 есть вариант, когда с датчика тока снимается отрицательное напряжение.Я переделал схему на этот вариант и получил отличный результат.Вот фрагмент схемы.

Собственно, всё стандартно, кроме двух моментов.Во первых, лучшая стабильность при стабилизации тока нагрузки при минусовом сигнале с датчика тока это случайность или закономерность?Схема прекрасно работает при опорном напряжении в 5мВ!При положительном сигнале с датчика тока стабильная работа получается только при более высоких опорных напряжениях (не менее 25мВ).При номиналах резисторов 10Ом и 10КОм ток стабилизировался на уровне 1,5А вплоть до КЗ выхода.Мне ток нужен больше, по этому поставил резистор на 30Ом. Стабилизация получилась на уровне 12...13А при опорном напряжении 15мВ.Во вторых (и самое интересное), датчика тока, как такового у меня нет...Его роль выполняет фрагмент дорожки на плате длиной 3см и шириной 1см. Дорожка покрыта тонким слоем припоя.Если в качестве датчика использовать эту дорожку на длине 2см, то ток стабилизируется на уровне 12-13А, а если на длине 2,5см, то на уровне 10А."

 

Так как этот результат оказался лучше стандартного, то и мы пойдём таким-же путём.

Для начала нужно будет отпаять от минусового провода средний вывод вторичной обмотки трансформатора (гибкую косу), или лучше не выпаивая её (если позволяет печатка) - перерезать печатную дорожку на плате, которая соединяет её с минусовым проводом.Дальше нужно будет впаять между разрезом дорожки токовый датчик (шунт), который будет соединять средний вывод обмотки с минусовым проводом.

Шунты лучше всего брать из неисправных (если найдёте) стрелочных ампервольтметров (цешек), или из китайских стрелочных или цифровых приборов. Выглядят они примерно так. Вполне достаточно будет куска длинной 1,5-2,0 см.

Можно конечно попробовать поступить и так, как написал выше DWD, то есть если дорожка от косы к общему проводу достаточной длинны, то попробовать её использовать в качестве токового датчика, но я этого делать не стал, у меня плата попалась другой конструкции, вот такая, где обозначены красной стрелкой две проволочные перемычки, которые соединяли вывод косы с общим проводом, а между ними проходили печатные дорожки.

Поэтому после удаления лишних деталей с платы, я выпаял эти перемычки и на их место впаял токовый датчик от неисправной китайской "цешки".Потом на место припаял перемотанный дроссель, установил электролит и нагрузочный резистор.Вот ка выглядит кусок платы у меня, где я красной стрелкой пометил установленный токовый датчик (шунт) на месте проволочной перемычки.

Потом отдельным проводом необходимо этот шунт соединить с ШИМом. Со стороны косы - с 15-ой ножкой ШИМа через резистор 10 Ом, а 16-ю ножку ШИМ-а соединить с общим проводом.С помощью резистора 10 Ом можно будет подобрать максимальный выходной ток нашего БП. На схеме DWD стоит резистор 30 Ом, но начните пока с 10-ти Ом. Увеличение номинала этого резистора - увеличивает максимальный выходной ток БП.

Как я уже раньше говорил, выходное напряжение блока питания у меня около 40-ка вольт. Для этого я перемотал себе трансформатор, но в принципе можно не перематывать, а повысить выходное напряжение другим способом, но для меня этот способ оказался удобнее.Обо всём этом я расскажу немного позже, а пока продолжим и начнём устанавливать на плату необходимые дополнительные детали, чтобы у нас получился работоспособный блок питания или зарядное устройство.

Ещё раз напомню, что если у Вас на плате между 4-ой и 13-14 ножками ШИМа не стоял конденсатор (как в моём случае), то его желательно добавить в схему.Так же нужно будет установить два переменных резистора (3,3-47 кОм) для регулировки выходного напряжения (V) и тока (I) и соединить их с нижеприведённой схемой. Провода соединения желательно делать как можно короче.Ниже я привёл только часть схемы, которая нам необходима - в такой схеме проще будет разобраться.На схеме вновь установленные детали обозначены зелёным цветом.

highslide.js

Схема вновь установленных деталей.

Приведу немного пояснений по схеме;- Самый верхний выпрямитель - это дежурка.- Величины переменных резисторов показаны, как 3,3 и 10 кОм - стоят такие, какие нашлись.- Величина резистора R1 указана 270 Ом - он подбирается по необходимому ограничению тока. Начинайте с малого и у Вас он может оказаться совсем другой величины, например 27 Ом;- Конденсатор С3 я не пометил, как вновь установленные детали в расчёте на то, что он может присутствовать на плате;- Оранжевой линией обозначены элементы, которые может придётся подбирать или добавлять в схему в процессе наладки БП.

Дальше разбираемся с оставшимся 12-ти вольтовым выпрямителем.Проверяем, какое максимальное напряжение способен выдать наш БП.Для этого временно отпаиваем от первой ноги ШИМа - резистор, который идёт на выход выпрямителя (по схеме выше на 24 кОм), затем нужно включить блок в сеть, предварительно соединить в разрыв любого сетевого провода, в качестве предохранителя - обычную лампу накаливания 75-95 Вт. Блок питания в этом случае выдаст нам максимальное напряжение, на которое он способен.

Прежде, чем включать блок питания в сеть, убедитесь, что электролитические конденсаторы в выходном выпрямителе заменены на более высоковольтные!

Все дальнейшие включения БП производить только с лампой накаливания, она убережёт БП от аварийных ситуаций, в случае каких либо допущенных ошибок. Лампа в этом случае просто загорится, а силовые транзисторы останутся целыми.

Дальше нам нужно зафиксировать (ограничить) максимальное выходное напряжение нашего БП.Для этого резистор на 24 кОм (по схеме выше) от первой ноги ШИМа, меняем временно на подстроечный, например 100 кОм, и выставляем им необходимое нам максимальное напряжение. Желательно выставить так, что бы оно было меньше процентов на 10-15 от максимального напряжения, которое способен выдать наш БП. Потом на место подстроечного резистора впаять постоянный.

