16.Асинхронные и синхронные триггерные схемы. Двухступенчатые триггерные схемы. Асинхронные схемы
16.Асинхронные и синхронные триггерные схемы. Двухступенчатые триггерные схемы.
Триггер - основа функциональных узлов последовательного типа
Триггером называется устройство с двумя устойчивыми состояниями. Триггеры представляют собой простейшие последовательностные устройства и широко используются в электронных устройствах различного назначения как в виде самостоятельных узлов, так и в качестве элементов для построения более сложных цифровых устройств (счетчиков, регистров, запоминающих устройств).
Асинхронный триггер – триггер, состояние которого определяется в каждый момент времени состоянием входов, т.е изменения входного сигнала непосредственно передаются на выход триггера
Синхронный триггер – триггер, в котором приём входной информации определяется моментом подачи импульса на вход синхронизации С.
&
&
&
&
С
Синхронный RS –триггер
Одноступенчатый синхронный триггер.
Одноступенчатый синхронный RS триггер состоит из 2 частей – комбинационной схемы и запоминающей ячейки. КС представлена элементами D1 и D2, запоминающая ячейка (в дальнейшем ЗЯ) элментами D3 и D4.
Двухступенчатые синхронный триггер.
Двухступенчатые синхронные триггеры обозначаются «ТТ» . Это триггеры типа «Master-Slave» или MS-триггеры.
При С=0 прием входной информации в первую ступень закрыт, а поскольку на синхронизирующий вход второй ступени благодаря инвертору поступает 1, то приём информации во вторую ступень открыт. Вторая ступень принимает информацию, хранимую в первой ступени триггера.
При С=1 первая ступень открыта, а вторая закрыта. Информация, находящаяся на логических входах двухступенчатого триггера принимается в первую ступень.
Двухступенчатые триггер.
Двухступенчатые синхронные триггеры обозначаются «ТТ» . Это триггеры типа «Master-Slave» или MS-триггеры.
Пример: двухступенчатый Т-триггер.
Достоинством двухступенчатого триггера является то что нет ограничения сверх на длительность импульса (как в одноступенчатых триггерах)
Недостаток: то что он более медленный чем одноступенчатый.
Для улучшения временных характеристик двухступенчатые триггеры делают с динамическим управлением, т.е. такие триггеры работают по перепаду сигнала С (синхроимпульс).
17. Схемы триггеров со статическим и динамическим управлением.
Входная информация в рассматриваемых триггерах принимается только тогда, когда значение СИ соответствует единице, т.е. в течение всей длительности СИ. Это означает, что при С = 1 переключения сигналов на логических входах вызывает изменение состояния триггера, т.е. выхода Q. Поэтому информацию на логических входах триггера, как правило, меняют при С = 0.
RS-триггер
Синхронный RS-триггер со статическим управлением записью реализуется подключением двух элементов И-НЕ к ЗЯ (рис. 3.3). Смена сигналов на логических входах R и S разрешена между СИ. Временная диаграмма работы этого триггера приведена на рис. 3.4.
Рис. 3.3. Синхронный RS-триггер со статическим управлением записью, его условное графическое обозначение и таблица переходов
Рис.3.4. Временная диаграмма работы синхронного RS-триггера со статическим управлением записью
Схема синхронного RS-триггера с дополнительными инверсными асинхронными входамии(входами предварительной установки триггера в 0 или 1) на элементах 2-2И-2ИЛИ-НЕ показана на рис. 3.5.
Рис. 3.5. Синхронный RS-триггер со статическим управлением записью и асинхронными входами ии его условное графическое обозначение
studfiles.net
принцип работы и устройство :: SYL.ru
Из всего спектра выпускаемых в настоящее время электрических моторов наибольшее распространение получил двигатель асинхронный трёхфазный. Практически половина производимой в мире электроэнергии используется именно этими машинами. Они широко применяются в металлообрабатывающей и деревообрабатывающей промышленности. Асинхронный двигатель незаменим на фабриках и насосных станциях. Без таких машин не обойтись и в быту, где они используются и в другой домашней технике, и в ручном электроинструменте.
Область применения этих электрических машин расширяется с каждым днём, так как совершенствуются и сами модели, и используемые для их изготовления материалы.
Каковы же основные части этой машины
Разобрав двигатель асинхронный трехфазный, можно наблюдать два главных элемента.
1. Статор.
2. Ротор.
Одна из важнейших деталей - статор. На фото сверху эта часть двигателя расположена слева. Он состоит из следующих основных элементов:
1. Корпус. Он необходим для соединения всех деталей машины. Если двигатель небольшой, то корпус изготавливают цельнолитым. В качестве материала используют чугун. Применяются также сталь или сплавы алюминия. Иногда корпус малых двигателей совмещает функции сердечника. Если же двигатель имеет большие размеры и мощность, то корпус сваривают из отдельных частей.
2. Сердечник. Этот элемент двигателя запрессовывается в корпус. Служит он для улучшения качеств магнитной индукции. Выполняется сердечник из пластин электрической стали. Для того чтобы снизить потери, неизбежные при появлении вихревых токов, каждая пластина покрывается слоем специального лака.
3. Обмотка. Она размещается в пазах сердечника. Состоит из витков медной проволоки, которые собираются в секции. Соединённые в определённой последовательности, они образуют три катушки, которые в совокупности являются обмоткой статора. Подключается она непосредственно к сети, поэтому называется первичной.
Ротор — это подвижная часть двигателя. На фото он находится справа. Служит он для преобразования силы магнитных полей в механическую энергию. Состоит ротор асинхронного двигателя из следующих деталей:
1. Вал. На хвостовиках его закреплены подшипники. Они запрессовываются в щиты, крепящиеся болтами к торцовым стенкам коробки статора.
2. Сердечник, который собирается на валу. Состоит из пластин специальной стали, обладающей таким ценным свойством, как низкое сопротивление магнитным полям. Сердечник, обладая формой цилиндра, и является основой для укладки обмотки якоря. Роторная, или, как её ещё называют, вторичная обмотка получает энергию благодаря магнитному полю, которое появилось вокруг катушек статора при прохождении по ним электрического тока.
Двигатели по типу изготовления подвижной части
Различают двигатели:
1. Имеющие короткозамкнутую обмотку ротора. Один из вариантов исполнения этой детали показан на рисунке.
Асинхронный двигатель с короткозамкнутым ротором имеет обмотку, сделанную из алюминиевых стержней, которые располагаются в пазах сердечника. В торцевой части они замкнуты кольцами накоротко.
2. Электродвигатели, имеющие ротор, изготовленный с контактными кольцами.
У обоих типов асинхронных двигателей конструкция статора одинаковая. Различаются они только исполнением якоря.
Каков же принцип работы
Якорь трёхфазного асинхронного двигателя, исполненный подобным образом, приводится во вращение благодаря эффекту возникновения переменного магнитного поля в статорных катушках. Чтобы понять, каким образом это происходит, необходимо вспомнить физический закон самоиндукции. Он гласит, что вокруг проводника, по которому проходит поток заряженных частиц, возникает магнитное поле. Величина его будет прямо пропорциональна индуктивности провода и интенсивности протекающего в нём потока заряженных частиц. Кроме того, это магнитное поле формирует силу с определённой направленностью. Именно она нас и интересует, так как является причиной вращения ротора. Для эффективной работы двигателя необходимо иметь мощный магнитный поток. Создаётся он благодаря специальному способу монтажа первичной обмотки.
Известно, что источник питания имеет переменное напряжение. Следовательно, магнитное поле вокруг статора будет иметь такую же характеристику, напрямую зависящую от изменения тока в подающей сети. Примечательно то, что каждая фаза смещена одна относительно другой на 120˚.
Что происходит в обмотке статора
Каждая фаза сети питания подключается к соответствующей катушке статора, поэтому возникающее вокруг них магнитное поле будет смещено на 120˚. Источник питания имеет переменное напряжение, следовательно, вокруг катушек статора, которыми располагает асинхронный двигатель, будет возникать переменное магнитное поле. Схема асинхронного двигателя собирается так, чтобы магнитное поле, возникающее вокруг катушек статора, постепенно изменялось и последовательно переходило от одной обмотки к другой. Таким образом создаётся эффект вращающегося магнитного поля. Можно вычислить его частоту вращения. Измеряться она будет в оборотах за минуту. Определяется по формуле: n=60f/p, где f — это частота переменного тока в подключенной сети (Гц), p — соответствует числу пар полюсов, смонтированных на статоре.
Как работает ротор
Теперь необходимо рассмотреть, какие процессы возникают во вторичной обмотке. Асинхронный двигатель с короткозамкнутым ротором имеет конструкционную особенность. Дело в том, что к его якорной обмотке напряжение не подводится. Оно там возникает благодаря магнитоиндукционной связи с первичной обмоткой. Поэтому и происходит процесс, обратный тому, что наблюдался в статоре, в соответствии с законом, который гласит, что при пересечении проводника, а в нашем случае это короткозамкнутая обмотка ротора, магнитным потоком в нём возникает электрический ток. Откуда берётся магнитное поле? Оно возникло вокруг первичной катушки при подключении трёхфазного источника питания.
Соединим статор и ротор. Что получится?
Таким образом, имеем асинхронный короткозамкнутый двигатель с ротором, в обмотке которого проходит электрический ток. Он и будет причиной возникновения магнитного поля вокруг якорной обмотки. Однако полярность этого потока будет отличаться от созданного статором. Соответственно, и сила, образуемая им, будет вступать в противодействие с той, которая вызвана магнитным полем первичной обмотки. Это и приведёт в движение ротор, так как на нём собрана вторичная катушка, и хвостовики вала якоря закреплены в корпусе двигателя на подшипниках.
