интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Основные параметры тиристоров. Обозначение на схеме тиристора


Основные параметры тиристоров

К основным параметрам динисторов и тиристоров относятся:

• допустимое обратное напряжение Uобр;

При включении тиристора током управ­ления после подачи импульса тока Iyt в уп­равляющий электрод проходит некоторое время, необходимое для включения тиристо­ра. Кривые мгновенных значений токов и напряжений в тиристоре при его включении на резистивную нагрузку приведены на рис. 6.7.

Процесс нарастания тока в тиристоре начинается спустя некоторое время задержки tзд, которое зависит от амплитуды импульса тока управления Iyt. При достаточно большом токе управления время задержки снижается до долей микросекунды (от 0,1 до 1...2мкс).

Затем происходит нарастание тока через прибор, которое обычно называют време­нем лавинного нарастания. Это время существенно зависит от начального прямого напряжения Uпр0 на тиристоре и прямого тока Iпр через включенный тиристор.

Включе­ние тиристора обычно осуществляется импульсом тока управления. Для надежного включения тиристора необходимо, чтобы параметры импульса тока управления: его амплитуда Iyt, длительность tиу, скорость нарастания dIy/dt отвечали определенным тре­бованиям, которые обеспечивают включение тиристора в заданных условиях. Длитель­ность импульса тока управления должна быть такой, чтобы к моменту его оконча­ния анодный ток тиристора был больше тока удержания Iауд.

Если тиристор выключается приложением обратного напряжения Uo6p, то процесс выключения можно разделить на две стадии: время восстановления обратного сопро­тивления tоб.B и время выключения tвык. После окончания времени восстановления Iобв ток в тиристоре достигает нулевого значения, однако он не выдерживает приложения прямого напряжения. Только спустя время tвык к тиристору можно повторно приклады­вать прямое напряжение Uпр0.

Потери в тиристоре состоят из потерь при протекании прямого тока, потерь при протекании обратного тока, коммутационных потерь и потерь в цепи управления. По­тери при протекании прямого и обратного токов рассчитываются так же, как в диодах. Коммутационные потери и потери в цепи управления зависят от способа включения и выключения тиристора.

  1. Симистор, структура, назначение. Вольтамперная характеристика симистора

Симистор - это симметричный тиристор, который предназначен для коммутации в цепях переменного тока. Он может использоваться для создания реверсивных выпря­мителей или регуляторов переменного тока. Структура симметричного тиристора при­ведена на рис. 6.8 а, а его схематическое обозначение на рис. 6.8 б. Полупроводниковая структура симистора содержит пять слоев полупроводников с различным типом проводимостей и имеет более сложную конфигурацию по сравнению с тиристором. Вольтамперная характеристика симистора приведена на рис. 6.9.

Как следует из вольтамперной характеристики симистора, прибор включается в любом направлении при подаче на управляющий электрод УЭ положительного импуль­са управления. Требования к импульсу управления такие же, как и для тиристора. Основные характеристики симистора и система его обозначений такие же, как и для тиристора. Симистор можно заменить двумя встречно параллельно включенными тиристорами с общим электродом управления. Так, например, симистор КУ208Г может коммутировать переменный ток до 10А при напряжении до 400 В. Отпирающий ток в цепи управления не превышает 0,2 А, а время включения — не более 10 мкс.

studfiles.net

ЛЕКЦИЯ 15 ТИРИСТОРЫ. Классификация и условные графические обозначения тиристоров

Лекция 6 ПОЛЕВЫЕ ТРАНЗИСТОРЫ

Лекция 6 ПОЛЕВЫЕ ТРАНЗИСТОРЫ 147 Лекция 6 ПОЛЕВЫЕ ТРАНЗИСТОРЫ План 1. Класфикация полевых трансторов. 2. Полевые трасторы с управляющим p n-переходом. 3. МОП-трасторы с индуцированным каналом. 4. МОП-трасторы с встроенным каналом.

