интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Что такое диодный мост схема устройства. Обозначение диодный мост на схеме


Диодный мост схема, принцип работы

В подавляющем большинстве блоков питания для выпрямления переменного электрического тока используются диодные мосты. Рассмотрим диодный мост, схема включает в себя только 4 диода. На принципиальной схеме, диодный мост обозначают как квадрат повернутый на 45 градусов в центре квадрата на одной из диагоналей чертят диод, катод ближе к положительному выходу моста, анод ближе к отрицательному выходу моста. Оставшиеся две вершины квадрата являются входами переменного напряжения.

Рисуя схему моста достаточно помнить, что от каждого входа приходят к «+» выходу два диода, прием анод подключается на вход, а катод на выход. Тоже и с отрицательным выходом, только к выходу подключаются аноды диодов.

Схема диодного моста

Принцип работы диодного моста

Представим, что на вход диодного моста подается переменное напряжение и в текущий момент на верхнем по рисунку входе присутствует положительный потенциал, то диоды VD2 и VD3 откроются так как к к ним приложено положительное напряжение (на рисунке путь тока показан линией красного цвета), а VD1 и VD4 будут заперты обратным напряжением. При обратной полярности входного напряжения ток потечет от нижнего входа через VD4, нагрузку и VD1 (на рисунке путь тока показан синим цветом), а VD2 и VD3 будут заперты обратным напряжением.

Получается положительный выход будет соединен с тем входом диодного моста, на котором в данный момент присутствует положительный потенциал, а отрицательный выход с тем входом на котором отрицательный потенциал.

Принцип работы диодного моста

Трехфазный диодный мост схема

Рассмотренный нами диодный мост используется для однофазного выпрямления, его и называют однофазным мостом. Для выпрямления переменного электрического тока в трехфазных сетях используют трехфазный диодный мост.

Он состоит из 6 диодов, по паре диодов на каждую фазу. В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Оставшаяся фаза ни к чему не подключена. Если в однофазном мосте проводили ток два диода из четырех, то тут тоже проводят ток 2 диода, а 4 при этом заперты.Трехфазный диодный мост

Диодный мосты выпускаются как законченные компоненты, но если нет в наличии такой детальки, то можно использовать 4 отдельных диода включенных по схеме диодного моста.

Для плат с поверхностным монтажом удобно использовать сдвоенные диоды. Например из двух диодных сборок BAT54S или BAV99 получается полноценный диодный мост.

Диодный мост из двух сборок

Зачастую использование двух сборок из двух диодов оказывается дешевле, чем использование диодного моста из четырех диодов в одном корпусе или четырех диодов по отдельности.

hardelectronics.ru

Диодный мост схема

В данной статье мы постараемся дать ответ, что же это, диодный мост схема его и каково предназначение. Как сразу слышно, в данном термине присутствует слово «диод». И действительно, главный компонент диодного моста это диоды, для которых основное свойство пропускать напряжение только в одном направлении. Именно по этой характеристике определяют работоспособность диодов.

Предназначение диодного моста — преобразовывать напряжение переменное в напряжение постоянное.

Схема диодного моста

Схема диодного моста состоит из правильно соединенных четырех диодов, а чтобы эта схема была работоспособной, к ней нужно правильно подключить переменное напряжение.

диодный мост схема

На схеме, как и на корпусе моста две точки для подачи переменного напряжения обозначены значком «~». А с двух других проводов или выходов, плюса и минуса, снимается постоянное напряжение.

диодный мост схема

Теоретически, сделать из переменного напряжения постоянное можно и одним диодом, но для практики такое выпрямление не желательно. Как известно диод пропускает напряжение, только превышающее ноль, в противоположном случае диод заперт, а переменное напряжение изменяет свою величину в течение времени. Вроде бы все понятно.

диодный мост схема

Но получается, что при таком методе получения из переменного напряжения постоянный ток, по этой «замечательной» схеме, диод оставляет только положительную полуволну, а отрицательную срезает. Вместе с ней он просто срезает половину мощности тока переменного напряжения. Такая потеря мощности — главный недостаток выпрямления тока одним диодом.

Вышеописанную ситуацию исправляет диодный мост схема которого разрабатывалась специально для того, чтобы отрицательную полуволну перевернуть. Получиться вторая положительная полуволна и вся мощность электрического тока будет сохранена. В результате диодный мост подает постоянный ток, с напряжением, пульсирующем в два раза большей частотой, чем частота сети переменного тока.

диодный мост схема

Уверен, схема в особом описании не нуждается, главное помнить, куда подключать переменное напряжение, а откуда получают постоянный ток. Теперь давайте посмотрим на работу диода и диодного моста на практике. На корпусе диода, практически любого производителя, катод помечен точкой или полоской. Для безопасности экспериментов используем трансформатор, выдающий двенадцать вольт.

диодный мост схема диодный мост фото

На осциллографе видно, что максимальная амплитуда 16 с половиной вольт, следовательно, простые расчеты (делим на корень из двух максимальное амплитудное значение) говорят, что действующее напряжение имеет значение 11.8 В.

диодный мост работа с осцилографом

Теперь припаяем к проводу обмотки (вторичной, естественно) трансформатора диод и измеряем осциллографом. Видно, как диод срезал нижнюю, отрицательную часть графика напряжения. Соответственно, потерялась и половина мощности.

chto-takoe-diodnyj-most-shema 10

Теперь возьмем еще три таких же диода и собираем диодный мост. Подключаем к обмотке трансформатора диодный мост, там, где вход для переменного тока, а с двух оставшихся точек снимаем щупами прибора постоянное напряжение. Смотрим на осциллограф и видим на экране пульсирующее напряжение, но без потери мощности.

Как сделать диодный мост видео

Для того чтобы не возиться с диодами и пайкой, промышленность выпускает готовые диодные мосты в одном корпусе с четырьмя контактами, отечественные — побольше, а импортные покомпактнее. На диодных мостах советского производства промаркированы и контакты постоянного тока, и контакты для переменного напряжения.

диодный мост фото

Если подключить импортный диодный мост к переменному напряжению и осциллографу, вы увидите, что эта радиодеталь отлично работает, выдавая пульсирующий постоянный ток. Сам диодный мост если проверять, то только прозвонив каждый из четырех диодов.

Итак, теперь вы знаете для чего нужен в радиоэлектронике диодный мост схема и принцип действия которого описаны в данной статье. Следует отметить, что это весьма популярная деталь, широко применяемая в самой разнообразной радиоаппаратуре, подключаемой к электрической сети. Магнитофон, телевизор, зарядное устройство для мобилки — везде используется диодный мост.

sdelaj-sam.com

Диодный мост: схема, принцип работы

Диодный мост? Это совсем не то, что Крымский. Это такой маленький диодный мостик, схема которого строится из небольших совсем электронных устройств — диодов. Их мы собираем даже своими руками. Да, соберите своими руками и увидите, что это легко и быстро, надо только знать, из чего и для чего. Он состоит из диодов.

Что такое диоды

Диоды — это электронные устройства с двумя электродами («ди» — два). Анод и катод.

Диод Диод

Раньше, в эпоху стеклянных электронных вакуумных ламп, это была самая простая из ламп. В ней непосредственно около катода располагалась нить накаливания, как в лампочке. Катод от этого разогревался, и из него начинали выпрыгивать электроны все быстрее и быстрее. А кроме напряжения накала к электродам было приложено рабочее напряжение. И если на катод подать минус, а на анод плюс, то электроны от катода начинают отталкиваться, а к аноду притягиваться. Так как этому процессу в вакууме ничто не мешает, через вакуум и побежит ток, пропорциональный приложенному напряжению. А если поменять полюса — подать на анод минус, а на катод плюс, ток остановится. Потому что анод холодный, а к катоду теперь приложен положительный потенциал, который возвращает выброшенные накалом катода электроны обратно. Вот так и получился самый первый и самый простой нелинейный электрический элемент. В одну сторону ток он пропускает, а в другую — нет.

Почти такая же картина и в полупроводниковых диодах. Только там нет вакуума, а твердая пластинка полупроводника имеет свойство не препятствовать движению электронов в одну сторону и запрещать их движение в противоположную.

Весь секрет в N-P-переходе полупроводника.

Полупроводниковый диод представляет собой пластинку, похожую на плоский кружочек (или квадратик) металла. Но это не металл, а две его стороны имеют чуть разные свойства. Металлы характеризуется тем, что электроны в их кристаллической решетке почти не держатся, вылетают и болтаются между атомами кристалла по любому поводу, самая небольшая температура, заставляющая ядра атомов на своих местах слегка вибрировать, вышибает электроны напрочь и массово. А на этом месте что образуется? Знамо дело, дырка. Так называется атом, потерявший электрон. И получается, что электроны хаотично мечутся по межатомному пространству металла, а дырки тоже мечутся — только уже по самой кристаллической решетке. Потому что если соседний атом «заметит» дырку, он очень просто легким толчком закинет в нее свой электрон. И это можно понять в обратном смысле: получилось, это дырка перескочила из того атома в этот. И так дырки начинают жить тоже своей самостоятельной жизнью и блуждать как им взбредется. А встретится им электрон — может произойти рекомбинация, когда электрон запрыгнет в эту самую дырку. Ну и все, нашел свою судьбу. Только свободных электронов в металле видимо-невидимо, и поэтому стоит приложить к проводнику напряжение — как тут же начнется уже более-менее упорядоченное движение электронов от минуса к плюсу, то есть электрический ток. Соответственно, и дырки побегут, наоборот, от плюса к минусу, то есть как раз так, как люди определили когда-то НАСТОЯЩИМ направлением тока. Определили, еще ничего не зная ни о свободных электронах, ни о дырках.

В полупроводниках картина очень тонкая. Он сам плохой проводник и никудышный изолятор. Потому они так и названы — полупроводники. В них тоже есть свободные электроны и дырки. Только их не так много, как в металлах, а равновесие электронов и дырок нарушают примеси в полупроводнике. Атомы примесей становятся дополнительными источниками в одних случаях свободных электронов, в других — «свободных» дырок. Есть такие атомы, которые в одном случае прихватывают себе лишний электрон и не отпускают его (акцепторная примесь). А на его месте в атоме полупроводника получается дырка и начинает бродить неприкаянно по кристаллической решетке.