Рассмотрим ситуацию взаимодействия сил, возникающих от магнитных полей статора и ротора, с течением времени. Знаем, что магнитное поле первичной обмотки вращается и обладает определённой частотой. Созданная им сила будет перемещаться, имея аналогичную скорость. Это заставит асинхронный двигатель заработать. И его ротор будет свободно вращаться вокруг оси.
Эффект скольжения
Ситуация, когда силовые потоки ротора как бы отталкиваются от вращающегося магнитного поля статора, получила название скольжения. Следует отметить, что частота асинхронного двигателя (n1) всегда меньше той, с которой перемещается магнитное поле статора. Объяснить это можно так. Чтобы в роторной обмотке возник ток, она должна быть пересечена магнитным потоком с определённой угловой скоростью. И поэтому справедливо утверждение, что скорость вращения вала больше либо равна нулю, но меньше интенсивности перемещения магнитного поля статора. Ротор имеет частоту вращения, зависящую от силы трения в подшипниках, а также от величины отбора мощности с вала ротора. Поэтому он как бы отстаёт от магнитного поля статора. Именно из-за этого частота называется асинхронной.
Таким образом, электроэнергия питающего источника преобразовалась в кинетическую энергию вращающегося вала. Скорость его вращения прямо пропорциональна частоте тока питающей сети и количеству пар полюсов статора. Для увеличения частоты вращения якоря можно использовать частотные преобразователи. Однако работа этих устройств должна быть согласована с количеством пар полюсов.
Как подключить двигатель к источнику питания
Чтобы осуществить пуск асинхронного двигателя, его необходимо подключить к сети трёхфазного тока. Схема асинхронного двигателя собирается двумя способами. На рисунке показана схема соединения выводов двигателя, в которой статорные обмотки собраны способом «звезда».
На этом рисунке изображён другой способ соединения, именуемый «треугольник». Собираются схемы в клеммной коробке, закреплённой на корпусе.
Следует знать, что начала каждой из трёх катушек, их ещё называют обмотками фаз, именуются С1, С2, С3 соответственно. Аналогично подписываются концы, которые имеют названия С4, С5, С6. Если в клеммной коробке нет маркировки выводов, то начала и концы придётся определить самостоятельно.
Как сделать реверс
При возникновении потребности осуществить пуск асинхронного двигателя, изменив направление вращения якоря, надо просто поменять местами два провода подключаемого источника трехфазного напряжения.
Однофазный асинхронных двигателей
В быту проблематично использовать трёхфазные двигатели из-за отсутствия требуемого источника напряжения. Поэтому существует однофазный асинхронный двигатель. Он также имеет статор, но с существенным конструкционным отличием. Оно заключается в количестве и способе расположения обмоток. Это определяет и схему запуска машины.
Если однофазный асинхронный двигатель имеет статор с двумя обмотками, то расположены они будут со смещением по окружности под углом в 90˚. Катушки называются пусковой и рабочей. Соединяются они параллельно, но, чтобы создать условия для появления вращающееся магнитного поля, дополнительно вводится активное сопротивление или конденсатор. Это создаёт сдвиг фаз токов обмоток, близкий к 90˚, благодаря чему создаётся условие для образования вращающегося магнитного поля.
Если статор имеет только одну катушку, то подключённый к ней однофазный источник питания будет причиной пульсирующего магнитного поля. В замкнутой накоротко обмотке ротора появится переменный ток. Он станет причиной возникновения своего магнитного потока. Результирующая двух образовавшихся сил будет равна нулю. Поэтому для запуска двигателя, имеющего такую конструкцию, требуется дополнительный толчок. Создать его можно, подключив конденсаторную схему пуска.
Подключить двигатель к однофазной цепи
Изготовленный для работы от трёхфазного источника питания электромотор может работать и от домашней однофазной сети, но при этом существенно снизятся его характеристики, такие как КПД, коэффициент мощности. Кроме того, снизятся мощность и пусковые показатели.
Если же без подключения не обойтись, то требуется из трёх обмоток статора собрать схему, где их будет только две. Одна рабочая, а другая пусковая. Например, есть три катушки с началами С1, С2, С3 и концами С4, С5, С6 соответственно. Для создания первой (рабочей) обмотки двигателя объединяем концы С5 и С6, а их начала С3 и С2 подключаем к источнику однофазного тока, например, бытовой сети 220 вольт. Роль второй, пусковой обмотки, будет выполнять оставшаяся незадействованная катушка стартера. Она подключается к источнику питания через конденсатор, соединённый с ней последовательно.
Параметры асинхронного двигателя
При подборе таких машин, а также при дальнейшей их эксплуатации необходимо учитывать характеристики асинхронного двигателя. Они бывают энергетические - это коэффициент полезного действия, коэффициент мощности. Важно учитывать и механические показатели. Основным из них считается зависимость между скоростью вращения вала и рабочим усилием, прикладываемым к нему. Существуют ещё пусковые характеристики. Они определяют пусковой, минимальный и максимальный моменты и их соотношение. Важно также знать, каков пусковой ток асинхронного двигателя. Для наиболее эффективного использования двигателя необходимо учитывать все эти параметры.
Нельзя оставить без внимания вопрос энергосбережения. В последнее время он рассматривается не только с позиции уменьшения эксплуатационных затрат. Экономичность электродвигателей снижает уровень экологических проблем, связанных с производством электроэнергии.
Перед производителями постоянно ставятся задачи разработки и выпуска энергосберегающих двигателей, повышения эксплуатационного ресурса, уменьшения шумового уровня.
Улучшить энергосберегающие показатели можно путём снижения потерь при эксплуатации. А они напрямую зависят от рабочей температуры машины. Кроме того, совершенствование этой характеристики неизбежно приведёт к увеличению срока эксплуатации двигателя.
Снизить температуру обмоток можно, применяя вентилятор наружного обдува, закреплённый на хвостовике вала ротора. Но это приводит к неизбежному повышению шума, производимого двигателем при работе. Особенно ощутим этот показатель при высокой скорости вращения ротора.
Таким образом, видно, что асинхронный двигатель имеет один существенный недостаток. Он не способен поддерживать постоянную частоту вращения вала при возрастающих нагрузках. Зато такой двигатель имеет множество преимуществ по сравнению с образцами электродвигателей других конструкций.
Во-первых, он имеет надёжную конструкцию. Работа асинхронного двигателя не вызывает никаких сложностей при его использовании.
Во-вторых, асинхронный двигатель экономичен в производстве и эксплуатации.
В-третьих, эта машина универсальна. Имеется возможность её использования в любых устройствах, которые не требуют точного поддержания частоты вращения вала якоря.
В-четвёртых, двигатель с асинхронным принципом действия востребован и в быту, получая питание только от одной фазы.
www.syl.ru
Типовые схемы управления электроприводами с асинхронными двигателями
Типовые схемы релейно-контакторного управления асинхронными двигателями (АД) строятся по тем же принципам, что и схемы управления двигателями постоянного тока.
Типовые схемы управления ад с короткозамкнутым ротором
Двигатели этого типа малой и средней мощности обычно пускаются прямым подключением к сети без ограничения пусковых токов. В этих случаях они управляются с помощью магнитных пускателей, которые одновременно обеспечивают и некоторые виды их защиты.
Схема управления асинхронным двигателем с использованием магнитного пускателя (рис. 2.1) включает в себя магнитный пускатель, состоящий из контактора КМ и трех встроенных в него тепловых реле защиты КК. Схема обеспечивает прямой (без ограничения тока и момента) пуск двигателя, отключение его от сети, а также защиту от коротких замыканий (предохранители FА) и перегрузки (тепловые реле КК).
Рис. 2.1. Схема управления АД с использованием
нереверсивного магнитного пускателя
Для пуска двигателя замыкают выключатель QF и нажимают кнопку пуска SВ1. Получает питание катушка контактора КМ, который, включившись, своими главными силовыми контактами в цепи статора двигателя подключает его к источнику питания, а вспомогательным контактом шунтирует кнопку SВ1. Происходит разбег двигателя по его естественной характеристике. Для отключения двигателя нажимается кнопка остановки SВ2, контактор КМ теряет питание и отключает двигатель от сети. Начинается процесс торможения двигателя выбегом под действием момента нагрузки на его валу.
Реверсивная схема управления ад.
Основным элементом этой схемы является реверсивный магнитный пускатель, который включает в себя два линейных контактора КМ1 и КМ2 и два тепловых реле защиты КК (рис. 2.2). Схема обеспечивает прямой пуск и реверс двигателя, а также торможение противовключением при ручном (неавтоматическом) управлении.
Рис. 2.2. Схема управления АД с использованием реверсивного магнитного пускателя
В схеме предусмотрена защита от перегрузок двигателя (реле КК) и коротких замыканий в цепи статора (автоматический выключатель QF) и управления (предохранители FА). Кроме того, схема управления обеспечивает и нулевую защиту от исчезновения (снижения) напряжения сети (контакторы КМ1 и КМ2).
Пуск двигателя при включенном QF в условных направлениях «Вперед» или «Назад» осуществляется нажатием соответственно кнопок SВ1 или SВ2. Это приводит к срабатыванию контактора КМ1 или КМ2, подключению двигателя к сети и его разбегу.
Для реверса или торможения двигателя вначале нажимается кнопка SВЗ, что приводит к отключению включенного до сих пор контактора (например, КМ1), после чего нажимается кнопка SВ2.
Это приводит к включению контактора КМ2 и подаче на АД напряжения источника питания с другим порядком чередования фаз. Магнитное поле двигателя изменяет свое направление вращения на противоположное, что приводит к началу процесса реверса. Этот процесс состоит из двух этапов: торможения противовключением и разбега в противоположную сторону.