Подробнее

Изучение работы полевого транзистора

Изучение работы полевого транзистора ЛАБОРАТОРНАЯ РАБОТА Изучение работы полевого транзистора Цель работы: ознакомиться с принципами работы полевого транзистора, построить стоковые характеристики транзистора. Краткие теоретические сведения

Подробнее

Контрольные вопросы Понижающий ППН

Контрольные вопросы Понижающий ППН Глава 10. ПРЕОБРАЗОВАТЕЛИ ПОСТОЯННОГО НАПРЯЖЕНИЯ 10.1. Классификация преобразователей постоянного напряжения Преобразователи постоянного напряжения (ППН) предназначены для преобразования постоянного напряжения

Подробнее

УДК ТИРИСТОРЫ С ПОЛЕВЫМ УПРАВЛЕНИЕМ

УДК ТИРИСТОРЫ С ПОЛЕВЫМ УПРАВЛЕНИЕМ УДК 621.382 ТИРИСТОРЫ С ПОЛЕВЫМ УПРАВЛЕНИЕМ Нестеров С. А., Тетюшкин В. С. ГОУВПО «Мордовский государственный университет им. Н. П. Огарева», г. Саранск Тел. +7(8342)290605; e-mail: [email protected] Аннотация.

Подробнее

Микросборка 2609КП1П АЯЕР ТУ

Микросборка 2609КП1П АЯЕР ТУ Микросборка 269КПП АЯЕР.436.84 ТУ Код ОКП 63332973. Код ЕКПС 963 Нормально разомкнутый полупроводниковый твердотельный коммутатор в гибридном исполнении с гальванической оптоэлектронной развязкой для коммутации

Подробнее

Цифровые устройства И ИЛИ НЕ F 1

Цифровые устройства И ИЛИ НЕ F 1 Цифровые устройства Цифровые устройства это электронные функциональные узлы, которые обрабатывают цифровые сигналы. Цифровые сигналы представляются двумя дискретными уровнями напряжений: высоким и низким

Подробнее

ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТРАНСПОРТА» Кафедра микропроцессорной техники и информационно-управляющих систем ПОЛУПРОВОДНИКОВЫЕ

Подробнее

Исследование полевых транзисторов

Исследование полевых транзисторов Министерство общего и профессионального образования Российской федерации КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им А.Н.ТУПОЛЕВА Кафедра радиоэлектроники и информационно-измерительной техники

Подробнее

Датчики на основе эффекта Холла

Датчики на основе эффекта Холла - 1 - Датчики на основе эффекта Холла 1. Введение Применение датчиков на основе эффекта Холла включает в себя выбор магнитной системы и сенсора Холла с соответствующими рабочими характеристиками. Эти два

Подробнее

Элементы вычислительной техники

Элементы вычислительной техники Волгоградский государственный педагогический университет Элементы вычислительной техники Учебное пособие по курсу «Электронно-вычислительная техника» ВОЛГОГРАД «ПЕРЕМЕНА» 2002 2 ББК 32.965 Марков Б.Г Элементы

Подробнее

Высокоэффективные нагреватели воды

Высокоэффективные нагреватели воды Высокоэффективные нагреватели воды Фролов Александр Владимирович http://alexfrolov.narod.ru Задача в целом выглядит, как получение максимального нагрева рабочего тела (теплового выхода) при минимальных

Подробнее

ФИЗИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОНИКИ

ФИЗИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОНИКИ Министерство образования и науки Российской Федерации М.Ю. Бородин, А.В. Кириллов, Н.Д. Ясенев ФИЗИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОНИКИ КУРС ЛЕКЦИЙ Учебное пособие предназначено для студентов всех форм обучения по

Подробнее

ЭЛЕКТРОНИКА И МИКРОПРОЦЕССОРНАЯ ТЕХНИКА

ЭЛЕКТРОНИКА И МИКРОПРОЦЕССОРНАЯ ТЕХНИКА МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВПО «ГОСУНИВЕРСИТЕТ-УНПК» УЧЕБНО-НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ Кафедра «Приборостроение, метрология и сертификация»

Подробнее

RU (11) (13) C1

RU (11) (13) C1 РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 2016484 (13) C1 (51) МПК 5 H02M5/257 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным

Подробнее

10. Измерения импульсных сигналов.