Если Вы планируете этот БП использовать в качестве зарядного устройства, то штатную диодную сборку используемую в этом выпрямителе, можно оставить, так как её обратное напряжение 40 вольт и для зарядного устройства она вполне подойдёт.Тогда максимальное выходное напряжение будущего зарядного нужно будет ограничить выше описанным способом, в районе 15-16 вольт. Для зарядного устройства 12-ти вольтовых АКБ это вполне достаточно и повышать этот порог не нужно.Если планируете использовать Ваш переделанный БП в качестве регулируемого блока питания, где выходное напряжение будет больше 20-ти вольт, то эта сборка уже не подойдёт. Её нужно будет заменить на более высоковольтную с соответствующим током нагрузки.Себе на плату я поставил две сборки в параллель по 16 ампер и 200 вольт.При конструировании выпрямителя на таких сборках, максимальное выходное напряжение будущего блока питания может быть от 16-ти и до 30-32 вольт. Всё зависит от модели блока питания.Если при проверке БП на максимально-выдавамое напряжение, БП выдаёт напряжение меньше планируемого, и кому то нужно будет больше напряжения на выходе (40-50 вольт например), то нужно будет вместо диодной - сборки собрать диодный мост, косу отпаять от своего места и оставить висеть в воздухе, а минусовой вывод диодного моста соединить на место выпаянной косы.

highslide.js

Схема выпрямителя с диодным мостом.

С диодным мостом выходное напряжение блока питания будет в два раза больше.Очень хорошо для диодного моста подходят диоды КД213 (с любой буквой), выходной ток с которыми может достигать до 10-ти ампер, КД2999А,Б (до 20-ти ампер) и КД2997А,Б (до 30-ти ампер). Лучше всего конечно последние.Все они выглядят вот так;

Нужно будет в таком случае продумать крепление диодов к радиатору и изоляцию их друг от друга.Но я пошёл другим путём - просто перемотал трансформатор и обошёлся, как говорил выше. двумя диодными сборками в параллель, так как на плате было для этого предусмотрено место. Для меня этот путь оказался проще.

Перемотать трансформатор особого труда не составляет и как это сделать - рассмотрим ниже.

Для начала выпаиваем трансформатор из платы и смотрим по плате, к каким выводам припаяны 12-ти вольтовые обмотки.

В основном встречаются двух видов. Такие, как на фото.Дальше нужно будет разобрать трансформатор. Проще конечно будет справиться с меньшими по размеру, но и бОльшие тоже поддаются.Для этого нужно очистить сердечник от видимых остатков лака (клея), взять небольшую ёмкость, налить в неё воды, положить туда трансформатор, поставить на плиту, довести до кипения и "поварить" наш трансформатор 20-30 минут.

Для меньших трансформаторов это вполне достаточно (можно и меньше) и подобная процедура абсолютно не повредит сердечнику и обмоткам трансформатора.Потом, придерживая сердечник трансформатора пинцетом (можно прямо в таре) - острым ножом пробуем отсоединить ферритовую перемычку от Ш-образного сердечника.

Делается это довольно легко, так как лак размягчается от такой процедуры.Дальше так же аккуратно, пробуем освободить каркас от Ш-образного сердечника. Это тоже довольно просто делается.

Потом сматываем обмотки. Сначала идёт половина первичной обмотки, в основном около 20-ти витков. Сматываем её и запоминаем направление намотки. Второй конец этой обмотки можно и не отпаивать от места его соединения с другой половиной первички, если это не мешает дальнейшей работе с трансформатором.

Потом сматываем все вторички. Обычно идёт 4 витка сразу обеих половин 12-ти вольтовых обмоток, потом 3+3 витка 5-ти вольтовых. Всё сматываем, отпаиваем от выводов и наматываем новую обмотку.Новая обмотка будет содержать 10+10 витков. Наматываем её проводом, диаметром 1,2 - 1,5 мм, или набором более тонких проводов (легче мотать) соответствующего сечения.Начало обмотки припаиваем к одному из выводов, к которым была припаяна 12-ти вольтовая обмотка, мотаем 10 витков, направление намотки роли не играет, выводим отвод на "косу" и в том же направлении, что и начинали - мотаем ещё 10 витков и конец припаиваем на оставшийся вывод.Дальше изолируем вторичку и наматываем на неё, смотанную нами ранее, вторую половину первички, в том же направлении, как она была намотана ранее.Собираем трансформатор, впаиваем в плату и проверяем работу БП.

Если в процессе регулировки напряжения возникают какие либо посторонние шумы, писки, трески, то чтобы избавиться от них, нужно будет подобрать RC-цепочку, обведённую оранжевым эллипсом ниже на рисунке.

В некоторых случаях можно совсем убрать резистор и подобрать конденсатор, а в некоторых без резистора нельзя. Можно будет попробовать добавить конденсатор, или такую же RC цепочку, между 3 и 15 ножками ШИМа.Если это не помогает, то нужно установить дополнительные конденсаторы (обведены оранжевым), номиналы их приблизительно 0,01 мкф. Если это мало помогает, то установить ещё и дополнительный резистор 4,7 кОм от второй ноги ШИМа к среднему выводу регулятора напряжения (на схеме не показан).

Потом нужно будет нагрузить выход БП, например автомобильной лампой ватт на 60, и попробовать регулировать ток резистором "I".Если предела регулировки тока будет мало, то нужно увеличить номинал резистора, который идёт от шунта (10 Ом), и снова попробовать регулировать ток.Не следует ставить вместо этого резистора подстроечный, изменяйте его величину, только установкой другого резистора с большим или меньшим номиналом.

Может случиться так, что при увеличении тока - лампа накаливания в цепи сетевого провода загорится. Тогда нужно уменьшить ток, выключить БП и вернуть номинал резистора к предыдущему значению.

Ещё, для регуляторов напряжения и тока, лучше всего попробовать приобрести регуляторы СП5-35, которые бывают с проволочными и жесткими выводами.

Это аналог многооборотных резисторов (всего на полтора оборота), ось которого совмещена с плавным и грубым регулятором. Регулируется сначала "Плавно", потом когда у него заканчивается предел, начинает регулироваться "Грубо".Регулировка такими резисторами очень удобна, быстра и точна, гораздо лучше, чем многооборотником. Но если их достать не удастся, то приобретите обычные многооборотные, такие например;

Ну вот вроде я всё Вам и рассказал, что планировал довести по переделке компьютерного БП, и надеюсь, что всё понятно и доходчиво.

Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их ЗДЕСЬ на форуме.

Удачи Вам в конструировании!