В случае необходимости только торможения двигателя при достижении им нулевой частоты вращения должна быть вновь нажата кнопка SВЗ, что приведет к отключению двигателя от сети и возвращению схемы в исходное положение. Если кнопка SВЗ нажата не будет, то это приведет к разбегу двигателя в другую сторону, т.е. к его реверсу.
Во избежание короткого замыкания в цепи статора, которое может возникнуть в результате одновременного ошибочного нажатия кнопок SВ1 и SВ2, в реверсивных магнитных пускателях иногда предусматривается специальная механическая блокировка. Она представляет собой рычажную систему, которая предотвращает втягивание одного контактора, если включен другой. В дополнение к механической блокировке в схеме используется типовая электрическая блокировка, применяемая в реверсивных схемах управления. Она предусматривает перекрестное включение размыкающих контактов аппарата КМ1 в цепь катушки аппарата КМ2 и, наоборот.
Следует отметить, что повышению надежности и удобства в эксплуатации способствует использование в схеме воздушного автоматического выключателя QF. Его наличие исключает возможность работы привода при обрыве одной фазы, при однофазном коротком замыкании.
Схема управления многоскоростным АД.
Эта схема (рис. 2.3) обеспечивает получение двух скоростей двигателя путем соединения секций (полуобмоток) обмотки статора в треугольник или двойную звезду, а также его реверсирование. Защита электропривода осуществляется тепловыми реле КК1 и КК2 и предохранителями FА.
Рис. 2.3. Схема управления двухскоростным АД
Для пуска двигателя на низкую частоту вращения нажимается кнопка SВ4, после чего срабатывает контактор КМ2 и блокировочное реле КV. Статор двигателя оказывается включенным по схеме треугольника, а реле КV, замкнув свои контакты в цепях катушек аппаратов КМЗ и КМ4, подготавливает подключение двигателя к источнику питания. Далее нажатие кнопки SВ1 или SВ2 приводит к включению соответственно в направлении «Вперед» или «Назад».
После разбега двигателя до низкой частоты вращения может быть осуществлен его разгон до высокой частоты вращения. Для этого нажимается кнопка SВ5, что приведет к отключению контактора КМ2 и включению контактора КМ1, обеспечивающему переключение секций обмоток статора с треугольника на двойную звезду.
Остановка двигателя производится нажатием кнопки SВ3, что вызовет отключение всех контакторов от сети и торможение двигателя выбегом.
Применение в схеме двухцепных кнопок управления не допускает одновременного включения контакторов КМ1 и КМ2, КМ3 и КМ4. Этой же цели служит перекрестное включение размыкающих блок-контактов контакторов КМ1 и КМ2, КМ3 и КМ4 в цепи их катушек.
Схема управления АД, обеспечивающая прямой пуск и динамическое торможение в функции времени
Пуск двигателя осуществляется нажатием кнопки SВ1 (рис. 2.4), после чего срабатывает линейный контактор КМ, подключающий двигатель к источнику питания. Одновременно с этим замыкание контакта КМ в цепи реле времени КТ вызовет его срабатывание и замыкание его контакта в цепи контактора торможения КМ1. Однако последний не срабатывает, так как перед этим разомкнулся в этой цепи размыкающий контакт КМ.
Рис. 2.4. Схема управления пуском и динамическим торможением АД с короткозамкнутым ротором
Для остановки двигателя нажимается кнопка SВ2, Контактор КМ отключается, размыкая свои контакты в цепи статора двигателя и отключая тем самым его от сети переменного тока. Одновременно с этим замыкается контакт КМ в цепи аппарата КМ1 и размыкается контакт КМ в цепи реле КТ. Это приводит к включению контактора торможения КМ1, подаче в обмотки статора постоянного тока от выпрямителя V через резистор Rт и переводу двигателя в режим динамического торможения.
Реле времени КТ, потеряв питание, начинает отсчет выдержки времени. Через интервал времени, соответствующий времени останова двигателя, реле КТ размыкает свой контакт в цепи контактора КМ1, тот отключается, прекращая подачу постоянного тока в цепь статора. Схема возвращается в исходное положение.
Интенсивность динамического торможения регулируется резистором Rт, с помощью которого устанавливается необходимый постоянный ток в статоре двигателя.
Для исключения возможности одновременного подключения статора к источникам переменного и постоянного тока в схеме использована типовая блокировка с помощью размыкающих контактов КМ и КМ1, включенных перекрестно в цепи катушек этих аппаратов.
Типовые схемы управления АДс фазным ротором. Схемы управления двигателя с фазным ротором, которые рассчитаны в основном на среднюю и большую мощность, должны предусматривать ограничение токов при их пуске, реверсе и торможении с помощью добавочных резисторов в цепи ротора. За счет включения резисторов в цепь ротора можно также увеличить момент при пуске вплоть до уровня критического (максимального) момента.
Схема одноступенчатого пуска АД в функции времени и торможения противовключением в функции ЭДС
После подачи напряжения включается реле времени КТ (рис. 2.5), которое своим размыкающим контактом разрывает цепь питания контактора КМ3, предотвращая тем самым его включение и преждевременное закорачивание пусковых резисторов в цепи ротора.
Рис.2.5. Схема управления пуском и торможением противовключением АД с фазным ротором
Включение двигателя производится нажатием кнопки SВ1, после чего включается контактор КМ1. Статор двигателя подсоединяется к сети, электромагнитный тормоз YВ растормаживается, и начинается разбег двигателя. Включение КМ1 одновременно приводит к срабатыванию контактора КМ4, который своим контактом шунтирует ненужный при пуске резистор противовключения Rд2, а также разрывает цепь катушки реле времени КТ. Последнее, потеряв питание, начинает отсчет выдержки времени, после чего замыкает свой контакт в цепи катушки контактора КМ3, который срабатывает и шунтирует пусковой резистор Rд1, в цепи ротора, и двигатель выходит на свою естественную характеристику.
Управление торможением обеспечивает реле торможения KV, контролирующее уровень ЭДС (частоты вращения) ротора. С помощью резистора Rp, оно отрегулировано таким образом, что при пуске, когда скольжение двигателя 0 < s < 1, наводимая в роторе ЭДС будет недостаточна для включения, а в режиме противовключения, когда 1 < s < 2, уровень ЭДС достаточен для его включения.
Для осуществления торможения двигателя нажимается сдвоенная кнопка SВ2, размыкающий контакт которой разрывает цепь питания катушки контактора КМ1. После этого двигатель отключается от сети и разрывается цепь питания контактора КМ4 и замыкается цепь питания реле КТ. В результате этого контакторы КМ3 и КМ4 отключаются и в цепь ротора двигателя вводится сопротивление Rд1 + Rд2.
Нажатие кнопки SВ2 приводит одновременно к замыканию цепи питания катушки контактора КМ2, который, включившись, вновь подключает двигатель к сети, но уже с другим чередованием фаз сетевого напряжения на статоре. Двигатель переходит в режим торможения противовключением. Реле КV срабатывает и после отпускания, кнопки SВ2 будет обеспечивать питание контактора КМ2 через свой контакт и замыкающий контакт этого аппарата.
В конце торможения, когда частота вращения будет близка к нулю и ЭДС ротора уменьшится, реле КV отключится и своим размыкающим контактом разомкнет цепь катушки контактора КМ2. Последний, потеряв питание, отключит двигатель от сети, и схема придет в исходное состояние. После отключения КМ2 тормоз YВ, потеряв питание, обеспечит фиксацию (торможение) вала двигателя.
Схема одноступенчатого пуска АД в функции тока и динамического торможения в функции частоты вращения
Схема (рис. 2.6) включает в себя контакторы КМ1, КМ2 и КМ3; реле тока КА; реле контроля частоты вращения SR, промежуточное реле KV; понижающий трансформатор для динамического торможения Т; выпрямитель VD. Максимальная токовая защита осуществляется предохранителями FA1 и FA2, защита от перегрузки двигателя – тепловыми реле КК1 и КК2.
Рис. 2.6. Схема управления пуском и динамическим торможением АД с фазным ротором
Схема работает следующим образом. После подачи с помощью автоматического выключателя QFнапряжения для пуска двигателя нажимается кнопка SВ1, включается контактор КМ1, силовыми контактами которого статор двигателя подключается к сети. Бросок тока в цепи ротора вызовет включение реле тока КА и размыкание цепи контактора ускорения КМ2. Тем самым разбег двигателя начнется с пусковым резистором Rд2 в цепи ротора.
Включение контактора КМ1 приводит также к шунтированию кнопки SВ1, размыканию цепи катушки контактора торможения КМ3 и включению промежуточного реле напряжения КV, что, тем не менее, не приведет к включению контактора КМ2, так как до этого в этой цепи разомкнулся контакт реле КА.
По мере увеличения частоты вращения двигателя уменьшаются ЭДС и ток в роторе. При некотором значении тока в роторе, равном току отпускания реле КА, оно отключится и своим размыкающим контактом замкнет цепь питания контактора КМ2. Тот включится, зашунтирует пусковой резистор Rд2, и двигатель выйдет на свою естественную характеристику.
Следует отметить, что вращение двигателя вызовет замыкание контакта реле частоты вращения SR в цепи контактора КМ3, однако он не сработает, так как до этого разомкнулся контакт контактора КМ1.
Для перевода двигателя в тормозной режим нажимается кнопка SВ2. Контактор КМ1 теряет питание и отключает АД от сети переменного тока. Благодаря замыканию контактов КМ1 включится контактор торможения КМ3, контакты которого замкнут цепь питания обмотки статора от выпрямителя VD), подключенного к трансформатору Т, и тем самым двигатель переводится в режим динамического торможения. Одновременно с этим потеряют питание аппараты КV и КМ2, что приведет к вводу в цепь ротора резистора Rд2. Двигатель начинает тормозиться.