А в другом случае атом примеси имеет свойство отдавать свой электрон (донорная примесь), ничего не прося взамен. И пойдет электрон лишний куда глаза глядят.

Первая проводимость названа дырочной — P (positive, положительная), вторая электронной — N (negative, отрицательная).

Но самое интересное, что два типа проводимости могут существовать в одном куске полупроводника. Вот той самой тонкой пластинки, похожей на металл. С одной стороны в нее внедряют донорную примесь, а с другой — акцепторную.

Очень просто: можно на основу из полупроводника — германия или кремния — с одной стороны нанести материал-акцептор, фосфор, мышьяк или сурьму. Температура плавления сурьмы чуть выше 980 ⁰С, а у полупроводников еще выше, около 1200–1400 ⁰С. Атомы акцептора (чаще всего сурьмы, более остальных практичной в обращении) внедряются в кристаллическую решетку полупроводника, делая его полупроводником типа P. Другую сторону обрабатывают алюминием или индием — легкими и плавкими металлами. Достаточно поместить капельку индия, просто капнуть с одной стороны при температуре плавления 430 ⁰С.

Вот и получился у нас знаменитый N-P переход, который ток пропускает в одну и другую стороны по-разному.

И правда, если представить ток как движение заряженных частиц, то в полупроводнике N-типа движутся электроны (их подавляюще больше). А в P-типа — дырки. Причем направление их движений противоположное. Только если в металле они движутся одновременно и независимо — одни туда, другие сюда, то в полупроводнике все не так. В полупроводнике N-типа движутся, в основном, электроны, по полупроводнику P-типа ток создает движение дырок. А вот в N-P переходе эти два вида токов встречаются.

На границе этих двух типов (границе между полупроводником с примесями одного типа и проводником с примесями другого) электроны вместо дальнейшего движения будут «находить свою судьбу», то есть встречаться с дырками и с ними производить рекомбинацию. Такую зону счастливых электронных пар мы называем «зоной запрета», потому что при рекомбинации атомы примесей становятся ионами (в N-зоне положительные, а в P-зоне отрицательные), и они создают электрическую разность потенциалов, всегда направленную от N проводимости к P проводимости. И вот теперь, если прикладывать напряжение к внешним контактам диода, и если полярность его совпадает с направлением этой разности потенциалов, то ток потечет через диод, а если противоположно ей, то нет. Первое направление (когда к P приложен плюс, а к N минус) называется прямым, второе (когда на P подан минус, а на N плюс) — обратным.

Схема Схема

Прямое направление диода делает его по работе похожим на обычное сопротивление, работающим по закону Ома.

А обратное дает нечто вроде разрыва в цепи, хотя при этом всегда сохраняется некоторый обратный ток, зависящий от других вещей — температуры, радиации.

Вот на таких приборах и строятся выпрямительные мосты.

Выпрямительные мосты

Если подавать на диод переменное электрическое напряжение, которое непрерывно изменяется от некоторого напряжения U+ > 0 до напряжения U–< 0, то наш диод начнет «срезать» все напряжения, которые для него будут «обратными».   

Работа диода Работа диода

В случае обычного для наших сетей синусоидального сигнала в результате работы диода получается «полусинусоида» тока (или напряжения в нагрузке).

Синусоидальный сигнал Синусоидальный сигнал

Весь ток и напряжение в сети нагрузки будет иметь положительное направление, но половина электроэнергии не будет «доходить» до адресата.

Чтобы использовать и вторую половину синусоиды, нужно, чтобы она не срезалась, а меняла знак на противоположный. Вот и получилась схема диодного моста.

Диодный мост: принцип работы Диодный мост: принцип работы

Уже лучше, но мост не является выпрямителем в полном смысле. Напряжение в нагрузку он дает не постоянное, а пульсирующее с двойной частотой.

Если нагрузкой сделаем лампу накаливания, то никаких пульсаций света можем и не заметить.

Лампа накаливания является прибором инерционным, в плане преобразования электричества в тепло и свет. То есть за 1/50 (при переменном напряжении) или за 1/100 (при пульсирующим напряжении от диодного моста) доли секунды ее нить накала не успевает остыть, как уже приходит очередной импульс. В этом случае диодный мостик такой схемы вполне подойдет.

Схема Схема

В результате этого температура спирали во времени представляет собой кривую, сглаживающую кривую напряжения, выходящего из диодного моста. И чем спираль массивнее, тем более сглажена кривая ее температуры. В выпрямительных мостах сглаживание делается конденсатором, которые способны, подобно спирали лампы, накапливать энергию, а потом медленно ее отдавать.

Выпрямительный мост Выпрямительный мост

Выпрямительный мост — это настолько отработанная, привычная и полезная схема, что для нее имеется общепринятое сокращенное графическое обозначение. А как сделать диодный мост — тут вообще все просто. Следует только разобраться с концами диодов — какие плюс и какие минус. На входные два узелка подается переменное напряжение, поэтому к ним подходят как плюс диодов, так и минус: VD1 плюс, VD2 минус —на верхний, VD3 + и VD4 — на нижний. А выходные клеммы от моста получают уже знакопостоянное напряжение, поэтому их плюсы и минусы совпадают с +/- диодов. VD2, VD4 припаяем плюсами на плюсовой выход, VD1, VD3 — минусами на минусовой. Вот и получился выпрямительный диодный мост.

Диодный мост Диодный мост

Такие диодные мосты присоединяют часто к обычному трансформатору от блоков питания, понижающему к 12 вольтам. Диоды в этом случае подойдут любые, лишь бы рабочий диапазон напряжений был немного больше, чем на 12 вольт. Скажем, вольт на 20–35. Особых требований нет, соединения низковольтные, для подключения достаточно обычной спайки.    

Схема Схема

Трехфазный диодный мост

Однако делают диодные мосты и высоковольтные. Там все то же самое, только все элементы схемы рассчитываются на те номиналы напряжений, с которыми будет иметь дело диодный мост — с запасом, разумеется. Кроме того, можно сделать его и для трехфазного напряжения. И он оказывается сложнее однофазного не в три раза, а только в полтора.

Подключить диодный мост к трансформатору здесь нужно в трех точках, по одной на каждую фазу. Принципиальной разницы между спайкой диодного моста на три фазы и собранного под одну фазу нет. Разобраться с концами здесь почти так же просто. Здесь плюсы одних трех диодов и минусы других подключаются к выходам, после этого попарно спаиваются плюсы с минусами верхней и нижней тройки диодов, и в эти же три точки подаются фазы. Все, вы его собрали.

Похожие статьи:

domelectrik.ru

Диодный мост схема — sovetskyfilm.ru

Мост бывает через реку, через овраг, а также через дорогу. Но приходилось ли Вам слышать словосочетание «диодный мост»? Что за такой мост? А вот на этот вопрос мы с вами попробуем найти ответ.

Словосочетание «диодный мост» образуется от слова «диод». Получается, диодный мост должен состоять из диодов. Но если в диодном мосту есть диоды, значит, в одном направлении диод будет пропускать электрический ток, а в другом нет. Это свойство диодов мы использовали, чтобы определить их работоспособность. Кто не помнит, как мы это делали, тогда вам сюда. Поэтому мост из диодов используется, чтобы из переменного напряжение получать постоянное напряжение.

А вот и схема диодного моста:

Иногда в схемах его обозначают и так:

Как мы с вами видим, схема состоит из четырех диодов. Но чтобы схемка диодного моста заработала, мы должны правильно соединить диоды, и правильно подать на них переменное напряжение. Слева мы видим два значка «

«. На эти два вывода мы подаем переменное напряжение, а снимаем постоянное напряжение с других двух выводов: с плюса и минуса.

Для того, чтобы превратить переменное напряжение в постоянное можно использовать один диод для выпрямления, но не желательно. Давайте рассмотрим рисунок:

Переменное напряжение изменяется со временем. Диод пропускает через себя напряжение только тогда, когда напряжение выше нуля, когда же оно становится ниже нуля, диод запирается. Думаю все элементарно и просто. Диод срезает отрицательную полуволну, оставляя только положительную полуволну, что мы и видим на рисунке выше. А вся прелесть этой немудреной схемки состоит в том, что мы получаем постоянное напряжение из переменного. Вся проблема в том, что мы теряем половину мощности переменного напряжения. Ее тупо срезает диод.

Чтобы исправить эту ситуацию, была разработана схемка диодного моста. Диодный мост «переворачивает» отрицательную полуволну, превращая ее в положительную полуволну. Тем самым мощность у нас сохраняется. Прекрасно не правда ли?

На выходе диодного моста у нас появляется постоянное пульсирующее напряжение с частой в два раза больше, чем частота сети: 100 Гц.

Думаю, не надо писать, как работает схема, Вам все равно это не пригодится, главное запомнить, куда цепляется переменное напряжение, а откуда выходит постоянное пульсирующее напряжение.

Давайте же на практике рассмотрим, как работает диод и диодный мост.

Для начала возьмем диод.

Я его выпаял из блока питания компа. Катод можно легко узнать по полоске. Почти все производители показывают катод полоской или точкой.

Чтобы наши опыты были безопасными, я взял понижающий трансформатор, который из 220 Вольт трансформирует 12 Вольт. Кто не знает как он это делает, можете прочитать статью устройство трансформатора.

На первичную обмотку цепляем 220 Вольт, со вторичной снимаем 12 Вольт. Мультик показывает чуть больше, так как ко вторичной обмотке не подцеплена никакая нагрузка. Трансформатор работает на так называемом «холостом ходу».