 

vprl.ru

Регулируемый импульсный блок питания | Сабвуфер своими руками

Импульсные источники питания, в отличие от обычных, с силовым понижающим трансформатором, при одинаковой выходной мощности, отличаются меньшими габаритами, меньшим весом и, не всегда, но, как правило, более высоким КПД. Блоки питания с регулируемым выходным напряжением обычно изготавливают с применением силового понижающего трансформатора, работающего на частоте сети переменного тока 50 Гц и линейного или импульсного стабилизатора выходного напряжения постоянного тока.

impulsnyj-blok-pitaniyaИмпульсные источники питания с регулируемым выходным напряжением, преобразователь сетевого напряжения которых работает на высокой частоте, распространены мало из-за их повышенной сложности. Не обязательно изготавливать такой источник питания с чистого листа, для значительного упрощения и ускорения сборки можно применить уже готовый импульсный БП на фиксированное выходное напряжение, который после несложной доработки станет регулируемым, нагрузки до 0,5 А.

Принципиальная схема показан на сайте radiochipi.ru, была составлена по монтажной плате. Высоковольтная часть этого БП выглядит — узел преобразователя собран на популярном мощном высоковольтном транзисторе MJE13003, на транзисторе Q4 собран узел защиты от перегрузки Q1. Также, Q4 участвует в схеме стабилизации выходного напряжения. Отличительной особенностью этого БП является наличие ещё одного узла защиты от перегрузки, реализованного на Q2, R8, R9.

При увеличении тока нагрузки до 0,5…0,6 А, подключенной к выходу БП, напряжение на выводах резистора R8 достигает 0,5…0,6 В, транзистор Q2 открывается, ток через светодиод оптрона U1 увеличивается, фототранзистор оптрона открывается сильнее, что приводит к большему открывания Q4, который частично шунтирует эмиттерный переход Q1, выходное напряжение БП понижается. При уменьшении тока нагрузки выходное напряжение БП стремится увеличиться, ток через стабилитрон ZD1 возрастает, что так же приводит к увеличению тока через светодиод оптрона U1. Зелёный кристалл сдвоенного светодиода

На рис. 1 показана схема импульсного БП от одной из «зарядок», маркированный как СТ1В. Выходное стабилизированное напряжение этого БП около 6,2 В при токе LED1 светит при наличии выходного напряжения. Красный кристалл светит в полную яркость при подключении к выходу БП нагрузки. Стабилитрон ZD2 защищает подключенную нагрузку от повышенного напряжения при неисправности преобразователя напряжения.

При отключении узла защиты на транзисторе Q2 выходной ток БП ограничивают на уровне около 1 А при напряжении сети 220 В узел на Q4 и датчик тока на R10. Чтобы в этом импульсном источнике питания появилась возможность регулировать выходное напряжение, он был доработан по схеме, показанной на рис. 2. Модернизированный БП рассчитан на выходное напряжение 3,3…9 В при токе нагрузки до 0,5 А. Нумерация дополнительно установленных элементов продолжает нумерацию элементов, установленных изготовителем БП.

Импульсный блок питания

impulsnyj-istochnik-pitaniyashema-impulsnogo-bloka-pitaniya

На входе блока питания был установлен дополнительный RC фильтр C10R3L4C11, который понижает уровень помех, как поступающих из сети питания, так и проникающих в питающую сеть от работающего импульсного преобразователя напряжения. Резистор R16 ограничивает пусковой ток БП, а также, выполняет предохранительные функции. Пусковой ток при включении питания также ограничивается сопротивлением обмоток дросселей L3, L4. Конденсатор С1 был установлен ёмкостью 2,2 мкФ вместо 1 мкФ, а на место СЗ припаян конденсатор ёмкостью 4,7 мкФ вместо 1 мкФ.

Резистор R10 установлен сопротивлением 3,9 Ом вместо 3,3 Ом. Это снизило ток срабатывания защиты от перегрузки до 0,8 А вместо 1 А. Конденсатор С7 удалён. Конденсатор С8 установлен ёмкостью 1000 мкФ вместо 220 мкФ. Конденсатор С9 установлен на 470 мкФ вместо 220 мкФ. Параллельно этим двум конденсатором припаяно по SMD керамическому конденсатору емкостью по 10 мкФ. На место диода D8 вместо FR103 установлен более мощный диод FR203. Поскольку размах амплитуды напряжения на обмотке III превышает 50 В, диод Шотки на место D8 было решено не устанавливать.

Резистор R8 установлен сопротивлением 0,5 Ом вместо 1 Ом. Стабилитроны ZD1 и ZD2 удалены.Выходное напряжение БП регулируют переменным резистором R20. Этот резистор используется в реостатном включении, чтобы в случае обрыва в цепи его подвижного контакта, на выходе БП было минимальное напряжение. Чем ниже по схеме положение движка R20, тем больше выходное напряжение БП. R19 и С13 устраняют самовозбуждение микросхемы регулируемого стабилитрона DA1.

Узел индикации тока подключенной нагрузки был модернизирован. Вместо кремниевого рпр транзистора типа SS9015 установлен германиевый МП25Б и изменена схема его включения. Теперь для этого узла на Q5 не требуется отдельный датчик протекающего тока, роль которого ранее выполнял кремниевый диод D3. В новой схеме резистор R8 является датчиком тока как для кремниевого Q2, так и для германиевого Q5. При выходном напряжении 5 В свечение красного кристалла светодиода становится хорошо заметным при токе подключенной нагрузки около 60 мА.

При токе нагрузки 0,35 А свечение красного кристалла полностью перекрывает свечение зелёного кристалла светодиода, при токе 0,45 А яркость свечения красного кристалла светодиода достигает максимума. На выход блока питания установлен дополнительный LC фильтр L5C15. Амплитуда напряжения пульсаций и шумов на выходе БП 20…40 мВ. Резистор R13 установлен сопротивлением 1 кОм вместо 560 Ом, а R1 680 Ом вместо 470 Ом. На последней странице обложки показаны фотографии платы до модернизации и после. Микросхема KIA431 установлена на место, где раньше был припаян светодиод.

Вместо такой микросхемы можно применить TL431, AZ431, LM431, выполненную в трёхвыводном корпусе ТО92. Вместо неисправного транзистора MJE13003 можно применить MJE13005. К высоковольтному транзистору нужно прикрепить дюралюминиевый теплоотвод с площадью охлаждающей поверхности около 8 см.кв, это значительно повысит надёжность устройства. Теплоотвод с помощью тонкой слюдяной прокладки и ПВХ трубки или втулки должен быть надёжно электрически изолирован от коллектора Q1, иначе он станет эффективной излучающей антенной.