10. Измерения импульсных сигналов. 0. Измерения импульсных сигналов. Необходимость измерения параметров импульсных сигналов возникает, когда требуется получить визуальную оценку сигнала в виде осциллограмм или показаний измерительных приборов,

Подробнее

БЛОК ПИТАНИЯ «КВАНТ-ДРШ-250-3М».

БЛОК ПИТАНИЯ «КВАНТ-ДРШ-250-3М». НПО УЧЕБНОЙ ТЕХНИКИ «ТУЛАНАУЧПРИБОР» БЛОК ПИТАНИЯ «КВАНТ-ДРШ-250-3М». ПАСПОРТ. РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ. 2007 г. 1. Назначение. Блок питания «КВАНТ-ДРШ-250-3М» предназначен для поджига и питания газовой

Подробнее

ИЗУЧЕНИЕ ЯВЛЕНИЯ ТЕРМОЭЛЕКТРОННОЙ ЭМИССИИ

ИЗУЧЕНИЕ ЯВЛЕНИЯ ТЕРМОЭЛЕКТРОННОЙ ЭМИССИИ Министерство транспорта Российской Федерации Федеральное агентство железнодорожного транспорта Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Дальневосточный

Подробнее

Тема: «Основные измерения»

Тема: «Основные измерения» Виды измерительных приборов Сегодня мы с вами продолжим наши исследование в области электрорадиоизмерений. В прошлом году мы использовали в нашей работе индукционные авометры Ц20 и Ц4341. Как вы знаете

Подробнее

МОЩНЫЕ ВЫСОКОЧАСТОТНЫЕ ТРАНЗИСТОРЫ

МОЩНЫЕ ВЫСОКОЧАСТОТНЫЕ ТРАНЗИСТОРЫ ЮРИИ ЗАВРАЖНОВ, ИРИНА КАГАНОВА, ЕВГЕНИИ МАЗЕЛЬ АЛЬБЕРТ МИРКИН МОЩНЫЕ ВЫСОКОЧАСТОТНЫЕ ТРАНЗИСТОРЫ (c) Издательство «Радио и связь», 1985 ПРЕДИСЛОВИЕ В современной электронике все большую роль играет микроэлектроника,

Подробнее

Ручные цифровые мультиметры MS-8221A/B/D

Ручные цифровые мультиметры MS-8221A/B/D ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ Ручные цифровые мультиметры MS-8221A/B/D СОДЕРЖАНИЕ 1. Общая информация... 1 1.1 Информация по безопасности... 1 1.1.1 Предварительная информация... 1 1.1.2 Правила безопасной

Подробнее

8. Генераторы импульсных сигналов

8. Генераторы импульсных сигналов 8. Генераторы импульсных сигналов Импульсными генераторами называются устройства, преобразующие энергию постоянного источника напряжения в энергию электрических импульсов. Наибольшее применение в импульсной

Подробнее

docplayer.ru

Симистор - это... Что такое Симистор?

Обозначение на схемах Эквивалентная схема симистора Фото современных симисторов

Симиcтop (симметричный триодный тиристор) или триак (от англ. TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ).

В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Однако по способу включения относительно управляющего электрода основные выводы симистора различаются, причём имеет место их аналогия с катодом и анодом тринистора. На приведённом рисунке верхний по схеме вывод симистора называется выводом 1 или условным катодом, нижний — выводом 2 или условным анодом, вывод справа — управляющим электродом.