Давайте же расмотрим осциллограмму, которая идет со вторичной обмотки транса. Максимальную амплитуду напряжение нетрудно посчитать. Если не помните как расчитать, можно глянуть статейку Осциллограф. Основы эксплуатации. 3,3х5= 16.5В — это максимальное значение напряжения. А если разделить максимальное значение амплитуда на корень из двух, то получим где то 11.8 Вольт. Это и есть действующее значение напряжения. Осцилл не врет, все ОК.

Еще раз повторюсь, можно было использовать и 220 Вольт, но 220 Вольт — это не шутки, поэтому я и понизил переменное напряжение.

Припаяем к одному концу вторичной обмотки транса наш диод.

Цепляемся снова щупами осцилла

Смотрим на осцилл

А где же нижняя часть изображения? Ее срезал диод. Диод оставил только верхнюю часть, то есть та, которая положительная. А раз он срезал нижнюю часть, то он следовательно срезал и мощность.

Находим еще три таких диода и спаиваем диодный мост.

Цепляемся ко вторичной обмотке транса по схеме диодного моста.

С двух других концов снимаем постоянное пульсирующее напряжение щупами осцилла и смотрим на осцилл.

Вот, теперь порядок, и мощность у нас никуда не пропала :-).

Чтобы не замарачиваться с диодами, разработчики все четыре диода вместили в один корпус. В результате получился очень компактный и удобный диодный мост. Думаю, вы догадаетесь, где импортный, а где советский ))).

А вот и советский:

А как Вы догадались. -) Например, на советском диодном мосте, показаны контакты, на которые надо подавать переменное напряжение ( значком «

«), и показаны контакты, с которых надо снимать постоянное пульсирующее напряжение («+» и «-«).

Давайте проверим импортный диодный мост. Для этого цепляем два его контакта к переменке, а с двух других контактов снимаем показания на осцилл.

А вот и осциллограмма:

Значит импортный диодный мостик работает чики-пуки.

В заключении хотелось бы добавить, что диодный мост используется почти во всей радиоаппаратуре, которая кушает напряжение из сети, будь то простой телевизор или даже зарядка для сотового телефона. Проверяются диодный мост исправностью всех его диодов.

В подавляющем большинстве блоков питания для выпрямления переменного электрического тока используются диодные мосты. Рассмотрим диодный мост, схема включает в себя только 4 диода. На принципиальной схеме, диодный мост обозначают как квадрат повернутый на 45 градусов в центре квадрата на одной из диагоналей чертят диод, катод ближе к положительному выходу моста, анод ближе к отрицательному выходу моста. Оставшиеся две вершины квадрата являются входами переменного напряжения.

Рисуя схему моста достаточно помнить, что от каждого входа приходят к «+» выходу два диода, прием анод подключается на вход, а катод на выход. Тоже и с отрицательным выходом, только к выходу подключаются аноды диодов.

Диодный мост схема

Принцип работы диодного моста

Представим, что на вход диодного моста подается переменное напряжение и в текущий момент на верхнем по рисунку входе присутствует положительный потенциал, то диоды VD2 и VD3 откроются так как к к ним приложено положительное напряжение (на рисунке путь тока показан линией красного цвета), а VD1 и VD4 будут заперты обратным напряжением. При обратной полярности входного напряжения ток потечет от нижнего входа через VD4, нагрузку и VD1 (на рисунке путь тока показан синим цветом), а VD2 и VD3 будут заперты обратным напряжением.

Получается положительный выход будет соединен с тем входом диодного моста, на котором в данный момент присутствует положительный потенциал, а отрицательный выход с тем входом на котором отрицательный потенциал.

Диодный мост схема

Трехфазный диодный мост схема

Рассмотренный нами диодный мост используется для однофазного выпрямления, его и называют однофазным мостом. Для выпрямления переменного электрического тока в трехфазных сетях используют трехфазный диодный мост.

Он состоит из 6 диодов, по паре диодов на каждую фазу. В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Оставшаяся фаза ни к чему не подключена. Если в однофазном мосте проводили ток два диода из четырех, то тут тоже проводят ток 2 диода, а 4 при этом заперты.Диодный мост схема

Диодный мосты выпускаются как законченные компоненты, но если нет в наличии такой детальки, то можно использовать 4 отдельных диода включенных по схеме диодного моста.

Для плат с поверхностным монтажом удобно использовать сдвоенные диоды. Например из двух диодных сборок BAT54S или BAV99 получается полноценный диодный мост.

Диодный мост схема

Зачастую использование двух сборок из двух диодов оказывается дешевле, чем использование диодного моста из четырех диодов в одном корпусе или четырех диодов по отдельности.

Запись опубликована 23.10.2014 автором в рубрике Электроника для начинающих.

Навигация по записям

Элемент, используемый для преобразования переменного электрического тока в постоянный, называется диод или выпрямитель. Такое определение может получить полупроводниковое, вакуумное, механическое или другое устройство, выполняющее выпрямление.

Самым распространенным способом для преобразования переменного тока в пульсирующий постоянный является использование диодного моста. Он представляет собой электронную схему, выпрямление через которую называется «двухполупериодным».

Наиболее распространенным и чаще используемыми являются две схемы: однофазная и трехфазная.

Рассмотрим однофазную мостовую схему, а для простоты возьмем синусоидальное переменное напряжение. В мост входят 4 элемента. На входе подается переменный ток, который в каждый из полупериодов идет только через два диода. Оставшиеся два в это время закрыты.

Диодный мост схема

Рис.1 Выпрямление положительной полуволны

Диодный мост схема

Рис.2 Выпрямление отрицательной полуволны

Такой подход к преобразованию дает возможность получить на выходе с диодного моста пульсирующее напряжение, которое в два раза превышает частоту на входе. Это видно из приведенных на рисунке 3 графиков.

Диодный мост схема

На первом графике красным цветом указано синусоидальное напряжение, которое подается на вход. На втором – зеленым показано напряжение, которое получается в результате однопериодного выпрямления. На последнем графике синим цветом нарисовано напряжение, которое получается при полупериодном выпрямлении.

Такую схему впервые собрал немецкий физик Лео Гретц. Именно поэтому, сегодня она известная под названием «моста Гретца» и представляет собой однофазный полномостовой выпрямитель, состоящий из четырех диодов. Данная схема очень часто используется. Связано это с тем, что у нее невысокий эквивалент активного внутреннего сопротивления. При этом используя ее можно получить высокий коэффициент от имеющейся габаритной мощности трансформатора.

Есть еще один нюанс о котором стоит упомянуть. После выпрямления переменного напряжения, очень часто этот параметр имеет пульсирующий характер. Чтобы сгладить пульсацию используется фильтр. Самым простым является электролитический конденсатор большой емкости. Его принято устанавливать на выходе с диодного моста.

Диодный мост схема

Рис.4 Варианты изображения однофазного диодного моста на схемах

Теперь рассмотрим трехфазную схему диодного моста. Чаще всего используется трехфазный выпрямитель, собранный по схеме Миткевича на трех диодах (рис.5), и трехфазный выпрямитель по схеме Ларионова, в котором используется шесть диодов (рис.6).

Диодный мост схема

Рис.5 Схема Миткевича

Данная конструкция носит название четверть мостового параллельного выпрямителя.

Диодный мост схема

Рис.6 Схема Ларионова. Другое название «треугольник-Ларионов»

Если же говорить о схеме Ларионова, то она не является полномостовой, как принято считать. На самом деле выпрямитель является параллельным полумостовым. Кроме того, диодный мост Ларионова бывает двух видов: «звезда-Ларионова» и «треугольник-Ларионова». Каждая из них имеет свое напряжение, сопротивление внутри конструкции и протекающие токи. Их применение зависит от схемы включения трансформатора или генератора. Это может быть звезда или треугольник.

Диодный мост схема

Какая бы схема трехфазного диодного моста не использовалась, в результате прохождения через нее тока, на выходе получается параметр с меньшими пульсациям, чем в случае с однофазным выпрямителем.

Диодный мост схема

Рис.8 Вид ЭДС (на входе точками, на выходе красной линией)

После того, как ток выпрямлен, на выходе с диодного моста он обязательно проходит через фильтр для сглаживания пульсации. В его качестве могут использовать конденсатор или дроссель. Дополнительно в схеме может использоваться стабилитрон.

Диодный мост схема

Рис. 9 Схема диодного моста с фильтром.

Не так распространены схемы трехфазных выпрямителей с использованием двенадцати диодов – «три параллельных моста», «три последовательных моста» и т.д. По своим характеристикам они намного лучше схем Миткевича и Ларионова. При сборке подобных мостов используются диоды со средним током через один диод.

Диодный мост схема

Рис.10 Выпрямитель на 12 диодов

Данная схема диодного моста называется еще «три параллельных моста». Она более надежна в работе, чем «звезда-Ларионов». Связано это с тем, что при обрыве или выгорании 5/6 диодов в выпрямителе Ларионова, мост выходит из строя. А вот в схеме на 12 диодов при подобной неисправности работу берет на себя оставшееся плечо. В результате получается 1/6 мощности, которая вполне может доработать до ремонта. Кроме того, через один диод в схеме «три параллельных полных моста» проходит ток меньше, чем в выпрямителе Ларионова. Поэтому отпадает необходимость в приобретении дорогих диодов. Конструкция становиться доступнее и дешевле.

Однако рассмотренная схема имеет несколько недостатков. Первый заключается в том, что при небольших токах в мосте на 12 диодов внутреннее сопротивление становиться почти равным сопротивлению обмотки. Для устранения этого явления специалисты рекомендуют иметь про запас «звезду-Ларионов», на которую переключают работу при помощи замыкающих контактных групп.

Еще одним недостатком 12 диодного моста является невозможность работы на четырехпроводной фазной сети на удаленном расстоянии от трансформатора. Поэтому чаще всего его используют в шестипроводной линии передач.