Вместо транзистора ВС847 подойдёт любой из серий 2SC1815, 2SC945, ВС548, SS9014, КТ315, КТ3102, КТ645, КТ6111. Транзистор 2SA733 можно заменить на SS9012, SS9015, ВС557, ВС558, 2SA708, КТ361, КТ209, КТ3107, КТ6112, КТ6115. Вместо германиевого транзистора МП25Б подойдёт любой из серий МП20, МП21, МП25, МП26, МП39 МП42. Рекомендованные в вариантах замен транзисторы имеют отличия в типах корпусов и цоколёвке выводов. Диоды 1N4007 можно заменить на 1N4005, 1N4007, UF4005 UF4007, 1N4937GP, 11DF4, КД 209Б, КД243Д, КД247Г.

Вместо диода FR107 может работать любой из UF4007, 1N4937GP, 1N5399, RG2M, КД247Д. Диод FR203 можно заменить на любой из FR202 FR207, FR302 FR307, SRP300D SRP300K, КД226А КД226Е. Вместо диода 1N4148 можно установить 1SS176S, 1SS244, 1 N914, КД510А,Дроссели L3, L4 малогабаритные промышленного изготовления, намотанные на Нобразных ферритовых сердечниках. Подойдут любые индуктивностью от 100 мкГн и сопротивлением обмоток 10…100 Ом. Дроссель L5 двухобмоточный, содержит несколько витков сложенного вдвое многожильного монтажного провода на кольце из низкочастотного феррита или пермаллоя, чем больше индуктивность и чем меньше сопротивление обмоток этого дросселя, тем лучше.

Конденсаторы С10, С11 керамические высоковольтные. Переменный резистор R20 подключают к схеме экранированным проводом минимальной длины, металлический экран переменного резистора должен быть соединён с минусом С9. Резистор R16 желательно применить невозгораемый или разрывной. Светодиод любой двухкристальный с общим катодом, например, серий L119, L293. Вместо такого светодиода можно применить и два обычных светодиода непрерывного свечения. Оптрон РС817 можно заменить на любой из PS817, LTV817, EL817, SFH617A2, PS25011, РС814, РС120, РС123, выполненный в стандартном четырёхвыводном корпусе.

Все детали модернизированного блока питания размещены в коробке из полистирола размером 80x50x44 мм от сетевого адаптера для игровой приставки «Денди». Контактные штыри для подключения к сетевой розетке удалены с корпуса, вместо них используется гибкий сетевой шнур с вилкой, что гораздо удобнее. Вес устройства в сборе 110 грамм. Узел на германиевом транзисторе Q5 смонтирован на отдельной небольшой плате. Дроссель L5 приклеен к корпусу полимерным клеем «Квинтол».

При сборке следите за тем, чтобы провода «горячей» высоковольтной части схемы не перехлёствывались с проводами и узлами её низковольтной части. В режиме холостого хода БП потребляет от сети ток 2 мА при напряжении сети 240 В переменного тока и 24 мА при выходном напряжении 9 В при токе нагрузки 0,5 А. Таким образом, КПД этого источника питания составляет около 78 %.

www.radiochipi.ru

Статья о переделке БП АТХ - Блоки питания (импульсные) - Источники питания

Регулируемый блок питания с компьютерного блока питания АТХ

(АТХ- это с дежуркой)

Имеется масса информации в интернете о переделке блока питания (БП) от компьютера тип АТ и АТХ. Но я решил выделить наиболее важную информацию и составить совою статью  из всего, что нашел в интернете специально для сайта cxema.my1.ru

В первую очередь смотрим на качество собранного БП «Китайцами )))». Нормальный БП должен выглядеть примерно так

На что стоит обратить внимание, это на высоковольтную часть БП. Там должны стоять сглаживающие конденсаторы и дросселя (Они сглаживают импульсный выброс в сеть), так же на диодный мостик он должен быть не менее 2А и конденсаторы после моста (Я обычно ставлю по 680 мкФ/200В или 330 мкФ/200В исходя из востребованной мощности), если вы хотите получить с БП 300 Вт (30В/10А) то нужно ставить не меньше 600 мкФ.

Естественно нужно обратить внимание на силовые ключи Q1-2 и демпферную цепь  С8R4. Q1-2 обычно ставим MJE13007- MJE13009 (Есть статьи и о переделке схемы под полевые транзисторы). Демпферная цепь С8R4, я заметил, что при регулировке БП R4 этой цепи сильно греется, решилось подбором С8.

Далее переделку БП нужно продолжать с внимательного изучения схемы самого БП (хотя схемы почти одинаковы, но все же стоит) от этого зависит вся последующая работа. Необходимо обратить особое внимание на несколько вещей в изучении схемы: система защиты (4-й вывод ШИМ-контроллера), Система Power Good (ее можно просто убрать), усилитель ошибок по току (15,16,3 выводы ШИМ), усилитель ошибок по напряжению (1,2,3 выводы ШИМ) и также выходная цепь БП (Тут нужно будет переделывать все).

Рассмотрим по порядку каждый пункт.

Системы защиты (4-й вывод)  Схема взята  из статьи  Голубева drive2.ru

Это типичная схема (Хотя бывают и другие), что тут происходит. При увеличении нагрузки на инверторе свыше допустимой, увеличивается ширина импульсов на среднем выводе развязывающего трансформатора T2. Диод D1 детектирует их, и на конденсаторе C1 увеличивается отрицательное напряжение. Достигнув определённого уровня (примерно –11 В), оно открывает транзистор Q2 через резистор R3. Напряжение +5 В через открытый транзистор поступит на вывод 4 контроллера, и остановит работу его генератора импульсов.

Из схемы выпаиваются все диоды и резисторы, подходящие от вторичных выпрямителей к базе Q1, и устанавливается стабилитрон D3 на напряжение 22 В (Или большего напряжения), например, КС522А, и резистор R8.

В случае аварийного увеличения напряжения на выходе блока питания выше 22 В, стабилитрон пробьётся и откроет транзистор Q1. Тот в свою очередь откроет транзистор Q2, через который на вывод 4 контроллера поступит напряжение +5 В, и остановит работу его генератора импульсов.

Если вам не нужна защита, то можно просто все выпаять и замкнуть вывод 4 на корпус через резистор (схема будет ниже).

Система Power Good – я обычно ее просто выпаиваю.

Усилитель ошибок по току (15,16,3 выводы ШИМ) – это и есть регулировка выходного тока. Но не значит что на этом можно не переживать о защите от КЗ.

 Усилитель ошибок по напряжению (1,2,3 выводы ШИМ) – Это регулировка выходного напряжения.

Об этих двух вещах и пойдет дальше речь т.к. одно из самых главных вещей в этом деле. 

И так регулировка напряжения.

(Тут же схема защиты)

Эта схема составлена без регулировки тока.