При частоте вращения двигателя, близкой к нулю, реле контроля частоты вращения SR разомкнет свой контакт в цепи катушки контактора КМ3. Он отключится и прекратит торможение двигателя. Схема придет в исходное положение и будет готова к последующей работе.
Принцип действия схемы не изменится, если катушку реле тока КА включить в фазу статора, а не ротора.
studfiles.net
Электродвигатель асинхронный: схемы звезда треугольник
Электродвигатель асинхронный – электромеханическое оборудование, широко распространённое в различных сферах деятельности, а потому знакомое многим. Между тем, даже учитывая тесную связь асинхронного электродвигателя с народом, редкий «сам себе электрик» способен раскрыть всю подноготную этих приборов. Например, далеко не каждый «держатель пассатижей» может дать точный совет: как соединить обмотки электродвигателя «треугольником»? Или как ставить перемычки схемы соединения обмоток двигателя «звездой»? Попробуем раскрыть эти два простых и одновременно сложных вопроса.
Содержимое публикации
Электродвигатель асинхронный: устройство
Как говаривал Антон Павлович Чехов:
Повторение – мать учения!
Начать повторение темы электрических асинхронных двигателей логично детальным обзором конструкции. Двигатели стандартного исполнения построены на базе следующих конструктивных элементов:
алюминиевый корпус с элементами охлаждения и крепёжным шасси;
статор – три катушки, намотанные медным проводом на кольцевой основе внутри корпуса и размещённые противоположно одна другой под угловым радиусом 120º;
ротор – металлическая болванка, жёстко закреплённая на валу, вставляемая внутрь кольцевой основы статора;
подшипники упорные для вала ротора – передний и задний;
крышки корпуса – передняя и задняя, плюс крыльчатка для охлаждения;
БРНО – верхняя часть корпуса в виде небольшой прямоугольной ниши с крышкой, где размещается клеммник крепления выводов обмоток статора.
Структура мотора: 1 – БРНО, где размещается клеммник; 2 – вал ротора; 3 – часть общих статорных обмоток; 4 – крепёжное шасси; 5 – тело ротора; 6 – корпус алюминиевый с рёбрами охлаждения; 7 – крыльчатка пластиковая или алюминиевая
Вот, собственно, вся конструкция. Большая часть асинхронных электродвигателей являются прообразом именно такого исполнения. Правда, встречаются иногда экземпляры несколько иной конфигурации. Но это уже исключение из правил.
Обозначение и разводка статорных обмоток
Остаются в эксплуатации ещё достаточно большое число асинхронных электродвигателей, где обозначение статорных обмоток выполнено по устаревшему стандарту.
Таким стандартом предусматривалась маркировка символом «С» и добавлением к нему цифры — номера вывода обмотки, обозначающего её начало либо конец.
При этом цифры 1, 2, 3 – всегда относятся к началу, а цифры 4, 5, 6, соответственно, обозначают концы. Например, маркеры «С1» и «С4» обозначают начало и конец первой статорной обмотки.
Маркировка концевых частей проводников, выводимых на клеммник БРНО: А – устаревшее обозначение, но всё ещё встречающееся на практике; В – современное обозначение, традиционно присутствующее на маркерах проводников новых моторов
Современные стандарты изменили эту маркировку. Теперь отмеченные выше символы заменены другими, соответствующими международному образцу (U1, V1, W1 – начальные точки, U2, V2, W2 – концевые точки) и традиционно встречаются при работе с асинхронными движками нового поколения.
Проводники, исходящие от каждой из обмоток статора, выводятся в область клеммной коробки, что находится на корпусе электродвигателя и подключаются к индивидуальной клемме.
В общей сложности количество индивидуальных клемм равно числу выведенных начальных и конечных проводов общей намотки. Обычно это 6 проводников и такое же число клемм.
Таким выглядит клеммник движка стандартной конфигурации. Шесть выводов соединяются латунными (медными) перемычками перед подключением мотора под соответствующее напряжение
Между тем, встречаются также вариации развода проводников (редко и обычно на старых моторах), когда в область БРНО выведены 3 провода и присутствуют только 3 клеммы.
Как подключать «звезду» и «треугольник»?
Подключение асинхронного электродвигателя с выведенными на клеммную коробку шестью проводниками, выполняется стандартной методикой с помощью перемычек.
Размещая должным образом перемычки между индивидуальными клеммами, легко и просто установить необходимую схемную конфигурацию.
Так, чтобы создать интерфейс для подключения «звездой», следует начальные проводники обмоток (U1, V1, W1) оставить на индивидуальных клеммах одиночными, а клеммы концевых проводников (U2, V2, W3) соединить между собой перемычками.
Схема соединения «звезда». Отличается высокой потребностью линейного напряжения. Даёт плавный ход ротора в режиме запуска
Если же потребуется создать схему соединения «треугольник», вариант размещения перемычек изменяется. Для соединения статорных обмоток треугольником нужно соединить начальные и концевые проводники обмоток по следующей схеме:
начальная U1 – концевая W2
начальная V1 – концевая U2
начальная W1 – концевая V2
Схема соединения «треугольник». Отличительная черта – высокие пусковые токи. Поэтому зачастую моторы по этой схеме предварительно запускаются на «звезде» с последующим переводом в рабочий режим
Подключение для обеих схем, конечно же, предполагается в трёхфазную сеть с напряжением 380 вольт. Особой разницы при выборе того или иного схемного варианта нет.
Однако следует учитывать большую потребность в линейном напряжении для схемы «звезда». Эту разницу, собственно, показывает маркировка «220/380» на технической пластине моторов.
Вариант последовательного соединения «звезда-треугольник» в рабочем режиме видится оптимальным пусковым методом 3-фазного асинхронного электродвигателя переменного тока. Этот вариант часто используется для плавного пуска мотора при малых начальных токах.
Первоначально подключение организуется по схеме «звезды». Затем, через некоторый промежуток времени, моментальным переключением выполняется соединение на «треугольник».
Подключение с учётом технической информации
Каждый асинхронный электродвигатель обязательно оснащается металлической пластиной, которая закреплена на боковине корпуса.
Такая пластина является своего рода панелью-идентификатором оборудования. Здесь размещается вся необходимая информация, требуемая для корректной установки изделия в сеть переменного тока.
Техническая пластина на боковине корпуса движка. Здесь отмечаются все важные параметры, требуемые для обеспечения нормальной работы электродвигателя
Этими сведениями не следует пренебрегать, включая мотор в цепь питания электрическим током. Нарушения условий, отмеченных на информационной пластине – это всегда первые причины выхода моторов из строя.
Что указывается на технической пластине асинхронного электродвигателя?
Тип мотора (в данном случае – асинхронный).
Число фаз и рабочая частота (3Ф / 50 Гц).
Схема включения обмоток и напряжение (треугольник/звезда, 220/380).
Рабочий ток (на «треугольнике» / на «звезде»)
Мощность и число оборотов (кВт / об. мин).
КПД и COS φ (% / коэффициент).
Режим и класс изоляции (S1 – S10 / А, В, F, H).
Производитель и год выпуска.
Обращаясь к технической пластине, электрик уже предварительно знает на каких условиях допустимо включать мотор в сеть.
С точки зрения подключения «звездой» или «треугольником», как правило, существующая информация даёт электрику знать, что в сеть 220В корректно подключение «треугольником», а на линию 380В асинхронный электродвигатель следует включать «звездой».
Испытывать мотор либо эксплуатировать следует только при условии разводки через защитный автоматический выключатель. При этом внедряемый в цепь асинхронного электродвигателя автомат следует корректно подбирать по току отсечки.
Трёхфазный асинхронный электродвигатель в сети 220В
Теоретически и практически тоже, асинхронный электродвигатель, рассчитанный на подключение к сети через три фазы, может работать в однофазной сети 220В.
Как правило, этот вариант актуален лишь для моторов мощностью не выше 1,5 кВт. Объясняется сие ограничение банальным дефицитом ёмкости дополнительного конденсатора. На большие мощности требуется ёмкость под высокие напряжения, измеряемая сотнями мкФ.
Применяя конденсатор, можно организовать работу трёхфазного двигателя в сети 220 вольт. Однако при этом теряется практически половина полезной мощности. Уровень КПД снижается до 25-30%
Действительно, самый простой способ запуска трёхфазного асинхронного электродвигателя в однофазной сети 220-230В, это исполнение соединения через так называемый пусковой конденсатор.
То есть из трёх существующих клемм две объединяются в одну включением между ними конденсатора. Образованные таким образом две сетевых клеммы присоединяются к сети 220В.
Переключением сетевого провода на клеммах с подключенным конденсатором можно изменять направление вращения вала мотора.
Включением в трёхфазный клеммник конденсатора, схема подключения трансформируется в двухфазную. Но для чёткой работоспособности двигателя требуется мощный конденсатор
Номинальная ёмкость конденсатора рассчитывается по формулам:
Сзв = 2800 * I / U
C тр = 4800 * I / U
где: C – искомая ёмкость; I – пусковой ток; U – напряжение.
Однако простота требует жертв. Так и здесь. При подходе к решению задачи пуска с помощью конденсаторов отмечается существенная потеря мощности мотора.
Чтобы компенсировать потери, приходится изыскивать конденсатор большой ёмкости (50-100 мкФ) с рабочим напряжением не менее 400-450В. Но даже в этом случае удаётся набрать мощность не более 50% от номинала.
Поскольку подобные решения используются чаще всего для асинхронных электродвигателей, которые предполагается запускать и отключать с частой периодичностью, логично применять схему, несколько доработанную по сравнению с традиционным упрощённым вариантом.