  • Диодный мост схемаСолнечные контроллеры
  • Диодный мост схемаМагниты
  • Диодный мост схемаDC Ваттметры
  • Диодный мост схема Инверторы
  • Диодный мост схема Контроллеры для ВГ
  • Диодный мост схемаМой небольшой опыт
  • Диодный мост схемаРазные мои самоделки
  • Диодный мост схемаРасчёт и изготовление лопастей
  • Диодный мост схемаИзготовление генераторов
  • Диодный мост схемаГотовые расчёты ветряков
  • Диодный мост схемаДисковые аксиальные ветряки
  • Диодный мост схемаИз асинхронных двигателей
  • Диодный мост схемаВетряки из авто-генераторов
  • Диодный мост схемаВертикальные ветряки
  • Диодный мост схемаПарусные ветрогенераторы
  • Диодный мост схемаСамодельные солнечные панели
  • Диодный мост схемаАккумуляторы
  • Диодный мост схемаКонтроллеры инверторы
  • Диодный мост схемаАльтернативное эл. статьи
  • Диодный мост схемаЛичный опыт людей
  • Диодный мост схемаВетрогенераторы Ян Корепанов
  • Диодный мост схемаОтветы на вопросы

    Диодный мост схема Особенности работы моего ветрогенератора

    Диодный мост схема Анемометр — измеритель скорости ветра

    Диодный мост схема Сколько энергии дают солнечные батареи 400Вт

    Диодный мост схема Контроллер ФОТОН 150-50

    Диодный мост схема Попытка восстановления клеммы аккумулятора

    Диодный мост схема Защита аккумулятора от глубоких разрядов

    Диодный мост схема Контроллер фотон как DC-DC преобразователь

    Диодный мост схема Автоматы защиты от КЗ в солнечной электростанции

    Диодный мост схема Модернизация и обновление электростанции весна 2017

    Диодный мост схема ИБП CyberPower CPS 600 E бесперебойник с чистым синусом

    Диодный мост схема Устройство плавного пуска, запуск холодильника от инвертора

    Диодный мост схема Где я покупаю неодимовые магниты

    Диодный мост схема Состав и устройство моей солнечной электростанции

    Диодный мост схема Сколько нужно солнечных батарей для холодильника?

    Диодный мост схема Выгодны ли солнечные батареи?

    Диодный мост схема Ветрогенератор на основе асинхронного двигателя с деревянным винтом

    Диодный мост схема Подборка ваттметров постоянного тока с алиэкспресс

  • Диодный мост схемаГлавная
  • Диодный мост схема Контроллеры инверторы и другая электроника Диодный мост схема

    Как сделать диодный мост для преобразования переменного напряжения в постоянное, однофазный и трехфазный диодный мост. Ниже классическая схема однофазного диодного моста.

    Как видно на рисунке соединены четыре диода, на вход подается переменное напряжение, а на выходе уже плюс и минус. Сам диод это полупроводниковый элемент, который может через себя пропускать только напряжение с определенным значением. В одну сторону диод может пропускать через себя только минусовое напряжение, а плюс не может, а в обратную наоборот. Ниже диод и его обозначение в схемах. Через анод может пропускаться только минус, а через катод только плюс.

    Переменное напряжение это такое напряжение где с определенной частотой меняется плюс с минусом. Например частота нашей сети 220вольт равна 50герц, то-есть 50 раз за секунду меняется полярность напряжения с минуса на плюс и обратно. Чтобы выпрямить напряжение, направить плюс на один провод, а плюс на другой нужны два диода. Один подключаетя анодом, второй катодом, таким образом когда на проводе появляется минус, то он идет по первому диоду, а второй минус не пропускает, а когда на проводе появится плюс, то наоборот первый диод плюс не пропускает, а второй пропускает. Ниже схема принципа работы.

    Для выпрямления, а точнее распределения плюса и минуса в переменном напряжении нужны всего два диода на один провод. Если провода два то соответственно по два диода на провод, всего четыре и схема соединения выглядит ромбиком. Если три провода, то шесть диодов, по два на провод и того получится трехфазный диодный мост. Ниже схема соединения трехфазного диодного моста.

    Диодный мост как видно из картинок очень прост, это простейшее устройство для преобразования переменного напряжения от трансформаторов или генераторов в постоянное. Переменное напряжение имеет частоту смены напряжения с плюса на минус и обратно, поэтому эти пульсации передаются и после диодного моста. Чтобы сгладить пульсации если это нужно ставят конденсатор. Конденсатор ставят параллельно, то-есть одним концом к плюсу на выходе, а вторым концом к плюсу. Конденсатор здесь служит как миниатюрный аккумулятор. Он заряжается и во время паузы между импульсами питает нагрузку разряжаясь, таким образом пульсации становятся незаметными, и если вы подсоединяете например светодиод, то он не будет мерцать и в другая электроника будет правильно работать. Ниже схема с конденсатором.

    Также хочу отметить что напряжение пропущенное через диод немного понижается, для диода Шоттки это около 0,3-0,4вольта. Таким образом можно диодами понижать напряжение, скажем 10 последовательно соединенных диодов понизят напряжение на 3-4вольта. Нагреваются диоды именно из-за падения напряжения, скажем через диод идет ток силой 2ампера, падение 0,4вольта, 0,4*2=0,8ватт, таким образом на тепло уходит 0,8ватт энергии. А если 20ампер пойдет через мощный диод, то потери на нагрев будут уже 8ватт.

  • Диодный мост схемаГотовые расчёты ВГ
  • Диодный мост схемаИнформация для Расчёта ВГ
  • Диодный мост схемаАксиальные ВГ
  • Диодный мост схемаИз асинхронных дв
  • Диодный мост схемаИз авто-генераторов
  • Диодный мост схемаВертикальные ВГ
  • Диодный мост схемаПарусные ВГ
  • Диодный мост схемаСамодельные СБ
  • Диодный мост схемаАккумуляторы
  • Диодный мост схемаКонтроллеры
  • Диодный мост схемаОпыт людей
  • Диодный мост схемаМой небольшой опыт
  • Диодный мост схемаАльтернативное эл.
  • Диодный мост схемаРазные мои самоделки
  • Диодный мост схемаОтветы на вопросы
  • Диодный мост схемаВетрогенераторы Ян Корепанов
  • Диодный мост схема Магазин
  • Диодный мост схема Ответы на вопросы
  • Диодный мост схема Контакты и отзывы
  • Диодный мост схема Видео
  • Диодный мост схема О сайте
  • Диодный мост схема Сайты по теме

    Е-ветерок.ру Ветрогенератор своими рукамиЭнергия ветра и солнца — 2013г. Контакты: [email protected] Google+ / Вконтакте

    Схема диодного моста

    Диодный мост схема

    Одной из важнейших частей электронных приборов питающихся от сети переменного тока 220 вольт является так называемый диодный мост. Диодный мост – это одно из схемотехнических решений, на основе которого выполняется функция выпрямления переменного тока.

    Как известно, для работы большинства приборов требуется не переменный ток, а постоянный. Поэтому возникает необходимость в выпрямлении переменного тока.

    Например, в составе блока питания. о котором уже заходила речь на страницах сайта, присутствует однофазный полномостовый выпрямитель – диодный мост. На принципиальной схеме диодный мост изображается следующим образом.

    Диодный мост схемаСхема диодного моста

    Это так называемый однофазный выпрямительный мост, один из нескольких типов выпрямителей. которые активно применяются в электронике. С его помощью производят двухполупериодное выпрямление переменного тока.

    В железе это выглядит следующим образом.

    Диодный мост схемаДиодный мост из отдельных диодов S1J37

    Схему эту придумал немецкий физик Лео Гретц. поэтому данное схемотехническое решение иногда называют «схема Гретца » или «мост Гретца ». В электронике данная схема применяется в настоящее время повсеместно. С появлением дешёвых полупроводниковых диодов эту схему стали применять всё чаще и чаще. Сейчас ею уже никого не удивишь, но в эпоху радиоламп «мост Гретца» игнорировали, поскольку она требовала применения аж 4 ламповых диодов, которые стоили по тем временам довольно дорого.

    Как работает диодный мост?

    Пару слов о том, как работает диодный мост. Если на его вход (обозначен значком «

    » ) подать переменный ток . полярность которого меняется с определённой частотой (например, с частотой 50 герц, как в электросети), то на выходе (выводы «+» и «-» ) мы получим ток строго одной полярности . Правда, этот ток будет иметь пульсации. Частота их будет вдвое больше, чем частота переменного тока, который подаётся на вход.

    Таким образом, если на вход диодного моста подать переменный ток электросети (частота 50 герц), то на выходе получим постоянный ток с пульсациями частотой 100 герц. Эти пульсации нежелательны и могут в значительной степени помешать работе электронной схемы.

    Чтобы «убрать» пульсации необходимо применить фильтр. Простейший фильтр – это электролитический конденсатор достаточно большой ёмкости. Если взглянуть на принципиальные схемы блоков питания, как трансформаторных, так и импульсных, то после выпрямителя всегда стоит электролитический конденсатор, который сглаживает пульсации тока.

    Обозначение диодного моста на схеме.

    На принципиальных схемах диодный мост может изображаться по-разному. Взгляните на рисунки ниже – всё это одна и та же схема, но изображена она по-разному. Думаю, теперь взглянув на незнакомую схему, вы с лёгкостью обнаружите его.

    Диодный мост схема

    Диодная сборка.

    Диодный мост во многих случаях обозначают на принципиальных схемах упрощённо. Например, вот так.

    Диодный мост схема

    Обычно, такое изображение либо служить для того, чтобы упростить вид принципиальной схемы, либо для того, чтобы показать, что в данном случае применена диодная выпрямительная сборка.

    Сборка диодного моста (или просто диодная сборка) – это 4 одинаковых по параметрам диода, которые соединены по схеме мостового выпрямителя и запакованы в один общий корпус. У такой сборки 4 вывода. Два служат для подключения переменного напряжения и обозначаются значком «

    Оставшиеся два вывода имеют обозначения « + » и « — ». Это выход выпрямленного, пульсирующего напряжения (тока).

    Диодный мост схема

    Диодная сборка выпрямительного моста является более технологичной деталью. Она занимает меньше места на печатной плате. Для робота-сборщика на заводе проще и быстрее установить одну монолитную деталь вместо четырёх. Ещё одним из плюсов такой сборки можно считать то, что при работе все диоды внутри неё находятся в одном тепловом режиме.