14-й вывод ШИМ – это опорное напряжение. А выводы 2,1 это входа ОУ по напряжению.

Вся регулировка осуществляется с помощью делителей напряжения. На вывод 2 мы подаём образцовое напряжение с 14-го вывода через делитель R5R6 по 3,3 кОм. Данный делитель рассчитан на напряжение 2,4В. Далее выходное напряжение со вторичной цепи нам нужно подать на первый вывод ШИМ и также через делитель, но уже через переменный. Переменный резистор R1 и постоянный R3. На моем БП вышла регулировка от 2-24 Вольт. Напряжение на выходе зависит еще и от силового трансформатора и выходной цепи, но об этом позже. Вернемся к нашей Шимке, настройка регулировки напряжения на этом не заканчивается. Нам нужно еще обратить внимание на 3 вывод ШИМ, это выход ОУ и ему нужно сделать ООС на 2 ногу для плавной регулировки и убрать шум, треск и прочий не приятный звук трансформатора. У меня она собрана на C4R3 и C1. Хотя за частую хватает и C4R3, но из-за множества разнообразия «китайских делателей», нужно иногда добавлять кондерчик обычно на 1мкф хватает, но иногда доходит и до 5мкф.

Цепи  C4R3 и C1 нужно подбирать так чтобы не было шума в тр-ре, но если все же он остается, то нужно обратить внимание на дроссель вторичной цепи, бывает нарушение сердечника, но об этом мы еще поговорим.   

Да о защите, я ее тут убрал и поставил резистор на 2 кОм R4.

Теперь о регулировке тока

В принципе регулировка тока, это тоже регулировка напряжения. С помощью делителя, но только  тут уже изменяется опорное напряжение и идет слежение падения напряжения на амперметре (или шунте). В принципе нечего нового нет относительно регулировки напряжения нет, только С1 нужен обязательно и возможно последовательно ему нужно будет добавить резистор, но это уже зависит от ШИМ и Тр-ра.

Общая схема регулировки работоспособна на 100% проверенная практике, если у вас схема не работает стабильно или не совсем правильно значит нужно: 1. Подобрать номиналы под Вашу ШИМ и тр-р, 2. Искать ошибки в сборке и дорабатывать. Опять же повторяюсь на практике показало, что китайские ШИМ и БП в целом реагируют на изменения в схемах по-разному. Все нужно настраивать методом подбора и расчётов.

В БП АТХ питание ШИМ и разделительного трансформатора осуществляется с Дежурного питания оно может достегать 25 В и подается в цепь 12 вывода ШИМ. Многие считают что диод во вторичной цепи Силового ТР-РА идущий на 12 вывод нужно убирать. Я считаю, что лучше оставить эту цепь, это дает дополнительную уверенность сохранения силовых ключей при выходе их строя дежурного питания. 

Теперь о вторичной цепи

Наилучшая схема переделки мне показалась С. Голубева (Driver2.ru)

Хотя вентилятор на пяти вольтовую обмотку не повесить, потому что там также будет изменяться напряжение, да и еще не нет обратной связи с ШИМ и поэтому да при нагрузке с током в 0,15А напряжение будет падать ощутимо.

Теперь о самой схеме выходного напряжения. Менять распиновку тр-ра и ставить диодный мост нет смысла. Т.к. напряжение увеличиться, а мощность падает. Поэтому я предпочитаю такую схему, да и потом переделок меньше. Выпрямительные диоды D3 должны быть на ток не менее 10 А и обратное напряжение не менее 200 Вольт. Это могут быть STPR1020CT,F12C20.ER1602CT. Диод D4, это и есть (как я называю) вспомогательная цепь питания ШИМ и Защиты Vcc и Vdd. Индуктивность L1 кольцевой при желании можно оставить старый (Если конечно он работает нормально), но я перематываю тем же проводом + провод с пяти вольтовой цепи. Индуктивность L2 обычно оставляю без измерения. Конденсаторы C5C6 не стоит ставить номиналом более 2200 мкф  нет смысла. Я обычно ставлю по 1000мкф и хватает вполне. Неполярные С4С7 можно при желании поднять до 1 мкф, но я также не увидел большой разницы. А вот резистор R5 не стоит ставить менее 300 Ом будет просто греться при напряжении более 10 В, но и не более 500 Ом. Этот резистор дает так сказать балансировку БП.

Вот собственно и все самое главное в переделке БП.

Акцентирую опять же внимание на том, что не все БП легко и просто поддаются переделке и настройке. Поэтому нужно внимательно изучать схему и информацию по переделке.  

Отдельно в архиве собраны схемы по переделке БП.

 

cxema.my1.ru

Простой мощный импульсный блок питания на TL494

Читать все новости ➔

Часто собирая какую нибудь электронную конструкцию, как то, усилитель звуковой частоты, средства автоматики, устройства на базе микроконтроллеров, и многое другое, мы задаемся вопросом а чем питать аппаратуру? Радиоэлектронные устройства в большинстве своем питаются постоянным напряжением отличным от напряжения сети. В последнее время все чаще импульсная техника вытесняет из повседневного обихода традиционные трансформаторные схемы блоков питания. Выигрыш тут очевиден, во первых это экономия намоточного материала, который стоит не дешево. Во вторых, это габариты и масса приборов, на сегодняшний день при современной миниатюризации аппаратуры различного назначения, этот вопрос очень актуален, большинство схем ИБП довольно сложны в сборке и настройке и не доступны для повторения начинающими радиолюбителями.

В данной статье приводится схема простого ИБП, при разработке которого ставилась задача простоты конструкции, хорошей повторяемости, использование подручного материала, не сложности в сборке и настройке. Не смотря на простоту, ИБП имеет довольно неплохие характеристики.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРИБОРА

  • Питающее напряжение сети: 220В/50Гц.
  • Номинальная выходная мощность: 300Вт.
  • Максимальная выходная мощность: до 500Вт.
  • Частота преобразования напряжения: 30кГц.

Вторичное выпрямленное напряжении варьируется по необходимости.

1

Принцип работы ИБП заключается в следующем: импульсы для управления ключами генерирует задающий генератор построенный на специальном драйвере TL494, частота импульсов управления 30 кГц.импульсы управления с выходов микросхемы подаются поочередно на транзисторные ключи VT1, VT2 предварительного формирователя импульсов для выходных силовых ключей.