Для управления нагрузкой основные электроды симистора включаются в цепь последовательно с нагрузкой. В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой. Характерно, что симистор в открытом состоянии проводит ток в обоих направлениях. Другой особенностью симистора, как и других тиристоров, является то, что для его удержания в открытом состоянии нет необходимости постоянно подавать сигнал на управляющий электрод (в отличие от транзисторa). Симистор остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания. Отсюда следует, что выключение нагрузки происходит вблизи моментов времени, когда напряжение на основных электродах симистора меняет полярность (обычно это совпадает по времени со сменой полярности напряжения в сети).

Симистор был изобретен в г. Саранске на заводе «Электровыпрямитель» в 1962-1963 г. начальником конструкторского бюро Василенко Валентиной Стефановной. Запатентован в СССР с приоритетом от 22 июня 1963 года, на полгода ранее, чем в США[1].

Структура

Симистор имеет пятислойную структуру полупроводника. Упрощённо симистор можно представить в виде эквивалентной схемы (см. рис.) из двух триодных тиристоров (тринисторов), включённых встречно-параллельно. Следует, однако, заметить, что управление симистором отличается от управления двумя встречно-параллельными тринисторами.

Управление

Для отпирания симистора на его управляющий электрод подаётся напряжение относительно условного катода. Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток.

Ограничения

При использовании симистора накладываются ограничения, в частности при индуктивной нагрузке. Ограничения касаются скорости изменения напряжения (dU/dt) между основными электродами симистора и скорости изменения рабочего тока di/dt. Превышение скорости изменения напряжения на симисторе (из-за наличия его внутренней ёмкости), а также величины этого напряжения, могут приводить к нежелательному открыванию симистора. Превышение скорости нарастания тока между основными электродами, а также величины этого тока, может привести к повреждению симистора. Существуют и другие параметры, на которые накладываются ограничения в соответствии с предельно-допустимыми режимами эксплуатации. К таким параметрам относятся ток и напряжение управляющего электрода, температура корпуса, рассеиваемая прибором мощность и пр.

Опасность превышения по скорости нарастания тока заключается в следующем. Благодаря глубокой положительной обратной связи переход симистора в открытое состояние происходит лавинообразно, но, несмотря на это, процесс отпирания может длиться до нескольких микросекунд, в течение которых к симистору оказываются приложены одновременно большие значения тока и напряжения. Поэтому, даже несмотря на то, что падение напряжения на полностью открытом симисторе невелико, мгновенная мощность во время открывания симистора может достигнуть большой величины. Это сопровождается выделением тепловой энергии, которая не успевает рассеяться и может привести к перегреву и повреждению кристалла.

Одним из способов защиты симистора от выбросов напряжения при работе с индуктивной нагрузкой является включение варистора параллельно основным выводам симистора. Для защиты симистора от превышения скорости изменения напряжения применяют так называемую снабберную цепочку (RC-цепь), подключаемую аналогично.

Примечания

Ссылки

Литература

  • 1. Э.Кадино «Цветомузыкальные установки» -М.: ДМК Пресс, 2000.
  • 2. Кублановский. Я. С. Тиристорные устройства. — 2-е изд., перераб. и доп. — М.: Радио и связь, 1987. — 112 с.: ил. — (Массовая радиобиблиотека. Вып. 1104).

dic.academic.ru

5. Тиристоры

Тиристором называется электропреобразовательный полупроводниковый прибор с тремя или более p-n переходами, используемый для переключения, в вольт-амперной характеристике кото­рого имеется участок отрицательного дифференциального сопро­тивления.

Простейшим тиристором является динистор - неуправляемый переключающий диод, представляющий собой четырехслойную структуру типа р-п-р-п (рисунок 5.1., а). р-п крайние переходы называются эмиттерными, а средний р-п-переход – коллекторным. Внутренние области струк­туры, лежащие между переходами, называются базами. Электрод, обеспечивающий электрическую связь с внешней п-областью, называется катодом, а с внешней р-областью – анодом.