    Также стоит отметить и то, что сборки, порой, стоят дешевле, чем четыре отдельных диода. Но и в бочке мёда должна быть ложка дёгтя. Минус диодных сборок в том, что если выходит из строя хотя бы один диод, то менять её придётся полностью. Поэтому не лишним будет научиться проверять диодный мост мультиметром .

    Думаю понятно, что в случае отдельных диодов нужно просто заменить один неисправный диод, что, соответственно, обойдётся дешевле.

    В реальности сборка диодного моста может выглядеть вот так.

    Диодный мост схемаДиодная сборка KBL02 на печатной плате

    Диодный мост схемаДиодная сборка RS607 на плате компьютерного блока питания

    А вот так выглядит диодная сборка DB107S для поверхностного (SMD) монтажа. Несмотря на свои малые размеры, сборка DB107S выдерживает прямой ток 1 A и обратное напряжение в 1000 V.

    Диодный мост схема

    Более мощные выпрямительные диодные мосты требуют охлаждения, так как при работе они сильно нагреваются. Поэтому их корпус конструктивно выполнен с возможностью крепления на радиатор. На фото – диодный мост KBPC2504. рассчитанный на прямой ток 25 ампер.

    Диодный мост схема

    Естественно, любую мостовую сборку можно заменить 4-мя отдельными диодами, которые соответствуют нужным параметрам. Это бывает необходимо, когда нужной сборки нет под рукой.

    Иногда это вводит новичков в замешательство. Как же правильно соединить диоды, если предполагается изготовление диодного моста из отдельных диодов? Ответ изображён на следующем рисунке.

    Диодный мост схемаУсловное изображение диодного моста и диодной сборки

    Как видим всё довольно просто. Чтобы понять, как нужно соединить диоды, нужно вписать в стороны ромба изображение диода.

    На принципиальных схемах и печатных платах диодный мост могут обозначать по-разному. Если используются отдельные диоды, то рядом с ними просто указывается сокращённое обозначение – VD. а рядом ставиться его порядковый номер в схеме. Например, вот так: VD1 – VD4. Иногда применяется обозначение VDS. Данное обозначение указывается обычно рядом с условным обозначением выпрямительного моста. Буква S в данном случае подразумевает, что это сборка. Также можно встретить обозначение BD .

    Где применяется схема диодного моста?

    Мостовая схема активно применяется практически в любой электронике, которая питается от однофазной электросети переменного тока (220 V): музыкальных центрах, DVD-проигрывателях, кинескопных и ЖК-телевизорах. Да где его только нет! Кроме этого, он нашёл применение не только в трансформаторных блоках питания. но и в импульсных. Примером импульсного блока питания, в котором применяется данная схема, может служить рядовой компьютерный блок питания. На его плате легко обнаружить либо выпрямительный мост из отдельных мощных диодов, либо одну диодную сборку.

    Вы легко найдёте диодный мост на печатных платах электро-пускорегулирующих аппаратов (ЭПРА) или по-простому «балластах», а также в компактных люминесцентных лампах (КЛЛ) .

    В сварочных аппаратах можно обнаружить очень мощные диодные мосты, которые крепятся к теплоотводу. Это лишь несколько примеров того, где может применяться данное схемотехническое решение.

    Внимание, только СЕГОДНЯ!
  • sovetskyfilm.ru

    Диодный мост — Википедия

    Дио́дный мо́ст — электрическая схема, предназначенная для преобразования («выпрямления») переменного тока в пульсирующий. Такое выпрямление называется двухполупериодным[1].

    Схема включения

    Выполняется по мостовой схеме Гретца. Изначально она была разработана с применением радиоламп, но считалась сложным и дорогим решением, вместо неё применялась схема Миткевича со сдвоенной вторичной обмоткой в питающем выпрямитель трансформаторе. Сейчас, когда полупроводники очень дёшевы, в большинстве случаев применяется мостовая схема.

    Вместо диодов в схеме могут применяться вентили любых типов — например селеновые столбы, принцип работы схемы от этого не изменится.

    Порядок работы[править]

    На вход (Input) схемы подаётся переменное напряжение (обычно, но не обязательно синусоидальное). В каждый из полупериодов ток проходит только через 2 диода, 2 других — заперты:

    Выпрямление положительной полуволны

    Выпрямление отрицательной полуволны
    Анимация принципа работы При выпрямлении 3-фазного тока 3-фазным выпрямителем результат получается ещё более «гладким»

    В результате, на выходе (DC Output) получается напряжение, пульсирующее с частотой, вдвое большей частоты питающего напряжения:

    Красным — исходное синусоидальное напряжение , зелёным — однополупериодное выпрямление (для сравнения), синим — рассматриваемое двухполупериодное Подключение конденсатора

    Практически, для получения постоянного (а не пульсирующего) напряжения, схему надо дополнить фильтром на конденсаторе, а также, возможно, дросселем и стабилизатором напряжения.

    Двухполупериодное выпрямление с помощью моста (по сравнению с однополупериодным) позволяет:

    • получить на выходе напряжение с повышенной частотой пульсаций, которое проще сгладить фильтром на конденсаторе
    • избежать постоянного тока подмагничивания в питающем мост трансформаторе
    • увеличить его КПД, что позволяет сделать его магнитопровод меньшего сечения.
    • Происходит двойное падение напряжения по сравнению с однополупериодным выпрямлением (прямое напряжение диода × 2 ≈ 1 В), это иногда нежелательно в низковольтных схемах. Частично этот недостаток может быть преодолен за счет использования диодов Шоттки с малым падением напряжения.
    • При перегорании одного из диодов схема превращается в однополупериодную, что может быть не замечено вовремя, и в устройстве появится скрытый дефект.
    Внешний вид однокорпусных мостов

    Мосты могут быть изготовлены из отдельных диодов, и могут быть выполнены в виде монолитной конструкции (диодная сборка).

    Монолитная конструкция, как правило, предпочтительнее — она дешевле и меньше по объёму (хотя не всегда той формы, которая требуется). Диоды в ней подобраны на заводе и наверняка имеют одинаковые параметры и при работе находятся в одинаковом тепловом режиме. Сборку проще монтировать.

    В монолитной конструкции при выходе из строя одного диода приходится менять весь монолит. В конструкции из отдельных диодов может меняться только один диод. Какую конструкцию применить решает конструктор, в зависимости от назначения устройства.

    В СССР/России:

    • материал диодов:
    • Ц — мост
    • число (2…4 цифры) Обозначают порядковый номер разработки данного типа моста.
    • буква
    1. ↑ Однополупериодным выпрямителем называется выпрямление с помощью 1 диода.

    wp.wiki-wiki.ru

    Диодный мост — sovetskyfilm.ru

    Мост бывает через реку, через овраг, а также через дорогу. Но приходилось ли Вам слышать словосочетание «диодный мост»? Что за такой мост? А вот на этот вопрос мы с вами попробуем найти ответ.

    Словосочетание «диодный мост» образуется от слова «диод». Получается, диодный мост должен состоять из диодов. Но если в диодном мосту есть диоды, значит, в одном направлении диод будет пропускать электрический ток, а в другом нет. Это свойство диодов мы использовали, чтобы определить их работоспособность. Кто не помнит, как мы это делали, тогда вам сюда. Поэтому мост из диодов используется, чтобы из переменного напряжение получать постоянное напряжение.

    А вот и схема диодного моста:

    Иногда в схемах его обозначают и так:

    Как мы с вами видим, схема состоит из четырех диодов. Но чтобы схемка диодного моста заработала, мы должны правильно соединить диоды, и правильно подать на них переменное напряжение. Слева мы видим два значка «

    «. На эти два вывода мы подаем переменное напряжение, а снимаем постоянное напряжение с других двух выводов: с плюса и минуса.

    Для того, чтобы превратить переменное напряжение в постоянное можно использовать один диод для выпрямления, но не желательно. Давайте рассмотрим рисунок:

    Переменное напряжение изменяется со временем. Диод пропускает через себя напряжение только тогда, когда напряжение выше нуля, когда же оно становится ниже нуля, диод запирается. Думаю все элементарно и просто. Диод срезает отрицательную полуволну, оставляя только положительную полуволну, что мы и видим на рисунке выше. А вся прелесть этой немудреной схемки состоит в том, что мы получаем постоянное напряжение из переменного. Вся проблема в том, что мы теряем половину мощности переменного напряжения. Ее тупо срезает диод.

    Чтобы исправить эту ситуацию, была разработана схемка диодного моста. Диодный мост «переворачивает» отрицательную полуволну, превращая ее в положительную полуволну. Тем самым мощность у нас сохраняется. Прекрасно не правда ли?

    На выходе диодного моста у нас появляется постоянное пульсирующее напряжение с частой в два раза больше, чем частота сети: 100 Гц.

    Думаю, не надо писать, как работает схема, Вам все равно это не пригодится, главное запомнить, куда цепляется переменное напряжение, а откуда выходит постоянное пульсирующее напряжение.

    Давайте же на практике рассмотрим, как работает диод и диодный мост.

    Для начала возьмем диод.

    Я его выпаял из блока питания компа. Катод можно легко узнать по полоске. Почти все производители показывают катод полоской или точкой.

    Чтобы наши опыты были безопасными, я взял понижающий трансформатор, который из 220 Вольт трансформирует 12 Вольт. Кто не знает как он это делает, можете прочитать статью устройство трансформатора.

    На первичную обмотку цепляем 220 Вольт, со вторичной снимаем 12 Вольт. Мультик показывает чуть больше, так как ко вторичной обмотке не подцеплена никакая нагрузка. Трансформатор работает на так называемом «холостом ходу».