Ключи VT1, VT2 нагружены трансформатором управления TR1, который и формирует импульсы управления мощными выходными ключами VT3, VT4, формирователь необходим для гальванической развязки затворных цепей выходного каскада. ИБП построен по полумостовой схеме, средняя точка для полумоста создается конденсаторами С3, С4, которые одновременно служат сглаживающим фильтром выпрямленного диодным мостом VDS1 питающего напряжения сети. Цепь R7, C8 обеспечивает кратковременно питание на задающий генератор и формирователь импульсов управления,для первичного запуска ИБП, после полного заряда конденсатора С8 питание формирователя осуществляется непосредственно обмоткой 3 трансформатора TR2 c которой снимается переменное напряжение 12В. Цепочка VD2, C6 служит для выпрямления и сглаживания питающего формирователь напряжения. Стабилитрон VD1 ограничивает напряжение первичного запуска до 12В. Вторичное напряжение питания для РЭА снимается с обмотки 3 трансформатора TR2, выпрямляется диодами Шотки VD3, VD4 и подается на сглаживающий фильтр С9, С10. Если необходимое напряжение питания превышает 35В, включаются по два диода последовательно.

Несколько слов о конструкции ИБП: большинство компонентов взяты из неисправного компьютерного БП АТХ. А именно это микросхема TL494, конденсаторы С9, С10, диодный мост VDS1, конденсаторы С1, С2, С5, С6, С7, диод VD2, диоды Шотки VD3,VD4, и ферритовые сердечники с каркасами TR1, TR2.

Сам ИБП конструктивно был собран в корпусе того же разобранного БП АТХ.транзисторы VT3, VT4 установлены на радиаторы площадью 50см/кв.

Данные перемотки трансформаторов TR1, TR2:

  • TR1. Все четыре обмотки содержат по 50 витков провода 0.5 мм.
  • TR2. Обмотка 1 наматывается проводом 0.8мм 110 витков. Обмотка 3 содержит 12 витков проводом 0.8мм. Обмотка 2 наматывается в зависимости от необходимого вторичного напряжения питания и рассчитывается из соотношения 1вит/2вольта. Так как на выходе стоит удвоитель напряжения.

Файлы к проекту:

Чтобы увидеть ссылку войдите или зарегистрируйтесь

Возможно, Вам это будет интересно:

meandr.org

Регулируемый источник питания из БП ATX на TL494. Часть 1 — железо / Хабр

Всем привет!

Сегодня хотел бы рассказать Вам о своём опыте переделки самого обычного китайского БП ATX в регулируемый источник питания со стабилизацией тока и напряжения(0-20А, 0-24В).

В этой статье мы подробно рассмотрим работу ШИМ контроллера TL494, обратной связи и пробежимся по модернизации схемы БП и разработке самодельной платы усилителей ошибок по напряжению и току.

Честно признаться, сейчас я даже не могу назвать модель подопытного БП. Какой-то из многочисленных дешевых 300W P4 ready. Надеюсь, не нужно напоминать, что на деле эти 300W означают не больше 150, и то с появлением в квартире запаха жареного.

Рассчитываю на то, что мой опыт сможет быть кому-то полезен с практической точки зрения, а потому упор сделаю на теорию. Без нее всё равно не получится переделать БП т.к. в любом случае будут какие-то отличия в схеме и сложности при наладке.

Схема БП ATX Для начала пройдемся по схеме БП ATX на контроллере TL494(и его многочисленных клонах). Все схемы очень похожи друг на друга. Гугл выдает их довольно много и кажется я нашел почти соответствующую моему экземпляру.

Ссылка на схему в полном размере

Структурно разделим БП на следующие блоки: — выпрямитель сетевого напряжения с фильтром — источник дежурного питания(+5V standby) — основной источник питания(+12V,-12V,+3.3V,+5V,-5V) — схема контроля основных напряжений, генерация сигнала PowerGood и защита от КЗ

Выпрямитель с фильтрами это всё что в левом верхнем углу схемы до диодов D1-D4.

Источник дежурного питания собран на трансформаторе Т3 и транзисторах Q3 Q4. Стабилизация построена на обратной связи через опторазвязку U1 и источнике опорного напряжения TL431. Подробно рассматривать работу этой части я не буду т.к. знаю, что слишком длинные статьи читать не очень весело. В конце я дам название книги, где подробно рассмотрены все подробности.

Обратите внимание, в схеме по ошибке и ШИМ контроллер TL494 и ИОН дежурного питания TL431 обозначены как IC1. В дальнейшем я буду упоминать IC1 имея ввиду именно ШИМ контроллер.

Основной источник питания собран на трансформаторе Т1, высоковольтных ключах Q1 Q2, управляющем трансформаторе Т2 и низковольтных ключах Q6 Q7. Всё это дело раскачивается и управляется микросхемой ШИМ контроллера IC1. Понимание принципа работы контроллера и назначения каждого элемента его обвязки — это как раз то, что необходимо для сознательной доработки БП вместо слепого повторения чужих рекомендаций и схем.

Механизм работы примерно таков: ШИМ контроллер, поочередно открывая низковольтные ключи Q6 Q7, создает ЭДС в первичной обмотке трансформатора Т2. Видите, эти ключи питаются низким напряжением от дежурного источника питания? Найдите на схеме R46 и поймете о чем я. ШИМ контроллер также питается от этого дежурного напряжения. Чуть выше я назвал трансформатор Т2 управляющим, но кажется у него есть какое-то более правильное название. Его основная задача — гальваническая развязка низковольтной и высоковольтной части схемы. Вторичные обмотки этого трансформатора управляют высоковольтными ключами Q1 Q2, поочередно открывая их. С помощью такого трюка низковольтный ШИМ контроллер может управлять высоковольтными ключами с соблюдением мер безопасности. Высоковольтные ключи Q1 Q2 в свою очередь раскачивают первичную обмотку трансформатора Т1 и на его вторичных обмотках возникают интересующие нас основные напряжения. Высоковольтными эти ключи называются потому, что коммутируют они выпрямленное сетевое напряжение, а это порядка 300В! Напряжение со вторичных обмоток Т1 выпрямляется и фильтруется с помощью LC фильтров.

Теперь, надеюсь, в целом картину вы себе представляете и мы можем идти дальше.

ШИМ контроллер TL494. Давайте разберемся как же устроен ШИМ контроллер TL494. Будет лучше, если вы скачаете даташит www.ti.com/lit/ds/symlink/tl494.pdf, но в принципе я постараюсь вынести из него самое главное с помощью картинок. Для более глубокого понимания всех тонкостей советую вот этот документ: www.ti.com/lit/an/slva001e/slva001e.pdf

Начнем, как это ни странно, с конца — с выходной части микросхемы. Сейчас всё внимание на выход элемента ИЛИ (помечен красным квадратом). Выход этого элемента в конкретный момент времени напрямую управляет состоянием одного или обоих сразу ключей Q1 Q2. Вариант управления задаётся через пин 13(Output control).