Схема для организации работы в сети 220 вольт с учётом частых включений и отключений. Применение нескольких конденсаторов позволяет в какой-то степени компенсировать потери мощности
Минимум потерь мощности даёт схема включения «треугольником» в отличие от схемы «звезды». Собственно, на этот вариант указывает и техническая информация, что размещается на технических пластинах асинхронных движков.
Как правило, на бирке именно схема «треугольника» соответствует рабочему напряжению 220В. Поэтому на случай выбора способа соединения, прежде всего, следует взглянуть на табличку технических параметров.
Нестандартные клеммники БРНО
Изредка встречаются конструкции асинхронных электродвигателей, где БРНО содержит клеммник на 3 вывода. Для таких моторов применяется схема разводки внутреннего исполнения.
То есть, та же «звезда» либо «треугольник» схематично выстраиваются соединениями непосредственно в области расположения статорных обмоток, куда доступ затруднён.
Вид нестандартного клеммника, какие могут встречаться на практике. При такой разводке следует руководствоваться исключительно сведениями, указанными на технической пластине
Конфигурировать такие движки как-то иначе, в бытовых условиях не представляется возможным. Информация на технических табличках движков с нестандартными клеммниками обычно указывает схему внутреннего развода «звезда» и напряжение, при котором допустимо эксплуатировать электродвигатель асинхронного типа.
Видео включения мотора 380В на 220В
zetsila.ru
Асинхронные двигатели с фазным ротором и схемы управления
резисторы.Рис. 6.14.
Схема управления пуском и динамическим торможением асинхронного двигателя
Постоянный ток протекает по всем обмоткам статора или по части их, создает постоянное во времени магнитное поле. В обмотках вращающегося по инерции ротора будет наводиться ЭДС и потечет ток, который создаст свое неподвижное в пространстве магнитное поле. Взаимодействие тока ротора с результирующим магнитным полем АД приведет к появлению тормозного момента и остановке ротора.
Преобразуемая при этом механическая энергия движущихся частей в электрическую рассеивается в виде тепла.
Пуск двигателя осуществляется нажатием кнопки SB1 (см. рис. 6.14).
После чего срабатывает линейный контактор КМ, подключающий обмотки статора к трехфазному источнику питания. Замыкающий блок-контактКМ в цепи реле времени КТ вызовет его срабатывание. В результате чего контакты этого реле замкнутся в цепи контактора торможения КМ1, но этот контактор не сработает, так как перед этим произойдет размыканиеблок-контактаКМ.
Нажатием кнопки SB3 производится остановка АД. Катушка линейного контактора теряет питание и контакты КМ в цепи обмоток статора размыкаются, отключая двигатель от сети переменного тока.
Одновременно с этим замыкается размыкающий блок-контактКМ в цепи катушки контактора торможения КМ1; последний включается и подает в обмотки статора постоянный ток от выпрямителя V через резистор RT и замыкающий блок контакт КМ1. АД переходит в режим динамического торможения.
С потерей питания катушки КМ, также размыкается замыкающий блок-контактКМ в цепи реле времени КТ. Это реле, потеряв питание, начинает отсчет выдержки времени. Через промежуток времени, соответствующий останову двигателя, реле КТ размыкает свои контакты в цепи катушки контактора КМ1.
уст.I
Обмотка статора отключается от источника постоянного тока и схема переходит в свое первоначальное состояние.
Задержкой срабатывания реле КТ и величиной регулируемого резистора Rт устанавливают время динамического торможения.
Схема управления реверсивным асинхронным двигателем с фазным ротором. Частоту вращения ротора асинхронного электродвигателя с фазным ротором можно регулировать, изменяя величину сопротивления в роторной цепи (см. подразд. 5.2).
Управлять такими электродвигателями возможно с помощью силовых и магнитных контроллеров (рис. 6.15). В настоящее время в подъемнотранспортных механизмах используются магнитные контроллеры, относящиеся к аппаратам дистанционного управления.
Рис. 6. 15. Схема управления трехфазным асинхронным двигателем с фазным
ротором: а) силовая схема; б) схема управления
В первом положении командоконтроллера “Вперед” замыкается контакт S1.1, подавая питание на катушку. Контактор КМ1 подключает обмотки статора двигателя и тормозной электромагнит YB1 к сети. В цепь ротора электродвигателя при этом включено полное сопротивление пускорегулирующего реостата, и двигатель разгоняется по характеристике I (см. рис. 5.4) до установившейся частоты вращения n при заданном моменте сопротивления Мс.
Во втором положении замыкается контакт S1.3 командоконтроллера и включается контактор КМ3, который закорачивает часть сопротивлений
реостата. Двигатель переходит на работу по характеристике II, разгоняется до частоты вращения nуст.II.
В третьем положении контроллера включается контактор КМ4, который закорачивает выводы обмотки ротора, и двигатель работает на естественной характеристике III с частотой вращения nуст.III.
Для выключения двигателя необходимо контроллер перевести в нулевое положение. Вращение “Назад” осуществляется постановкой рукоятки магнитного контроллера на позицию 1 “Назад”, при этом включается контактор КМ2. Происходит смена чередования фаз в обмотках статора и начинается обратное вращение ротора при полном включенном пускорегулирующем резисторе роторной цепи. Дальнейший процесс управления аналогичен описанному выше.
Особенностью работы двигателей подъемно-грузовыхлебедок является спуск груза. В этом случае груз не только преодолевает силы трения, но и стремится ускорить вращение двигателя в направлении спуска. Скорость двигателя очень быстро достигает синхронной, после чего двигатель начинает работать как генератор под действием силы тяжести груза, т.е., тормозя механизм. Если сопротивление в цепи ротора двигателя полностью закороченно, то скорость опускания груза на5–10% больше синхронной частоты вращения. Увеличение роторного сопротивления приводит к увеличению скорости спуска (а не к уменьшению, как это бывает при подъеме).
Схема автоматического пуска и торможения противовключением асинхронного двигателя с фазным ротором. Пуск двигателя совершается нажатием кнопки SB1 (вперед) или SB2 (назад), тем самым подается питание на катушку контактора КМ1 (или КМ2). Рассмотрим работу схемы при срабатывании контактора КМ1 (рис. 6.16).
Обмотки статора подключаются к сети, включается блокировочное реле РБ. Катушка РП не притягивает свой якорь из-замалой ЭДС ротора и размыкающий контакт РП замкнут. Затем замыкающим контактом РБ собирается цепь катушки контактора КП, шунтирующего своими контактами ступень сопротивлений Rn в цепи ротора.
Рис. 6.16.
Схема торможения противовключением асинхронного двигателя с фазным ротором: а) силовая схема; б) схема управления
С помощью механического маятникового реле времени РВ, пристраиваемого к контактору КП, осуществляется выдержка времени, необходимая для некоторого разгона двигателя, после чего включается контактор КУ, шунтирующий сопротивления Rg в цепи ротора, и двигатель выводится на естественную характеристику.
Таким образом, пуск двигателя совершается в одну ступень с резистором в роторе Rg. Ступень резистора Rn служит для ограничения тока при торможении.
Если требуется реверсирование двигателя, то необходимо нажать на кнопку противоположного направления вращения (в нашем примере на кнопку SB2), не воздействуя на кнопку SB3 (стоп). При этом отключаются контакторы КМ1 и КП. Последний – из-заразмыкания контакторов КМ1 и РБ. Как только замкнется размыкающий контакт КМ1 в цепи катушки контактора КМ2, он включится, и двигатель переведется в режим торможения противовключением.
В приведенной на рис. 6.16 схеме реализуется управление торможением в функции угловой скорости (по величине ЭДС ротора, которая пропорциональна скольжению). Реле напряжения РП через выпрямитель V подключается к выводам обмотки ротора. Реле настраивается с помощью резистора Rр так, что при начале торможения, когда направления вращений магнитного поля статора и ротора противоположны (S=2), оно срабатывает, а при угловой скорости, близкой к нулю (S=1), когда напряжение на его катушке снижается почти вдвое, реле отпускает свой якорь. При пуске в обратную сторону реле РП не срабатывает, так как ЭДС ротора становится еще меньше, достигая нулевого значения при S=0.
После включения контактора КМ2, когда произойдет реверсирование магнитного поля статора, срабатывает реле РП и своим размыкающим
контактором разорвет цепь катушки контактора КП, что обеспечит на период торможения введение всех резисторов в цепь ротора (Rg и Rn). Блокировочное реле РБ служит для создания временного разрыва в цепи катушки контактора КП, оно отключается одновременно с контактором КМ1, а включается только после замыкания контактов контактора КМ2. Когда контакты РБ сомкнутся, уже успеет сработать реле РП.
По окончании процесса торможения контакт РП закроется и контактор КП зашунтирует ступень сопротивления Rn. Затем произойдёт изменение направления вращения ротора, то есть пуск в противоположном направлении (назад).
Если остановку двигателя производить кнопкой SB3, то обмотки статора отключатся от сети, но электрического торможения не произойдет, двигатель остановится под действием статического момента сопротивления на валу.
Схема пуска асинхронного двигателя с фазным ротором в функции времени. Упрощенная принципиальная схема пуска асинхронного двигателя с фазным ротором в функции времени [8] представлена на рис. 6.17. Пуск двигателя по этой схеме осуществляется в две пусковые ступени, при этом для большей надежности цепи управления подключены к сети постоянного тока.
Рис. 6.17. Упрощенная
принципиальная схема пуска асинхронного двигателя с фазным ротором в функции времени: а) силовая схема; б) схема управления
При подключении цепей управления к источнику напряжения сразу включаются реле РУ1 и РУ2 через размыкающие блок-контактыКМ и КУ1. Реле без выдержки времени отключают катушки контакторов КУ1 и КУ2 от источника питания. Затем после нажатия кнопки SB1 и включения контактора КМ статор двигателя подключается к сети, а роторная цепь его замкнута на полностью включенные резисторы R1 и R2, так как силовые контакты контакторов КУ1 и КУ2 разомкнуты; начинается пуск АД.