    Давайте же расмотрим осциллограмму, которая идет со вторичной обмотки транса. Максимальную амплитуду напряжение нетрудно посчитать. Если не помните как расчитать, можно глянуть статейку Осциллограф. Основы эксплуатации. 3,3х5= 16.5В — это максимальное значение напряжения. А если разделить максимальное значение амплитуда на корень из двух, то получим где то 11.8 Вольт. Это и есть действующее значение напряжения. Осцилл не врет, все ОК.

    Еще раз повторюсь, можно было использовать и 220 Вольт, но 220 Вольт — это не шутки, поэтому я и понизил переменное напряжение.

    Припаяем к одному концу вторичной обмотки транса наш диод.

    Цепляемся снова щупами осцилла

    Смотрим на осцилл

    А где же нижняя часть изображения? Ее срезал диод. Диод оставил только верхнюю часть, то есть та, которая положительная. А раз он срезал нижнюю часть, то он следовательно срезал и мощность.

    Находим еще три таких диода и спаиваем диодный мост.

    Цепляемся ко вторичной обмотке транса по схеме диодного моста.

    С двух других концов снимаем постоянное пульсирующее напряжение щупами осцилла и смотрим на осцилл.

    Вот, теперь порядок, и мощность у нас никуда не пропала :-).

    Чтобы не замарачиваться с диодами, разработчики все четыре диода вместили в один корпус. В результате получился очень компактный и удобный диодный мост. Думаю, вы догадаетесь, где импортный, а где советский ))).

    А вот и советский:

    А как Вы догадались. -) Например, на советском диодном мосте, показаны контакты, на которые надо подавать переменное напряжение ( значком «

    «), и показаны контакты, с которых надо снимать постоянное пульсирующее напряжение («+» и «-«).

    Давайте проверим импортный диодный мост. Для этого цепляем два его контакта к переменке, а с двух других контактов снимаем показания на осцилл.

    А вот и осциллограмма:

    Значит импортный диодный мостик работает чики-пуки.

    В заключении хотелось бы добавить, что диодный мост используется почти во всей радиоаппаратуре, которая кушает напряжение из сети, будь то простой телевизор или даже зарядка для сотового телефона. Проверяются диодный мост исправностью всех его диодов.

    Диодный мост – это конструкция, позволяющая выпрямить ток. Точнее говоря, она позволяет это делать несколько более эффективно. Диодный мост по сути является двухполупериодным выпрямителем. Но давайте обо всем по порядку.

    Диод, мосты и проблемы выпрямления тока

    Не все знают, что первоначально диодами называли электронные лампы с двумя электродами. Суть в том, что нагретый катод испускал электроны, которые могли лететь только в одном направлении – на анод. А в обратном направлении ток не тек. Это позволяло отсечь часть периода переменного напряжения. В результате ток становился выпрямленным.

    Недостаток конструкции очевиден – часть времени, а именно, половину от всего интервала, схема бездействует. По этой причине получить высокую эффективность достаточно сложно. Мы сейчас говорим не о КПД, а скорее затрагиваем общую мощность. Напряжение в сети ограничено по номиналу, и нужно эффективно использовать имеющееся. Если повышать потребление через один единственный диод, то он наверняка перегреется и сгорит. Вот здесь на помощь и приходит диодный мост.

    Диодный мост

    Конструкция моста на схеме

    Вообще говоря, все конструкции, которые мы рассмотрим ниже, как раз и направлены на улучшение тех или иных свойств. Иначе давно применялся бы диодный мост одной-единственной конфигурации. А это не так? Да, наши умные читатели, это не так. Всем известный диодный мост на четырёх вентилях далеко не единственный по той простой причине, что предназначен для работы с одной фазой напряжения. А это ущербный вариант, поставляемый в наши дома только из целей экономии проводов, и в промышленности он не применяется.

    Начать нужно, наверное, с Николы Тесла. Этот человек первым придумал вращающееся магнитное поле. Дело в том, что до того переменный ток использовался, но при помощи одной фазы озвученное явление получить нельзя. Суть в том, что внутри двигателя нужно, чтобы поле вращалось. И одна фаза физически обеспечить это не может. Так Никола Тесла изобрёл асинхронный двигатель, где полюсов было много. Здесь нужно отметить, что коллекторные разновидности моторов могут работать равно как от переменного, так и постоянного тока, но для этого следует избегать конструкций с постоянными магнитами. То есть и ротор, и статор собираются из медных обмоток. Мы полагаем, что в 19 веке таких разновидностей двигателей не было, иначе Никола Тесла не взялся бы сделать свой собственный.

    Однако вернёмся к фазам. Изобретя асинхронный (индукционный) двигатель переменного тока, Никола Тесла попутно отметил в своём патенте возможность дальнейшего увеличения фаз, но дальше этого не пошёл. Позже Доливо-Добровольский доказал, что гораздо более эффективным было бы использовать три фазы. Вот почему и сегодня все промышленные конструкции используют этот вариант. Здесь мы заметим, что любой двигатель может работать как на потребление, так и генерацию тока, и читатели поймут, что однофазный диодный мост не может быть идеальным решением для всех проблем. Это ущербный, урезанный вариант для бытовой техники. Не более того.

    Все бортовые системы имеют в своём составе генератор на три фазы, потому что это наиболее эффективная конструкция из всех существующих на сегодняшний день. И используются там уже схема Ларионова. Потому, что так достигается наилучшее соотношение экономии и эффективности. Согласитесь, что не знали про такие тонкости, а тем более про то, что неплохими характеристиками обладают выпрямительные схемы Миткевича. Дело в том, что школьные и ВУЗовские курсы физики имеют упрощённую структуру ввиду слишком сильного развития науки: невозможно за один семестр вместить в головы учащихся всю информацию.

    Итак, мы должны из этого раздела понять, что диодный мост Гретца для бытовой техники не является единственно возможным. Кроме того существуют варианты на три фазы, которые гораздо более распространены, чем об этом можно изначально подумать. Да и сами диоды по конструкции и характеристикам сильно отличаются друг от друга. Это обусловливает специфику их применения. Допустим, силовые разновидности очень мощные, но имеют и большие и потери, вот почему в выходных цепях импульсных блоков питания применяются диоды Шоттки с малым падением напряжения на p-n-переходе.

    Конструкции диодных мостов

    Мы ознакомили читателей с тем, что одна-единственная конструкция диодного моста не может обеспечить всех потребностей. Вот почему в автомобилях применяются схемы Ларионова. Сейчас мы обсудим конструкции, но сначала ответим на вопрос, почему диодный мост называется именно так, а не как-то иначе. В 1833 году была предложена схема для измерения сопротивления, которая основывалась на выравнивание потенциала средних выводов двух ветвей:

    1. Четыре сопротивления соединяются в квадрат (по одному на каждую сторону геометрической фигуры).
    2. К двум углам подаётся питающее напряжение от аккумулятора или другого источника.
    3. С двух других углом снимаются показания любым регистратором напряжения или тока.

    Читайте также: Паяльная станция

    Суть работы заключается в том, чтобы при помощи потенциометра показания индикатора обратить в нуль. В этом случае говорят, что наступило равновесие моста. В то время (до публикации законов Кирхгофа) уже знали, что падение напряжение на двух резисторах пропорционально их величине, а значит, справедливо, что: R1/R2 = R3/Rx, где R2 – потенциометр, R1 и R3 – постоянные сопротивления известного номинала, Rx – исследуемый элемент. Затем из простой пропорции находится искомая величина.

    Мостовой эту схемы в англоязычной литературе называют по той причине, что между двумя ветвями электрической цепи, состоящих из сопротивлений R1, R2 и R3, Rx, соответственно, перекинуты перемычка. В данном случае это измерительный прибор. Людям это напомнило мост, схему так и назвали. А теперь о том, как это связано с темой сегодняшнего разговора.

    Диодный мост Гретца

    Когда в 1897 году журнал Elektronische Zeitung (часть 25) опубликовал заметку Лео Гретца об исследовании диодного моста, то некоторые решили, что этот человек и является изобретателем данного устройства. До сих пор (на 2016 год) русский домен Википедии продолжает утверждать об этом неоспоримом факте. На самом деле изобретателем диодного моста Гретца является польский электротехник Карол Поллак. Но нам не удалось найти не то что биографии данного учёного мужа на русском языке, но даже и перевод его имени. Быть может, написанный двумя строками выше является первым в своём роде. Не удивительно поэтому, что о патенте под номером 96564 от 14 января 1896 года мало кому известно.

    Диодный мост

    Схема диодного моста

    Из рисунка видно, почему эту схему назвали мостом, налицо все признаки:

    1. Две ветки из диодов по центру закорочены цепью нагрузки.
    2. Питание переменным током подаётся к двум сторонам квадрата.
    3. На выходе присутствует постоянное напряжение.

    К недостаткам этой схемы относится то, что падение напряжение на p-n-переходе удваивается. В каждый момент времени ток проходит через пару диодов, а не один, как это было бы в случае однополупериодного выпрямителя. Тем не менее, при большом вольтаже этими потерями можно пренебречь, а чтобы схема не сгорела, её снабжают большими изрезанными металлическими радиаторами. Автомобилисты уже поняли, о чем речь, а простым смертным заметим, что для бытовой техники это не всегда справедливо (радиатор отсутствует). И вовсе не потому, что мощность в цепи легковой машины высокая. Понятно, что это не так. Скорее при постоянном напряжении 12 В бортовой сети высоким будет ток, и именно этот факт приводит к столь сильному выделению тепла.

    Поясним это. По закону Джоуля-Ленца теплота от протекания электрического тока пропорциональна квадрату величины тока. В низковольтных цепях по этой причине приходится медные провода делать более толстыми. Это одна из причин, почему промышленное напряжение выше 12 В и намного. А в силовых линиях вообще идут киловольты, что помогает снизить сечение кабелей и сэкономить на материалах. Для преобразования между линиями служит трансформатор, и он же, как правило, стоит на входе любого бытового прибора.