Важная вещь №1: если на выходе элемента ИЛИ лог 1 — выходные ключи закрыты(выключены). Это верно для обоих режимов. Важная вещь №2: если на выходе элемента ИЛИ лог 0 — один из ключей(или оба сразу) открыт(включен).

Вырисовывается следующая картина: по восходящему фронту открытый ранее транзистор закрывается(в этот момент они оба гарантированно закрыты), триггер меняет своё состояние и по нисходящему фронту включается уже другой ключ и будет оставаться включенным пока снова не придет восходящий фронт и не закроет его, в этот момент опять триггер перещёлкивается и следующий нисходящий фронт откроет уже другой транзистор. В single ended режиме ключи всегда работают синхронно и триггер не используется.

Время, когда выход находится в лог. 1(и оба ключа закрыты) называется Dead time. Отношение длительности импульса(лог. 0, транзистор открыт) к периоду их следования называется коэффициент заполнения(PWM duty cycle). Например если коэффициент 100% то на выходе элемента ИЛИ всегда 0 и транзистор(или оба) всегда открыт.

Простите, но стараюсь объяснять максимально доступно и почти на пальцах, потому что официальным сухим языком это можно и в даташите прочитать.

Ах да, зачем же нужен Dead time? Если коротко: в реальной жизни верхний ключ будет тянуть наверх(к плюсу) а нижний вниз(к минусу). Если открыть их одновременно — будет короткое замыкание. Это называется сквозной ток и из-за паразитных емкостей, индуктивностей и прочих особенностей такой режим возникает даже если вы будете открывать ключи строго по очереди. Чтобы сквозной ток свести к минимуму нужен dead time.

Теперь обратим внимание на генератор пилы(oscillator), который использует выводы 5 и 6 микросхемы для установки частоты. На эти выводы подключается резистор и конденсатор. Это и есть тот самый RC генератор о котором наверное многие слышали. Теперь на выводе 5(CT) у нас пила от 0 до 3.3В. Как видим, эта пила подается на инвертирующие входы компараторов Dead-time и PWM.

С терминами и работой выходной части ШИМ контроллера более-менее определились, теперь будем разбираться при чем тут пила и зачем нам все эти компараторы и усилители ошибок. Мы поняли, что отношение длительности импульса к периоду их следования определяет коэффициент заполнения, а значит и выходное напряжение источника питания т.к. в первичную обмотку трансформатора будет вкачиваться тем больше энергии, чем больше коэффициент заполнения.

Для примера разберемся, что нужно сделать чтобы установить коэффициент заполнения 50%. Вы еще помните про пилу? Она подается на инвертирующие входы компараторов PWM и Dead time. Известно, что если напряжение на инвертирующем входе выше чем на неинвертирующем — выход компаратора будет лог.0. Напомню, что пила — это плавно поднимающийся от 0 до 3.3в сигнал, после чего резко падающий на 0в. Таким образом, чтобы на выходе компаратора 50% времени был лог.0 — на неинвертирующий вход нужно подать половину напряжения пилы(3.3в/2=1,65в). Это и даст искомые 50% duty cycle.

Заметили, что оба компаратора сходятся на том самом элементе ИЛИ, а значит, пока какой-то из компараторов выдает лог.1 — другой не может ему помешать. Т.е. приоритет имеет тот компаратор, который приводит к меньшему коэффициенту заполнения. И если на Dead time компаратор напряжение подается снаружи, то на PWM компаратор можно подать сигнал как извне(3 пин) так и с встроенных усилителей ошибок(это обычные операционные усилители). Они тоже соединяются по схеме ИЛИ, но т.к. мы уже имеем дело с аналоговым сигналом — схема ИЛИ реализуется с использованием диодов. Таким образом контроль над коэффициентом заполнения захватывает тот усилитель ошибки, который просит меньший коэффициент заполнения. Состояние другого при этом не имеет значения.

Обратная связь. Хорошо, теперь как на всём этом построить источник питания? Очень просто! Нужно охватить БП отрицательной обратной связью. Разница между желаемым(заданным) и имеющимся напряжением называется ошибка. Если в каждый момент времени воздействовать на коэффициент заполнения так, чтобы исправить ошибку и привести ее к 0 — получим стабилизацию выходного напряжения(или тока). Обратная связь является отрицательной до тех пор, пока реагирует на ошибку управляющим воздействием с противоположным знаком. Если обратная связь будет положительной — пиши пропало! В таком случае обратная связь будет увеличивать ошибку вместо того чтобы уменьшать ее.

Всё это работа для тех самых усилителей ошибок. На инвертирующий вход усилителя ошибки подается опорное напряжение(эталон), а на неинвертирующий заводится напряжение на выходе источника питания. Кстати внутри ШИМ контроллера есть источник опорного напряжения 5В, который является точкой отсчёта во всех измерениях.

Компенсация обратной связи Даже не знаю как бы по-проще это объяснить. С обратной связью всё просто только в идеальном мире. На практике же если вы изменяете коэффициент заполнения — выходное напряжение меняется не сразу, а с некоторой задержкой.

К примеру усилитель ошибки зарегистрировал понижение напряжения на выходе, откорректировал коэффициент заполнения и прекратил вмешиваться в систему, но напряжение продолжает нарастать и потом усилитель ошибки вынужден снова корректировать коэффициент заполнения уже в другую сторону. Такая ситуация происходит из-за задержки реакции. Так система может перейти в режим колебаний. Они бывают затухающими и незатухающими. Блок питания в котором могут возникнуть незатухающие колебания сигнала обратной связи — долго не протянет и является нестабильным.

У обратной связи есть определенная полоса пропускания. Допустим полоса 100кГц. Это означает, что если выходное напряжение будет колебаться с частотой выше 100кГц — обратная связь этого просто не заметит и корректировать ничего не будет. Конечно, хотелось бы, чтобы обратная связь реагировала на изменения любой частоты и выходное напряжение было как можно стабильнее. Т.е. борьба идет за то, чтобы обратная связь была максимально широкополосной. Однако та самая задержка реакции не позволит нам сделать полосу бесконечно широкой. И если полоса пропускания цепи обратной связи будет шире чем возможности самого БП на отработку управляющих сигналов(прямая связь) — на некоторых частотах отрицательная обратная связь будет внезапно становиться положительной и вместо компенсации ошибки будет ее еще больше увеличивать, а это как раз условия возникновения колебаний.