При включении динистора по схеме, приведенной на рисунке 5.1, а, коллекторный р-п-переход закрыт, а эмиттерные переходы открыты. Сопротивления открытых переходов малы, поэтому почти все напряжение источника питания приложено к коллекторному переходу, имеющему высокое сопротивление. В этом случае через тиристор протекает малый ток (участок 1 на рисунке 5.1, б).

Рисунок 5.1. Динистор

а) структура

б) ВАХ

Если увеличивать напряжение источника питания, ток тиристо­ра увеличивается незначительно, пока это напряжение не прибли­зится к некоторому критическому значению, равному напряжению включения Uвкл. При напряжении Uвкл в динисторе создаются условия для лавинного размножения носителей заряда в области коллекторного перехода. Происходит обратимый электрический пробой коллекторного перехода (участок 2 на рисунке 5.1, б). В п-области коллекторного перехода образуется избыточная кон­центрация электронов, а в р-области—избыточная концентрация дырок. С увеличением этих концентраций снижаются потенциаль­ные барьеры всех переходов динистора. Возрастает инжекция носителей через эмиттерные переходы. Процесс носит лавинооб­разный характер и сопровождается переключением коллекторного перехода в открытое состояние. Рост тока происходит одновре­менно с уменьшением сопротивлений всех областей прибора. Поэтому увеличение тока через прибор сопровождается уменьше­нием напряжения между анодом и катодом. На ВАХ этот участок обозначен цифрой 3. Здесь прибор обладает отрицательным дифференциальным сопротивлением. Напряжение на резисторе возрастает и происходит переключение динистора.

После перехода коллекторного перехода в открытое состояние ВАХ имеет вид, соответствующий прямой ветви диода (участок 4). После переключения напряжение на динисторе снижается до 1 В. Если и дальше увеличивать напряжение источника питания или уменьшать сопротивление резистора R, то будет наблюдаться рост выходного тока, как в обычной схеме с диодом при прямом включении.

При уменьшении напряжения источника питания восстанавли­вается высокое сопротивление коллекторного перехода. Время восстановления сопротивления этого перехода может составлять десятки микросекунд.

Напряжение Uвкл, при котором начинается лавинообразное нарастание тока, может быть снижено введением неосновных носителей заряда в любой из слоев, прилегающих к коллектор­ному переходу. Дополнительные носители заряда вводятся в тиристоре вспомогательным электродом, питаемым от независи­мого источника управляющего напряжения (Uупр). Тиристор со вспомогательным управляющим электродом называется триодным, или тринисторным. Схема включения тринистора показана на рисунке 5.2. а. Возможность снижения напряжения Uвкл при росте тока управления, показывает семейство ВАХ, изображенных на рисунке 5.2 б.

Если к тиристору приложить напряжение питания, противопо­ложной полярности, то эмиттерные переходы окажутся закрытыми. В этом случае ВАХ тиристора напоминает обратную ветвь характеристики обычного диода. При очень больших обратных напряжениях наблюдается необратимый пробой ти­ристора.

Тиристоры имеют широкий диапазон применения (управляемые выпрямители, генераторы импульсов и др.), выпускаются с рабочими токами от долей ампера до тысяч ампер и с напряжениями включения от единиц до тысяч вольт.

Тиристорами называют полупроводниковые приборы с двумя устойчивыми режимами работы (включен, выключен), имеющие три или более p-n–переходов.

Существуют и широко используются так называемые симметричные тиристоры (симисторы, триаки). Каждый симистор подобен паре рассмотренных тиристоров, включенных встречно-параллельно (рис. 5.3). Условное графическое обозначение симистора показано на рис. 5.4.

в)

Рисунок 5.2. Тиристор

а) структура

б) ВАХ

в) графическое

изображение

Рис. 5.3 Рис. 5.4

studfiles.net


Каталог товаров
    .