Размыкающий контакт КМ в цепи катушки реле времени РУ размыкается, оно обесточивается, начинает отсчитывать выдержку времени при пуске на первой пусковой ступени. После выдержки времени реле РУ1 своим контактом замыкает цепь питания катушки контактора КУ1. Этот контактор зашунтирует пусковой резистор R1 своими силовыми контактами и снимает питание с реле времени РУ2 вспомогательным контактом КУ1. Реле РУ2 начинает отсчитывать выдержку времени, по окончании которой размыкающий контакт РУ2 замыкается, подключая к источнику питания катушку КУ2, в результате чего зашунтируется вторая ступень пускового сопротивления R2 и АД будет выведен на естественную характеристику.
Схема пуска асинхронного двигателя с фазным ротором в функции тока. Схема, приведенная на рис. 6.18, обеспечивает пуск асинхронного двигателя с фазным ротором в одну ступень в функции тока и динамическое торможение в функции скорости и включает оборудование:
•электромагнитные контакторы КМ1, КМ2, КМ3;
•реле тока КА;
•реле контроля скорости SR;
•реле напряжения KV;
•понижающий трансформатор Т;
•выпрямитель VD;
•предохранители FA1, FA2;
•тепловые реле КК1, КК2.
Реле контроля скорости SR размыкает свои контакты в цепи катушки электромагнитного тормоза КМ3, когда частота вращения уменьшается до значения, близкого к нулю, а замыкает, когда начнется разгон АД.
После включения автоматического выключателя нажимается кнопка пуска SB1. По известной схеме включается контактор КМ1, через силовые контакты которого статор АД подключается к сети. Бросок тока в цепи ротора, когда еще не замкнуты контакты КМ2, вызовет включение реле тока КА, последнее разорвет свои контакты в цепи катушки КM2. Таким образом, разбег начинается с пусковым сопротивлением R2g в цепи ротора.
Рис. 6.18. Схема пуска АД в
одну ступень в функции тока и динамического торможения в функции скорости
Вспомогательные контакты КМ1 замыкают цепь катушки промежуточного реле напряжения KV, шунтируют кнопку SB1, размыкают цепь контактора торможения КМ3. Несмотря на то, что реле KV включается, это не приводит к включению контактора КМ2, так как до этого в цепи разомкнулся контакт реле КА.
Трогание с места и вращение ротора вызывает замыкание контакта реле скорости SR в цепи тормозного контактора КМ3, но и этот контактор не сработает, так как до этого разомкнулся контакт КМ1. По мере разгона двигателя ток в цепи ротора уменьшается, и реле тока КА выключается, замыкая цепь контактора КМ2. Этот контактор зашунтирует резисторы R2g в цепи ротора, АД выйдет на естественную характеристику.
Для перевода в тормозной режим нажимается кнопка SB3. Контактор КМ1 теряет питание и отключается статор АД от сети, но включается тормозной контактор КМ3. Контактор КМ3 замыкает цепь питания катушек обмотки статора постоянным током от выпрямителя VD, подключенного к трансформатору Т. Тем самым осуществляется перевод АД в режим динамического торможения.
Одновременно с этим потеряет питание аппарат KV, а следовательно и КМ2, что приведет к вводу в цепь ротора резистора R2g. Двигатель начинает тормозить.
При скорости двигателя, близкой к нулю, реле контроля скорости SR размыкает свой контакт в цепи катушки контактора КМ3. Он отключается и прекращает торможение АД. Схема приходит в исходное положение и готова к последующей работе.
Принцип действия схемы не изменяется, если катушка реле тока включается в фазу статора, а не ротора при одноступенчатом разгоне двигателя.
Схема панели управления асинхронным двигателем типа ПДУ 6220.
Панель типа ПДУ 6220 входит в состав нормализованной серии панелей управления АД с фазным и короткозамкнутым роторами и обеспечивает пуск в две ступени и динамическое торможение в функции времени (рис. 6.19).
Рис. 6.19. Схема панели
управления асинхронного двигателя типа ПДУ 6220
При подаче на схему напряжений постоянного тока 220 В и переменного 380 В тока (замыкание рубильников Q1, Q2 и автомата QF) происходит включение реле времени КТ1, чем двигатель подготавливается к пуску с полным пусковым резистором в цепи ротора.
Одновременно с этим, если рукоятка командоконтроллера находится в нулевой (средней) позиции и максимально-токовыерелеFA1–FA3не включены, включается реле защиты KV от понижения питающего напряжения и готовит схему к работе замыканием своегоблок-контактораKV.
Пуск двигателя осуществляется по любой из двух искусственных характеристик или по естественной характеристике, для чего рукоятка SA должна устанавливаться соответственно в положение 1,2 или 3. При переводе рукоятки в любое из указанных положений SA включается линейный контактор КМ2, подключающий АД к сети, контактор управления тормозом КМ5, подключающий к сети катушку YA электромагнитного тормоза,
который при этом растормаживает двигатель, и реле времени KT3, управляющее процессором динамического торможения.
Перевод контроллера SA в положение 2 или 3 позволяет включить контакторы ускорения КМ3 и КМ4, скорость двигателя увеличивается.
Торможение АД происходит за счет перевода рукоятки SA в нулевое положение. Тогда отключаются контакторы КМ2 и КМ5, а включается контактор динамического торможения КМ1, который подключает АД к источнику постоянного тока. В результате этого будет идти интенсивный процесс комбинированного (механического и динамического) торможения АД, который закончится после отсчета реле своей выдержки времени, соответствующей времени торможения.
Схема управления тиристорным приводом переменного тока. Схема управления тиристорным приводом переменного трехфазного тока содержит тиристорный преобразователь, который включается в цепь статорных обмоток двигателя и осуществляет фазовое регулирование подводимого к двигателю напряжения (рис. 6.20).
Последовательно со статорными обмотками двигателя встречнопараллельно через быстродействующие предохранители FU включены три пары тиристоров преобразователя U. Регулированием угла открывания тиристоров с помощью системы управления СУ изменяется напряжение, подводимое к двигателю, а следовательно, и его момент.
Рис. 6.20. Схема управления асинхронного двигателя с тиристорным
преобразователем: QF – автоматический выключатель; В – датчик тока; U – тиристорный преобразователь; FU – предохранитель; KK – командоконтроллер; СУ-
система управления тиристорным преобразователем; BR – тахогенератор; КМ – электромагнитные контакторы
В результате получается ряд мягких механических характеристик, обеспечивающих плавный пуск и разгон механизма. При использовании обратной связи по частоте вращения, осуществляемой с помощью тахогенератора BR, жесткость механических характеристик увеличивается, что позволяет получить устойчивые промежуточные и низкую посадочную скорости.
Схемой предусмотрен контактный реверс двигателя контакторами КМ2 и КМ3. Переключение контакторов происходит при отсутствии тока в главной цепи под контролем датчика тока В. Бестоковая коммутация значительно повышает износостойкость аппаратуры.
С помощью тиристоров преобразователя может быть получено и регулируемое динамическое торможение, а также торможение противовключением. Управление углом открывания тиристоров может осуществляться ступенчато командоконтроллером КК, или плавно другим аппаратом, например, сельсином.
6.5. Крановые защитные панели
Крановые защитные панели применяют при контроллерном управлении двигателями крана. Конструкция защитной панели представляет собой металлический шкаф с установленной в нем аппаратурой. Шкаф закрыт дверью с замком. Второй замок заблокирован с главным рубильником, то есть дверь панели не откроется, пока не будет выключен рубильник, обесточивающий электрооборудование. Размещаются защитные панели обычно в кабине крана. На защитной панели установлена электроаппаратура, осуществляющая следующую защиту:
•максимальную от токов короткого замыкания и значительных (свыше 250 %) перегрузок крановых электродвигателей;
•нулевую, исключающую самозапуск двигателей после перерыва в электроснабжении;
Панели допускают подключение от трех до шести двигателей (рис. 6.21). В зависимости от числа защищаемых двигателей и соотношения их мощностей панели комплектуются соответствующим количеством блок-релемаксимального тока, которые при срабатывании воздействуют на один, общий для группы издвух-четырехреле, контакт. Этим уменьшается число
studfiles.net
Синхронные и асинхронные триггерные схемы на потенциальных элементах
В ВМ в процессе обработки информации необходимо ее промежуточное хранение. Для этого используют триггеры – элементы с двумя устойчивыми состояниями, имеющие соответствующие входы для сигналов управления. Основу триггеров – элементарных цифровых автоматов с двумя устойчивыми состояниями, составляет простейшие запоминающие ячейки, которые получают соединением двух потенциальных элементов И-НЕ (ИЛИ-НЕ). Независимо от того, какую функцию выполняет логический элемент И-НЕ или ИЛИ-НЕ, ячейки могут находится в двух устойчивых состояниях 1 и 0. Состоянию 1 соответствует единичный сигнал на выходе Q, состоянию 0 – нулевой сигнал на выходе Q, единичный сигнал на выходе . Таким образом информация может одновременно сниматься с запоминающей ячейки (триггера) в прямом и инверсном виде.
1. По способу записи информации триггеры разделяются на:
- асинхронные, запись информации в которых осуществляется непосредственно с поступлением информационного сигнала на его вход;
- синхронные, имеющие специальный синхронизирующий вход С, сигнал которого разрешает триггеру принять новую информацию (этот сигнал называется также тактирующим, исполнительным или командным).
Синхронные триггеры в зависимости от того, какая часть синхроимпульса (СИ) оказывает влияние на изменение выходов, делятся на три основные группы:
- триггеры, управляемые уровнем синхроимпульса, когда он равен 1 или 0. Это базовые синхронные триггеры, имеющие дополнительный вход для СИ.