    Читайте также: Электрический фильтр

    Это нужно для того, чтобы сразу получить номиналы напряжений, близкие к требуемым. Особенно ярко это можно проследить на примере телевизоров с электронно-лучевой трубкой. Трансформатор на входе в этом случае имеет множество выходных обмоток, каждая для своей цепи. Остаётся только выпрямить ток, если это нужно, что позволяет снизить сложность аппаратуры. Для этого после выходной обмотки трансформатора ставится диодный мост Гретца (речь идёт об однофазных сетях 220 В).

    В современных импульсных блоках питания все немного по-другому. Диодный мост ставится в этом случае прямо после входного фильтра, затем выпрямленное напряжение нарезается на тиристорном (транзисторном) ключе на высокочастотные импульсы, которые и подаются на трансформатор. Это позволяет многократно уменьшить размеры сердечника и обмоток. Посмотрите на адаптер для сотового телефона: внутри каждого имеется импульсные трансформатор. Но разве можно по размеру это сравнить с блоком питания телевизора? Вы можете сказать, что мощность намного меньше, тогда уже мы порекомендуем обратить внимание на системный блок персонального компьютера, где источник выдаёт обычно не менее 350 Вт. Этого вполне хватило бы для телевизора с электронно-лучевой трубкой.

    Диодный мост

    Схема моста Гретца

    После импульсного трансформатора опять стоит выпрямитель. Иногда это диодный мост, но на базе диодов Шоттки с низким падением напряжения на p-n-переходе. Нужно сразу вспомнить о недостатках, которые мы упоминали в начале. Для низких выходных напряжений импульсного блока питания применение диодных мостов невыгодно, потому что удваивается количество вентилей. В результате и потери выше, что закономерно снижает КПД. Дополнительным фактором является выделение тепла: при таких низких напряжениях приходится использовать радиаторы при большом сопротивлении p-n-перехода.

    Сопротивление p-n-перехода

    Как бы то ни было, диодные мосты Гретца де-факто являются доминирующими на сегодняшний день в бытовых приборах. Но нам нужно сделать маленькое отступление по поводу сопротивления p-n-перехода. Наверняка многие не знают, как его определить, и что это вообще такое.

    Как известно, характеристика диода напоминает в положительной части оси абсцисс параболу. Не столь важна форма, как тот факт, что в любой точке графика становится возможным найти сопротивление. Для этого нужно просто поделить напряжение на ток. Получается, что сопротивление диода зависит от приложенного вольтажа и в типичном случае постоянно меняется. Можно найти аналогично действующему значению напряжения (те самые 220 В) некую среднюю цифру и для этого параметра. От неё также будут зависеть потери. Чем сопротивление p-n-перехода ниже, тем и лучше. Вот почему так выгодно бывает использовать диоды Шоттки.

    Однофазные выпрямители по схеме Миткевича

    Эта схема по сути уже не является мостом, хотя некоторые черты опять же можно усмотреть. Из рисунка видно, что нагрузка как бы закорачивает ветви обмотки трансформатора и диодов. Но это уже некоторая натяжка. Так любую цепь можно было бы назвать мостом. В каждый момент времени у схемы Миткевича работает только половина всей конструкции. Другая заперта.

    В точности то же самое можно было бы сказать и про диодный мост Гретца, но здесь это утверждение распространяется также и на обмотку трансформатора, чего нельзя было отметить в предыдущем случае.

    Трёхфазные выпрямители

    Выпрямитель Ларионова (см. рисунок) по сути мостом не является, хотя именно так его упорно называют многие водители. Можно долго с этим спорить, но вместо этого мы заметим, что существует две разновидности конструкции, которые по терминологии трёхфазных линий называют звезда и треугольник. Автомобилисты обычно имеют дело с первым вариантом, где напряжением чуть выше, а потери меньше. Это обусловлено соображениями экономичности.

    Диодный мост

    Параллельная и последовательная схемы

    Диодный мост

    Выпрямители Миткевича и Ларионова

    Но есть ещё одна схема, которая и этой даст сто очков форы. Это истинный диодный мост, а точнее говоря, параллельное, либо последовательное соединение трёх полных диодных мостов. Существуют и трёхфазные варианты выпрямителей Миткевича, но это уже совсем другая история.

    Схема диодного моста

    Диодный мост

    Одной из важнейших частей электронных приборов питающихся от сети переменного тока 220 вольт является так называемый диодный мост. Диодный мост – это одно из схемотехнических решений, на основе которого выполняется функция выпрямления переменного тока.

    Как известно, для работы большинства приборов требуется не переменный ток, а постоянный. Поэтому возникает необходимость в выпрямлении переменного тока.

    Например, в составе блока питания. о котором уже заходила речь на страницах сайта, присутствует однофазный полномостовый выпрямитель – диодный мост. На принципиальной схеме диодный мост изображается следующим образом.

    Диодный мостСхема диодного моста

    Это так называемый однофазный выпрямительный мост, один из нескольких типов выпрямителей. которые активно применяются в электронике. С его помощью производят двухполупериодное выпрямление переменного тока.

    В железе это выглядит следующим образом.

    Диодный мостДиодный мост из отдельных диодов S1J37

    Схему эту придумал немецкий физик Лео Гретц. поэтому данное схемотехническое решение иногда называют «схема Гретца » или «мост Гретца ». В электронике данная схема применяется в настоящее время повсеместно. С появлением дешёвых полупроводниковых диодов эту схему стали применять всё чаще и чаще. Сейчас ею уже никого не удивишь, но в эпоху радиоламп «мост Гретца» игнорировали, поскольку она требовала применения аж 4 ламповых диодов, которые стоили по тем временам довольно дорого.

    Как работает диодный мост?

    Пару слов о том, как работает диодный мост. Если на его вход (обозначен значком «

    » ) подать переменный ток . полярность которого меняется с определённой частотой (например, с частотой 50 герц, как в электросети), то на выходе (выводы «+» и «-» ) мы получим ток строго одной полярности . Правда, этот ток будет иметь пульсации. Частота их будет вдвое больше, чем частота переменного тока, который подаётся на вход.

    Таким образом, если на вход диодного моста подать переменный ток электросети (частота 50 герц), то на выходе получим постоянный ток с пульсациями частотой 100 герц. Эти пульсации нежелательны и могут в значительной степени помешать работе электронной схемы.

    Чтобы «убрать» пульсации необходимо применить фильтр. Простейший фильтр – это электролитический конденсатор достаточно большой ёмкости. Если взглянуть на принципиальные схемы блоков питания, как трансформаторных, так и импульсных, то после выпрямителя всегда стоит электролитический конденсатор, который сглаживает пульсации тока.

    Обозначение диодного моста на схеме.

    На принципиальных схемах диодный мост может изображаться по-разному. Взгляните на рисунки ниже – всё это одна и та же схема, но изображена она по-разному. Думаю, теперь взглянув на незнакомую схему, вы с лёгкостью обнаружите его.

    Диодный мост

    Диодная сборка.

    Диодный мост во многих случаях обозначают на принципиальных схемах упрощённо. Например, вот так.

    Диодный мост

    Обычно, такое изображение либо служить для того, чтобы упростить вид принципиальной схемы, либо для того, чтобы показать, что в данном случае применена диодная выпрямительная сборка.

    Сборка диодного моста (или просто диодная сборка) – это 4 одинаковых по параметрам диода, которые соединены по схеме мостового выпрямителя и запакованы в один общий корпус. У такой сборки 4 вывода. Два служат для подключения переменного напряжения и обозначаются значком «

    Оставшиеся два вывода имеют обозначения « + » и « — ». Это выход выпрямленного, пульсирующего напряжения (тока).

    Диодный мост

    Диодная сборка выпрямительного моста является более технологичной деталью. Она занимает меньше места на печатной плате. Для робота-сборщика на заводе проще и быстрее установить одну монолитную деталь вместо четырёх. Ещё одним из плюсов такой сборки можно считать то, что при работе все диоды внутри неё находятся в одном тепловом режиме.

    Также стоит отметить и то, что сборки, порой, стоят дешевле, чем четыре отдельных диода. Но и в бочке мёда должна быть ложка дёгтя. Минус диодных сборок в том, что если выходит из строя хотя бы один диод, то менять её придётся полностью. Поэтому не лишним будет научиться проверять диодный мост мультиметром .

    Думаю понятно, что в случае отдельных диодов нужно просто заменить один неисправный диод, что, соответственно, обойдётся дешевле.

    В реальности сборка диодного моста может выглядеть вот так.

    Диодный мостДиодная сборка KBL02 на печатной плате

    Диодный мостДиодная сборка RS607 на плате компьютерного блока питания

    А вот так выглядит диодная сборка DB107S для поверхностного (SMD) монтажа. Несмотря на свои малые размеры, сборка DB107S выдерживает прямой ток 1 A и обратное напряжение в 1000 V.

    Диодный мост

    Более мощные выпрямительные диодные мосты требуют охлаждения, так как при работе они сильно нагреваются. Поэтому их корпус конструктивно выполнен с возможностью крепления на радиатор. На фото – диодный мост KBPC2504. рассчитанный на прямой ток 25 ампер.

    Диодный мост

    Естественно, любую мостовую сборку можно заменить 4-мя отдельными диодами, которые соответствуют нужным параметрам. Это бывает необходимо, когда нужной сборки нет под рукой.

    Иногда это вводит новичков в замешательство. Как же правильно соединить диоды, если предполагается изготовление диодного моста из отдельных диодов? Ответ изображён на следующем рисунке.

    Диодный мостУсловное изображение диодного моста и диодной сборки

    Как видим всё довольно просто. Чтобы понять, как нужно соединить диоды, нужно вписать в стороны ромба изображение диода.

    На принципиальных схемах и печатных платах диодный мост могут обозначать по-разному. Если используются отдельные диоды, то рядом с ними просто указывается сокращённое обозначение – VD. а рядом ставиться его порядковый номер в схеме. Например, вот так: VD1 – VD4. Иногда применяется обозначение VDS. Данное обозначение указывается обычно рядом с условным обозначением выпрямительного моста. Буква S в данном случае подразумевает, что это сборка. Также можно встретить обозначение BD .

    Где применяется схема диодного моста?