Теперь от задержек в секундах давайте перейдем к частотам, коэффициентам усиления и фазовым сдвигам… Полоса пропускания это максимальная частота, на которой коэффициент усиления больше 1. С увеличением частоты коэффициент усиления уменьшается. В принципе это справедливо для любого усилителя. Итак, чтобы наш БП работал стабильно должно выполняться одно условие: во всей полосе частот, где суммарное усиление прямой и обратной связи больше 1(0дБ), отставание по фазе не должно превышать 310 градусов. 180 градусов вносит инвертирующий вход усилителя ошибки.

Вводом в обратную связь различных фильтров добиваются того, чтобы это правило выполнялось. Если очень грубо, то компенсация обратной связи это подгонка полосы пропускания и ФЧХ обратной связи под реакции реального источника питания(под характеристики прямой связи).

Тема эта очень не простая, под ней лежит куча математики, исследований и прочих трудов… Я лишь стараюсь в доступном виде изложить саму суть вопроса. Могу порекомендовать к прочтению вот эту статью, где хоть и не так на пальцах, но тоже в доступном виде освещен этот вопрос и даны ссылки на литературу: bsvi.ru/kompensaciya-obratnoj-svyazi-v-impulsnyx-istochnikax-pitaniya-chast-1

От теории к практике Теперь мы можем взглянуть на схему БП и понять что в ней много лишнего. В первую очередь я выпаял всё, что относится к контролю выходных напряжений(схема формирования сигнала Power good). Нейтрализовал встроенные в ШИМ контроллер усилители ошибок путем подачи +5vref на инвертирующие входы и посадив на GND неинвертирующие. Удалил штатную схему защиты от КЗ. Выпилил все не нужные выходные фильтры от напряжений которые не используются… Заменил выходные диоды на более мощные. Заменил трансформатор! Выпаял его из качественного БП где написанные 400W действительно означают 400W. Разница в размерах между тем, что стояло тут до этого говорит сама за себя:

Заменил дроссели в выходном фильтре(с того-же 400W БП) и конденсаторы поставил на 25В:

Далее я разработал схему, позволяющую регулировать стабилизацию выходного напряжения и устанавливать ограничение тока выдаваемого БП.

Схема реализует внешние усилители ошибок собранные на операционных усилителях LM358 и несколько дополнительных функций в виде усилителя шунта(INA197) для измерения тока, нескольких буферных усилителей для выдачи величины установленного и измеренного тока и напряжения на другую плату, где собрана цифровая индикация. О ней я расскажу в следующей статье. Выдавать на другую плату сигналы как есть — не лучшее решение т.к. источник сигнала может быть достаточно высокоомным, провод ловит шум, мешая обратной связи работать устойчиво. В первой итерации я с этим столкнулся и пришлось всё переделать. В принципе на схеме всё подписано, подробно комментировать ее не вижу смысла и думаю, что для тех кто понял теорию выше, должно быть всё довольно очевидно.

Отмечу лишь, что цепочки C4R10 и C7R8 это и есть компенсация обратной связи о которой я говорил выше. Честно говоря, в ее настройке очень помогла прекрасная статьи эмбэддера под ником BSVi. bsvi.ru/kompensaciya-obratnoj-svyazi-prakticheskij-podxod Этот подход реально работает и потратив денек-другой мне удалось добиться стабильной работы БП описанным в статье методом. Сейчас, конечно, я бы справился часа за два наверно, но тогда опыта не было и по неосторожности я взорвал не мало транзисторов.

Ах да, обратите внимание на емкость C7! 1uF это довольно много. Сделано это для того, чтобы обратную связь по току зажать в быстродействии. Это такой грязный хак для преодоления нестабильности возникающей на границе перехода от стабилизации напряжения к стабилизации тока. В таких случаях применяют какие-то более навороченные приёмы, но так заморачиваться я не стал. Супер точная стабилизация тока мне не нужна, к тому же к моменту, когда я столкнулся с этой бедой — проект переделки БП успел здорово надоесть!

По этой схеме лазерным утюгом была изготовлена плата:

Она встраивается в БП вот таким образом:

В качестве шунта для измерения тока выбран кусок медной проволоки длинной сантиметров 10 наверно.

Корпус я использовал от довольно качественного БП Hiper. Кажется это самый проветриваемый корпус из всех что я видел.

Также возник вопрос о подключении вентилятора. БП ведь регулируется от 0 до 24В, а значит кулер придется питать от дежурки. Дежурка представлена двумя напряжениями — стабильными 5В, которые идут на материнскую плату и не стабилизированным, служебным питанием около 13.5В которое используется для питания самого ШИМ контроллера и для раскачки управляющего трансформатора. Я использовал обычный линейный стабилизатор чтобы получить стабильные +12В и завёл их на маленькую платку терморегуляции оборотов кулера, выпаянную с того-же Hiper'a. Платку закрепил на радиаторе шурупом просто из соображений удобства подключения кулера.

Радиаторы кстати пришлось изогнуть ибо они не вмещались в корпус нового формата. Лучше перед изгибанием их нагревать паяльной станцией, иначе есть шанс отломать половину зубов. Терморезистор регулятора закрепил на дросселе групповой стабилизации т.к. это самая горячая часть.

В таком виде БП прошел длительные испытания, питая кучу автомобильных лампочек дальнего света и выдерживал нагрузки током порядка 20А при напряжении 14В. А еще он гордо зарядил несколько автомобильных аккумуляторов, когда у нас в Крыму выключали свет.

Будущее уже рядом Тем временем я задумал немного нестандартную систему индикации режимов работы БП, о чем в последствии немного сожалел, но всё-же она работает!

Так что в следующей статье вас ждет программирование ATMega8 на C++ с применением шаблонной магии, различных паттернов и самописная библиотека для вычислений с фиксированной точкой поверх которой реализовано усреднение отсчётов АЦП и перевод их в напряжение/ток по таблице с линейной интерполяцией. Каким-то чудом всё это уместилось в 5 с копейками килобайт флэша.

Не переключайте канал, должно быть интересно.

Кстати, обещанная в начале книга: Куличков А.В. «Импульсные блоки питания для IBM PC»radioportal-pro.ru/_ld/0/15_caf3ebe8f7eaeee.djvu

P.S. Надеюсь, изложенное выше окажется полезным. Строго не судите, но конструктивная критика приветствуется.

Added для RO пользователей которые не могут писать комментарии: email: altersoft_пёс_mail.ру

habr.com


Каталог товаров
    .