- триггеры, управляемые обоими фронтами СИ. Это триггеры с главной и вспомогательной памятью (JKMS).
- триггеры, управляемые одним фронтом СИ (например, D) синхронные триггеры могут быть одно- или многотактными.
2. По числу ступеней:
- одноступенчатые и
- двухступенчатые.
Двухступенчатость позволяет получить эффект задержки информации. Двухступенчатые триггеры называются также триггерами MS, поскольку одна из ступеней – slave [sleіv] (раб, невольник) повторяет состояние другой ступени – master [‘ma:ste] (хозяин, владелец, господин).
3. По способу организации логических связей, определяющих
особенности функционирования, различают триггеры RS, T, D, JK и других типов. Функциональные обозначения триггеров и правила их изображения в технической документации определяются ГОСТ 2.743-82.
Триггеры различаются типами входов, для которых приняты следующие обозначения:
R (от англ.Reset - сброс) - раздельный вход установки триггера в состояние 0;
S (от англ.Set - установка) – раздельный вход установки триггера в состояние 1;
K (от англ.Kill – внезапное отключение) – вход раздельной установки универсального триггера в состояние 0;
J (от англ.Jerk – включение внезапное) – раздельный вход установки универсального триггера в состояние 1;
T (от англ.Toggle - релаксатор) – счетный вход триггера;
D (от англ.Delay - задержка) – информационный вход установки триггера в состояние, соответствующее логическому уровню на этом входе;
C (от англ.Clock – первичный источник сигналов синхронизации) – исполнительный управляющий (синхронизирующий) вход записи информации в триггер;
V (от англ.Valve – клапан, вентиль) – разрешающий, управляющий вход.
Основными параметрами триггеров являются: максимальная длительность входного сигнала, время задержки переключения триггера, разрешающее время триггера.
Рассмотрим свойства лишь наиболее распространенных типов триггеров, используемых при построении сложных логических схем, например таких, как счетчики и регистры.
В таблице переходов, отражающей закон функционирования триггера, будем также обозначать последовательные моменты времени. Момент времени t соответствует состоянию триггера до прихода управляющих сигналов. Момент времени t+1 наступает тогда, когда сигналы на выходе триггера под воздействием сигналов на входах принимают значения, соответствующие последующему состоянию. Состояние триггера, соответствующее моменту времени t, будем обозначать , а состояние, которое он принимает в результате воздействия входных сигналов в момент времени (t+1), - .
Знак неопределенности «x» в таблице переходов означает, что такая комбинация входных сигналов считается запрещенной, а следовательно, значение функции таких наборов произвольно.
RS-триггер
RS-триггер – ячейка хранения информации, триггер с установочным запуском.
Это логическое устройство с двумя устойчивыми состояниями, имеющее два информационных входа R и S, такие, что при S=1 и R=0 триггер принимает состояние 1 (Q=1), а при R=1, S=0 триггер принимает состояние 0 (Q=0).
R от reset – восстанавливать,
S от set – устанавливать.
(3.1)
- запрещенное состояние перехода.
В базисе И-НЕ формула приводится к виду:
(3.2)
Таблица 3.1
R
S
*
Запрещенная комбинация для RS- триггера
R-триггер
S триггер
E-триггер
JK-триггер
Ō
Рисунок 3.1 –RS-триггер
Полная таблица состояний RS-триггера представлена в табл.3.2. Методом карт Карно-Вейча выполним минимизацию переключательной функции для выхода .
Таблица 3.2
При доопределении неопределенных значений переключательной функции единицами получим:
(3.3)
В базисах И-НЕ и ИЛИ-НЕ, функция выхода RS триггера имеет вид:
(3.4)
Рисунок 3.2 –RS-триггер
Задержка переключения асинхронных RS-триггеров составит сумму задержек переключения двух логических элементов, на которых выполнены триггеры, т.е.
(3.5)
Действительно для любой схемы при записи информации, например, по входу S (триггер находится в состоянии 0) новое устойчивое состояние триггера Q=1 сформируется через интервал времени , отсчитываемый от момента поступления сигнала на вход S.
Для устойчивого функционирования триггера длительность сигнала действующего на его входах R и S, должна быть не меньше суммарной задержки переключения логических элементов обоих плеч триггера для полного установления новых значений выходных уровней. Для вышеприведенных схем длительность входного сигнала должна быть не меньше , т.е.
Максимальная частота переключения триггера определяется минимально допустимым временным интервалом между двумя последовательными сигналами минимальной длительности, поступающими поочередно на входы R и S.
(3.6)
Следующая maxчастота чередования сигналов на входах определяется интервалом времени , т.е. поступление новых информационного сигнала допускается только лишь после окончания переходных процессов в триггере и переключение его в другое устойчивое состояние. Однако при длительность сигналов на выходах и не будет превышать
Поскольку сигналы длительностью являются недостаточными для надежной передачи информации в логической цепи, то временной интервал между сигналами, действующими поочередно на входах триггера, приходится увеличивать, в результате чего переключения триггера снижается. Предельная рабочая частота переключения асинхронного RS-триггера при длительности информационного сигнала на каждом плече триггера не менее определяется из выражения
(3.7)
В качестве самостоятельных устройств асинхронные RS-триггеры находят ограниченное применение, но являются базовыми схемами всех более сложных триггерных устройств. В устройствах цифровой обработки информации в основном применяются синхронизируемые (тактируемые) триггеры.
В отличие от асинхронных, синхронные RS-триггеры имеют на входе каждого плеча дополнительные схемы совпадения, первые входы которых объединены и являются входом синхронизирующего импульса (СИ), а вторые входы схем совпадения являются информационными записи 1 (S) и 0 (R). Таким образом, информация, поступающая на входы R и S, может быть передана на собственно триггер только при поступлении СИ.
Рисунок 3.3 – Варианты схем RS-триггеров
Использование синхронизации определяет момент приема триггером входной информации и не допускает одновременного действия сигнала, переключающего триггер, и сигнала съема информации с триггера, обеспечивая, тем самым, правильную работу логических каскадов.
Поскольку в потенциальной системе элементов отсутствуют специальные элементы задержки сигналов, для выполнения условий надежной работы логических каскадов на каждый двоичный разряд, хранящий 1 бит информации, использовать 2 триггера, которые управляются двумя сдвинутыми во времени СИ. Таким образом удается информацию, снимаемую с выхода триггера, использовать для управления сигналами на его входах, что необходимо для построения более сложных схем.
Рисунок 3.4– Двухступенчатый RS-триггер
Двойное Т в обозначении триггера означает, что он выполнен по двухступенчатой схеме.
Схема управляется либо от двух СИ, либо, как показано на рис., от одного. В ИМС RS-триггеры маркируются буквами TP.
Триггер D-типа, DV-типа
Триггер D-типа, DV-типа – это логическое устройство с двумя устойчивыми состояниями и одним информационным входом D (от delay – задержка, замедление).
Простейшим видом такого триггера является асинхронный D-триггер (a).
Таблица 3.3
(3.8)
Уравнение 3.8 показывает, что состояние D-триггера в момент времени совпадает с кодом входного сигнала в момент времени , т.е. осуществляется задержка входного сигнала.
Рисунок 3.5 – Функциональная схема D-триггера
Однако его схема не имеет практического применения, так как функцию D-триггера выполняет схема, состоящая из двух последовательно включенных инверторов. Наибольший интерес представляют синхронные триггеры, нашедшие широкое распространение в ИС.
Рисунок 3.6 – D-триггер двухступенчатого типа
По формальной классификации D-триггеры маркируются буквами TM, например, K155TM2, TM5, TM8 и т.д.
TM2 – два D-триггера (133, 130, 134, К155 серии)
TM5 – четыре D-триггера (серии 133, К155)
TM7 – четыре D-триггера с прямым и инверсным выходами (133, К155)
TM8 – счетверенный D-триггер (К155)
Триггеры Т-типа
Триггером Т-типа (счетный триггер) называют логическое устройство с двумя устойчивыми состояниями и одним входом Т, изменяющее свое состояние на противоположное всякий раз, когда на вход Т поступает управляющий сигнал.
Таблица 3.4
Рисунок 3.7 –Т-триггер на основе RS-триггера.
Рисунок 3.8 –Т-триггер на основе D-триггера.
JK-триггер
Триггером JK-типа называется устройство с двумя устойчивыми состояниями и двумя входами J и K, которое при условии осуществляет инверсию предыдущего состояния (т.е. при ), а в остальных случаях функционирует в соответствии с таблицей истинности RS-триггера, при этом вход J эквивалентен входу S, а вход К – входу R.
Логическое уравнение триггера, составленное на основе таблицы истинности, имеет вид:
(3.9)
Рисунок 3.9 –JK-триггер, выполненный по варианту MSс запрещающими связями с элементов 3,4 на 1 и 2.
Рисунок 3.11 – Варианты построения триггерных схем на JK – триггере.
В серии ТТЛ JK-триггер имеет маркировку TB.
TB1 – JK-триггер с логикой на входе ЗИ (133, К155, 130, К131, 134)
TB14 – двойной JK-триггер (134)
TB9П – два JK-триггера (К531)
TB10П – два JK-триггера (К531)
TB11П – сдвоенный JK-триггер (К531)
3.2 Схемные варианты триггеров
а)
b)
c)
d)
Рисунок 3.12 – Схемные варианты триггеров:
Применение универсальных триггеров типа JK и DV, реализованных в одной микросхеме, в пересчетных схемах, регистрах сдвига и т.д. приводит к существенной экономии оборудования.
Естественно, что при построении системы элементов схема триггера может дополняться входной логикой, мощными выходными элементами и т.п. и применяться в нескольких модификациях. Выбор конкретной схемы во многом определяется уровнем разбиения на функциональные узлы.