    Мостовая схема активно применяется практически в любой электронике, которая питается от однофазной электросети переменного тока (220 V): музыкальных центрах, DVD-проигрывателях, кинескопных и ЖК-телевизорах. Да где его только нет! Кроме этого, он нашёл применение не только в трансформаторных блоках питания. но и в импульсных. Примером импульсного блока питания, в котором применяется данная схема, может служить рядовой компьютерный блок питания. На его плате легко обнаружить либо выпрямительный мост из отдельных мощных диодов, либо одну диодную сборку.

    Вы легко найдёте диодный мост на печатных платах электро-пускорегулирующих аппаратов (ЭПРА) или по-простому «балластах», а также в компактных люминесцентных лампах (КЛЛ) .

    В сварочных аппаратах можно обнаружить очень мощные диодные мосты, которые крепятся к теплоотводу. Это лишь несколько примеров того, где может применяться данное схемотехническое решение.

    Одним из базовых элементов в современной электронике является диод. Он используется в схемах, где необходимо выпрямление переменного тока, и применяется практически во всех бытовых приборах. Найти его можно в телевизоре, компьютере, холодильнике, магнитофоне и т.д. Так же он широко используется в промышленной электронике, входит в состав схем, управляющих технологическими процессами. Мощные силовые диоды используются в полууправляемых тиристорных преобразователях. На базе диода собрана так называемая схема Гертца, которая получила название диодный мост. Соединение диодов по мостовой схеме позволило выпрямлять переменное напряжение и преобразовывать его в пульсирующее, которое потом можно стабилизировать и выпрямить с помощью схем стабилизации напряжения и конденсаторов. В результате на выходе такого прибора можно получить постоянное напряжение.

    Диодный мостВо времена Лео Гертца использовать диодный мост было проблематично, так как диоды в то время были ламповые. Ставить на выпрямление переменного тока сразу четыре лампы было, по крайней мере, непрактично, в то время они были очень дорогими. Ситуация сильно изменилась с появлением полупроводниковых приборов, они гораздо компактнее и дешевле.

    Собрать диодный Диодный мостмост можно и самому, например, для собственной домашней лаборатории. Для этого подбираем четыре диода с допустимым обратным напряжением 400-500 Вольт. Катоды одной пары диодов соединяем вместе — это будет плюсовой вывод моста. Аноды второй пары также соединяем вместе – это, соответственно, минусовой вывод. Теперь объединяем две пары в мостовую схему, на оставшиеся два вывода можно подавать переменное напряжение. На выходе диодного моста запаиваем полярный конденсатор и параллельно ему — разрядное сопротивление. Получился диодный мост, который можно вмонтировать в рабочий стол и подсоединить через переменное высокоомное сопротивление к питающей сети. Выходное напряжение такого устройства будет регулироваться от нуля и до величины амплитудного значения питающей сети, что очень удобно для питания маломощных схем в процессе наладки или для создания опорного напряжения.

    Диодный мостТакже мостовая схема применяется в автомобиле, здесь используется так называемый диодный мост генератора. Он служит для преобразования переменного напряжения, которое вырабатывает генератор, в постоянное напряжение, которое используется во всех устройствах автомобиля. Постоянное напряжение также необходимо для подзарядки автомобильного аккумулятора. Выход из строя даже одного элемента диодного моста приводит к нестабильной работе всей схемы.

    Для сварки постоянным током также необходимо использование диодного моста. В этом случае применяют диоды большей мощности, чем в автомобиле, и с большим допустимым значением обратного напряжения. Диодный мост для сварочного аппарата можно собрать самостоятельно, используя мощные диоды. Класс диодов выбирается в зависимости от питающего напряжения, получаемого со сварочного трансформатора.

    Диодный мост

    Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.

    Диодный мост

    11 странных признаков, указывающих, что вы хороши в постели Вам тоже хочется верить в то, что вы доставляете своему романтическому партнеру удовольствие в постели? По крайней мере, вы не хотите краснеть и извин.

    Диодный мост

    Никогда не делайте этого в церкви! Если вы не уверены относительно того, правильно ведете себя в церкви или нет, то, вероятно, поступаете все же не так, как положено. Вот список ужасных.

    Диодный мост

    10 очаровательных звездных детей, которые сегодня выглядят совсем иначе Время летит, и однажды маленькие знаменитости становятся взрослыми личностями, которых уже не узнать. Миловидные мальчишки и девчонки превращаются в с.

    Диодный мост

    7 частей тела, которые не следует трогать руками Думайте о своем теле, как о храме: вы можете его использовать, но есть некоторые священные места, которые нельзя трогать руками. Исследования показыва.

    Диодный мост

    13 признаков, что у вас самый лучший муж Мужья – это воистину великие люди. Как жаль, что хорошие супруги не растут на деревьях. Если ваша вторая половинка делает эти 13 вещей, то вы можете с.

    Дата: 23.08.2015 // 0 Комментариев

    Диодный мост — один из самых распространенных компонентов в мире радиоэлектроники. Многим радиолюбителям будет полезно знать, как работает диодный мост, а также из чего он состоит. Основная цель данного элемента — это преобразовывать переменное входящее напряжение на постоянное, диодный мост зачастую применяется в разного рода выпрямителях, зарядных устройствах и различных блоках питания.

    Как работает диодный мост?

    Нетрудно заметить, что классический диодный мост состоит из четырех диодов, собранных в схему в виде моста. Для такого моста подбираются диоды с определенными характеристиками по току и напряжению, а также желательно одинаковой маркировки. Во многих случаях диоды моста устанавливаются на радиаторы, чтобы исключить перегрев и преждевременный выход их из строя. О том, как подобрать диоды для диодного моста, мы напишем немного позже.

    Диодный мост, принцип работы

    В каждом из полупериодов ток проходит только через соответствующих два диода, а остальная пара диодов заперта.В итоге, на выходе имеем постоянное напряжение, но с удвоенной частотой пульсации. Как видим принцип работы диодного моста очень прост.Иногда для питания некоторых схем этого достаточно, например простые зарядные устройства для АКБ и т.п. для них подобные пульсации напряжения абсолютно не критичны. Но при необходимости питать усилитель от такого источника питания ничего путного с этого не получится (услышим лишь громкий гул) — ему нужно сглаженное напряжение. Для получения сглаженного напряжения, а не пульсирующего, диодный мост можно дополнять электролитическим конденсатором большой емкости, установленным на выходе моста. Чем больше будет емкость такого фильтрующего конденсатора, тем менее заметными станут подобные пульсации.

    При ремонте различных приборов важно знать не только то, как работает диодный мост, но и уметь его проверять. О том, как проверить диодный мост читаем тут .

    Внимание, только СЕГОДНЯ!

    sovetskyfilm.ru

    Диодный мост - это... Что такое Диодный мост?

    Дио́дный мо́ст — электрическая схема, предназначенная для преобразования («выпрямления») переменного тока в пульсирующий. Такое выпрямление называется двухполупериодным[1].

    Схема включения

    Выполняется по мостовой схеме Гретца. Изначально она была разработана с применением радиоламп, но считалась сложным и дорогим решением, вместо неё применялась схема Миткевича со сдвоенной вторичной обмоткой в питающем выпрямитель трансформаторе. Сейчас, когда полупроводники очень дёшевы, в большинстве случаев применяется мостовая схема.

    Вместо диодов в схеме могут применяться вентили любых типов — например селеновые столбы, принцип работы схемы от этого не изменится.

    Порядок работы

    На вход (Input) схемы подаётся переменное напряжение (обычно, но не обязательно синусоидальное). В каждый из полупериодов ток проходит только через 2 диода, 2 других — заперты:

    При выпрямлении 3-фазного тока 3-фазным выпрямителем результат получается ещё более «гладким»

    В результате, на выходе (DC Output) получается напряжение, пульсирующее с частотой, вдвое большей частоты питающего напряжения:

    Красным — исходное синусоидальное напряжение , зелёным — однополупериодное выпрямление (для сравнения), синим — рассматриваемое двухполупериодное

    Выпрямитель

    Подключение конденсатора

    Практически, для получения постоянного (а не пульсирующего) напряжения, схему надо дополнить фильтром на конденсаторе, а также, возможно, дросселем и стабилизатором напряжения.

    Преимущества

    Двухполупериодное выпрямление с помощью моста (по сравнению с однополупериодным) позволяет:

    • получить на выходе напряжение с повышенной частотой пульсаций, которое проще сгладить фильтром на конденсаторе
    • избежать постоянного тока подмагничивания в питающем мост трансформаторе
    • увеличить его КПД, что позволяет сделать его магнитопровод меньшего сечения.

    Недостатки

    • Происходит двойное падение напряжения по сравнению с однополупериодным выпрямлением (прямое напряжение диода × 2 ≈ 1 В), это иногда нежелательно.
    • При перегорании одного из диодов схема превращается в однополупериодную, что может быть не замечено вовремя, и в устройстве появится скрытый дефект.

    Конструкция

    Внешний вид однокорпусных мостов

    Мосты могут быть изготовлены из отдельных диодов, и могут быть выполнены в виде монолитной конструкции (диодная сборка).

    Монолитная конструкция, как правило, предпочтительнее — она дешевле и меньше по объёму (хотя не всегда той формы, которая требуется). Диоды в ней подобраны на заводе и наверняка имеют одинаковые параметры и при работе находятся в одинаковом тепловом режиме. Сборку проще монтировать.

    В монолитной конструкции при выходе из строя одного диода приходится менять весь монолит. В конструкции из отдельных диодов может меняться только один диод. Какую конструкцию применить решает конструктор, в зависимости от назначения устройства.

    Маркировка

    В СССР/России:

    • материал диодов:
    • Ц — мост
    • число (2…4 цифры) Обозначают порядковый номер разработки данного типа моста.
    • буква

    См. также

    Ссылки

    Примечания

    1. ↑ Однополупериодным выпрямителем называется выпрямление с помощью 1 диода.

    dic.academic.ru


    Каталог товаров
      .