Помехозащищенные триггеры
Ранее мы говорили, что чем выше быстродействие ИС, тем чувствительнее она к импульсным помехам. Поэтому иногда специально принимают меры к снижению быстродействия логической цепи, с тем, чтобы повысить ее помехоустойчивость.
Возможным методом снижения быстродействия ИС типа ТТЛ является соединение одного из входов инвертора с его выходом через конденсатор и с землей – через регистр. Применяя подобные инверторы в триггерных структурах, оказывается возможным существенно уменьшить их чувствительность к помехам. Схема RS-триггера, построенного таким способом, показана на рисунке:
Рисунок 3.13 – Схема RS-триггера
Сопротивление R регистров должно быть большем, чтобы присоединение входа к земле через это сопротивление не воспринималось схемой как подача сигнала «нуль». Для ИС серии К155, например, это сопротивление целесообразно устанавливать в диапазоне 5,6-56 кОм. В этом случае инвертор ведет себя так, как если бы этот вход был подан сигнал И1.
При переходе инвертора из состояния «0» в состоянии «1» положительный перепад выходного сигнала передается через конденсатор на его вход. Это не мешает срабатыванию инвертора. Если же инвертор переходит из «1» в «0», то отрицательный перепад с выхода, пройдя через конденсатор обратной связи, будет открывать входной МЭТ и препятствовать тем самым установлению нулевого потенциала на выходе. Схема ведет себя при этом как интегратор, построенный на основе инвертирующего усилителя с емкостной обратной связью. Поэтому выходное направление подобного инвертора при переходе из «1» в «D» изменяется во времени по закону, близкому к линейному. Тем самым снижается быстродействие логического инвертора и повышается его помехоустойчивость.
Если в схеме триггера рис. 3.13 принять C=10мкФ иR=5,6 кОм, то триггер будет срабатывать лишь при длительности входных установочных импульсов, превышающей 01,-0,2 с. Интересным свойством этого триггера является его устойчивость к кратковременным провалам направления питания. При выключении питания на время вплоть до нескольких секунд триггер «помнит» свое состояние и при последующем включении питания устанавливается в первоначальное состояние. Такое относительно большое время хранения информации объясняется тем, что при выключении питания закрываются транзисторы выходного каскада инвертора и конденсатор медленно разряжается через запертый p-n-переход.
Применение триггерных схем
cyberpedia.su
45. Схемы пуска асинхронного двигателя с короткозамкнутым ротором.
Наиболее простым способом пуска двигателя с короткозамкнутым ротором является включение обмотки его статора непосредственно в сеть, на номинальное напряжение обмотки статора (рис. 28-1, а). Такой пуск называется прямым.
Рис. 28-1. Схемы способов пуска двигателей с короткозамкнутым ротором: а — прямой; б — реакторный; в — автотрансформаторный; г — с переключением со звезды на треугольник
46.Пуск двигателя с фазным ротором.
Одной из разновидностей асинхронного двигателя является двигатель с фазным ротором. На практике данный двигатель довольно часто применяется, благодаря улучшенным пусковым свойствам и характеристикам.
Устройство асинхронного двигателя с фазным ротором
Как и у АД с короткозамкнутым ротором, сердечник его статора набирается из листов электротехнической стали, а затем спрессовывается. В пазы сердечника укладываются фазные обмотки, концы которых затем выводятся в коробку, расположенную на корпусе двигателя.
Отличие заключается в роторе двигателя. Он также, как и статор набирается из листов стали, спрессовывается и в него набирается фазная обмотка. Причем число фаз ротора равно числу фаз статора, в то время как у короткозамкнутого, каждый стержень “беличьей клетки” образует отдельную фазу. Отсюда название – фазный ротор.
Концы фаз фазного ротора соединяются с контактными кольцами, которые расположены на валу ротора. В свою очередь, контактные кольца соприкасаются с графитовыми щетками, которые имеют выводы в коробку на корпусе, для возможности подключения дополнительного сопротивления. Это сопротивление в цепи ротора оказывает влияние на токи, протекающие в нем, а как следствие на его характеристики. При увеличении сопротивления цепи ротора, механическая характеристика становится более мягкой.
Влияние сопротивления сказывается и на пуске двигателя, а именно добавочное сопротивление позволяет осуществить более мягкий пуск, снизить пусковые токи и моменты и как следствие, снизить удары в механической части привода в момент пуска.
Как правило, используют переменное сопротивление, которое уменьшают с увеличением оборотов двигателя. Так как зачастую оно представляет из себя ступенчатый реостат, то и пуск двигателя осуществляется тоже ступенчато.
Для увеличения КПД двигателя и сохранения целостности щеток в конструкции двигателя предусматривается специальное щеткоснимательное устройство, которое убирает щетки после пуска. КПД повышается за счет того, что на щетках падает часть напряжения.
Таким образом, преимуществом асинхронного двигателя с фазным ротором является возможность пуска под нагрузкой, но недостатком является более сложная конструкция, а также его дороговизна по сравнению с двигателем с короткозамкнутым ротором. Короткозамкнутый кроме того, является более простым и надежным, не требует дополнительных устройств.
47. Регулирование скорости вращения асинхронного двигателя с фазным ротором.
Частота вращения ротора равна
При этом, синхронная частота вращения зависит от частоты напряжения и числа пар полюсов
Исходя из этого, можно сделать вывод, что регулировать скорость АД можно с помощью изменения скольжения, частоты и числа пар полюсов.
Рассмотрим основные способы регулировки.
Регулирование скорости с помощью изменения активного сопротивления в цепи ротора
Этот способ регулирования скорости применим в двигателях с фазным ротором. При этом в цепь обмотки ротора включается реостат, которым можно плавно увеличивать сопротивление. С увеличением сопротивления, скольжение двигателя растёт, а скорость падает. Таким образом, обеспечивается регулировка скорости вниз от естественной характеристики.
Недостатком данного способа является его неэкономичность, так как при увеличении скольжения, потерив цепи ротора растут, следовательно, КПД двигателя падает. Плюс к этому,механическая характеристикадвигателя становится более пологой и мягкой, из-за чего небольшое изменение момента нагрузки на валу, вызывает большое изменение частоты вращения.
Регулирование скорости данным способом не эффективно, но, несмотря на это применяется в двигателях с фазным ротором.
Регулирование скорости двигателя с помощью изменения напряжения питания
Данный способ регулирования можно осуществить, если включить в цепь автотрансформатор, перед статором, после питающих проводов. При этом, если снижать напряжение на выходе автотрансформатора, то двигатель будет работать на пониженном напряжении. Это приведёт к снижению частоты вращения двигателя, при постоянном моменте нагрузки, а также к снижению перегрузочной способности двигателя. Это связано с тем, что при уменьшении напряжения питания, максимальный момент двигателя уменьшается в квадрат раз. Кроме того, этот момент уменьшается быстрее, чем ток в цепи ротора, а значит, растут и потери, с последующим нагревом двигателя.
Способ регулирования изменением напряжения, возможен только вниз от естественной характеристики, так как увеличивать напряжение выше номинального нельзя, потому что это может привести к большим потерям в двигателе, перегреву и выходу его из строя.
Кроме автотрансформатора, можно использовать тиристорный регулятор напряжения.
Регулирование скорости с помощью изменения частоты питания
При данном способе регулирования, к двигателю подключается преобразователь частоты (ПЧ). Чаще всего это тиристорный преобразователь частоты. Регулирование скорости осуществляется изменением частоты напряжения f, так как она в данном случае влияет на синхронную скорость вращения двигателя.
При снижении частоты напряжения, перегрузочная способность двигателя будет падать, чтобы этого не допустить, требуется повысить величину напряжения U1. Значение на которое нужно повысить, зависит от того какой привод. Если регулирование производится с постоянным моментом нагрузки на валу, то напряжение нужно изменять пропорционально изменению частоты (при снижении скорости). При увеличении скорости этого делать не следует, напряжение должно оставаться на номинальном значении, иначе это может причинить вред двигателю.
Если регулирование скорости производится с постоянной мощностью двигателя (например, в металлорежущих станках), то изменение напряжения U1необходимо производить пропорционально квадратному корню изменения частоты f1.
При регулировании установок с вентиляторной характеристикой, необходимо изменять подводимое напряжение U1 пропорционально квадрату изменения частоты f1.
Регулирование с помощью изменения частоты, является наиболее приемлемым вариантом для асинхронных двигателей, так как при нем обеспечивается регулирование скорости в широком диапазоне, без значительных потерь и снижения перегрузочных способностей двигателя.
Регулирование скорости АД изменением числа пар полюсов
Такой способ регулирования возможен только в многоскоростных асинхронных двигателях с короткозамкнутым ротором, так как число полюсов этого ротора, всегда равно количеству полюсов статора.
В соответствии с формулой, которая рассматривалась выше, скорость двигателя можно регулировать изменением числа пар полюсов. Причём, изменение скорости происходит ступенчато, так как количество полюсов принимают только определённые значения – 1,2,3,4,5.
Изменение количества полюсов достигается переключением катушечных групп статорной обмотки. При этом катушки соединяются различными схемами соединения, например “звезда - звезда” или “звезда – двойная звезда”. Первая схема соединения даёт изменение количества полюсов в соотношении 2:1. При этом обеспечивается постоянная мощность двигателя при переключении. Вторая схема изменяет количество полюсов в таком же соотношении, но при этом обеспечивает постоянный момент двигателя.
Применение данного способа регулирования оправдано сохранением КПД и коэффициента мощности при переключении. Минусом же является более сложная и увеличенная конструкция двигателя, а также увеличение его стоимости.
Поделиться с друзьями: