интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Что такое конденсатор и для чего он нужен? Конденсатор в схеме


Что такое конденсатор? Принцип работы, назначение и устройство конденстатора

 

Конденсатор – распространенное двухполюсное устройство, применяемое в различных электрических цепях. Он имеет постоянную или переменную ёмкость и отличается малой проводимостью, он способен накапливать в себе заряд электрического тока и передавать его другим элементам в электроцепи.Простейшие примеры состоят из двух пластинчатых электродов, разделенных диэлектриком и накапливающих противоположные заряды. В практических условиях мы используем конденсаторы с большим числом разделенных диэлектриком пластин.

Принцип действия

Назначение конденсатора и принцип его работы – это распространенные вопросы, которыми задаются новички в электротехнике. В электрических схемах данные устройства могут использоваться с различными целями, но их основной функцией является сохранение электрического заряда, то есть, такое устройство получает электрический ток, сохраняет его и впоследствии передает в цепь. Для лучшего понимания принципа работы посмотрите статью про то, как сделать простой конденсатор своими руками.

Заряд конденсатора начинается при подключении электронного прибора к сети. В момент подключения прибора на электродах конденсатора много свободного места, потому электрический ток, поступающий в цепь, имеет наибольшую величину. По мере заполнения, электроток будет уменьшаться и полностью пропадет, когда ёмкость устройства будет полностью наполнена.

В процессе получения заряда электрического тока, на одной пластине собираются электроны (частицы с отрицательным зарядом), а на другой – ионы (частицы с положительным зарядом). Разделителем между положительно и отрицательно заряженными частицами выступает диэлектрик, в качестве которого могут использоваться различные материалы.

В момент подключения электрического устройства к источнику питания, напряжение в электрической цепи имеет нулевое значение. По мере заполнения ёмкостей напряжение в цепи увеличивается и достигает величины, равной уровню на источнике тока.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам. Нагрузка образует цепь между его пластинами, потому в момент отключения питания положительно заряженные частицы начнут двигаться по направлению к ионам.

Начальный ток в цепи при подключении нагрузки будет равняться напряжению на отрицательно заряженных частицах, разделенному на величину сопротивления нагрузки. При отсутствии питания конденсатор начнет терять заряд и по мере убывания заряда в ёмкостях, в цепи будет снижаться уровень напряжения и величины тока. Этот процесс завершится только тогда, когда в устройстве не останется заряда.

На рисунке выше представлена конструкция бумажного конденсатора:а) намотка секции;б) само устройство.На этой картинке:

  1. Бумага;
  2. Фольга;
  3. Изолятор из стекла;
  4. Крышка;
  5. Корпус;
  6. Прокладка из картона;
  7. Оберточная бумага;
  8. Секции.

Ёмкость конденсатора считается важнейшей его характеристикой, от него напрямую зависит время полной зарядки устройства при подключении прибора к источнику электрического тока. Время разрядки прибора также зависит от ёмкости, а также от величины нагрузки. Чем выше будет сопротивление R, тем быстрее будет опустошаться ёмкость конденсатора.

В качестве примера работы конденсатора можно рассмотреть функционирование аналогового передатчика или радиоприемника. При подключении прибора к сети, конденсаторы, подключенные к катушке индуктивности, начнут накапливать заряд, на одних пластинах будут собираться электроды, а на других – ионы. После полной зарядки ёмкости устройство начнет разряжаться. Полная потеря заряда приведет к началу зарядки, но уже в обратном направлении, то есть, пластины имевшие положительный заряд в этот раз будут получать отрицательный заряд и наоборот.

Назначение и использование конденсаторов

В настоящее время их используют практически во всех радиотехнических и различных электронных схемах.В электроцепи переменного тока они могут выступать в качестве ёмкостного сопротивления. К примеру, при подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет. Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора. Благодаря этим особенностям, они сегодня повсеместно применяются в цепях в качестве фильтров, подавляющих высокочастотные и низкочастотные помехи.

Конденсаторы также используются в различных электромагнитных ускорителях, фотовспышках и лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, за счет чего создается мощный импульс.

Во вторичных источниках электрического питания их применяют для сглаживания пульсаций при выпрямлении напряжения.

Способность сохранять заряд длительное время дает возможность использовать их для хранения информации.

Использование резистора или генератора тока в цепи с конденсатором позволяет увеличить время заряда и разряда ёмкости устройства, благодаря чему эти схемы можно использовать для создания времязадающих цепей, не предъявляющих высоких требований к временной стабильности.

В различной электрической технике и в фильтрах высших гармоник данный элемент применяется для компенсации реактивной мощности.

podvi.ru

Конденсаторы: назначение, устройство, принцип действия

Конденсаторы, наряду с резисторами, являются одними из самых распространенных элементов в радиотехнических и электронных устройствах. Практически не существует устройств, в которых бы не применялись конденсаторы. Прежде всего, конденсаторы используются в качестве фильтров в выпрямителях и стабилизаторах напряжения (любой блок питания содержит в себе конденсаторы). Конденсаторы позволяют создавать временные интервалы необходимой выдержки и частоты в аналоговых схемах различных генераторов.

Первый прототип современного конденсатора появился в середине 18 века в Нидерландах. Питер ван Мушенбрук в своих опытах использовал стеклянную банку, выложенную внутри и снаружи оловянной фольгой (алюминий в те времена не использовался), заряд которой осуществлялся электрофорной машиной (единственный источник получения электрического тока в те времена). Позднее это устройство назовут лейденской банкой.

Рисунок 1

Устройство современного конденсатора аналогично устройству лейденской банки: две обкладки, между которыми находится диэлектрик. Емкость плоского конденсатора (измеряется в Фарадах) зависит от площади пластин (S), расстояния между пластинами (d) и диэлектрической проницаемости среды (ε). Геометрическая форма пластин конденсаторов может быть различной: для металлобумажных конденсаторов пластины выполняются в виде алюминиевой фольги свернутой вместе с диэлектриком в один клубок.

Рисунок 2

Приведенная формула для расчета емкости конденсаторов позволяет сделать вывод о том, что два проводника, расположенных рядом, обладают электрической емкостью. Это свойство проводников широко применяется в высокочастотной технике, при этом конденсаторы делаются в виде дорожек на печатной плате или в виде двух проводников.

Помимо емкости С, любой кабель характеризуется электрическим сопротивлением R. Как известно, RC-цепочка выступает в качестве интегрирующего звена в электронных схемах (рисунок 3). При входном импульсном сигнале на выходе сигнал искажается или, для сигналов незначительной мощности, может просто исчезнуть.

Рисунок 3

Из истории: первая попытка проложить трансатлантическую связь была предпринята в 1857 году. Однако, ученые не учли возможные искажения сигналов, которые могли возникнуть в кабеле, длиной более 4000 км. В результате телеграфный код в виде точек и тире, а по сути те же прямоугольные импульсы, искажались так, что на другом конце разобрать послание не удавалось. Лишь в 1865 году У. Томпсон предложил технологию передачи сигналов на дальние расстояния.

Диэлектрическая проницаемость среды ε и ток утечки

Увеличение диэлектрической проницаемости ε, исходя из формулы для расчета емкости конденсатора, повлечет возрастание емкости конденсатора. В большинстве случаев, в качестве диэлектриков в конденсаторах используются лавсан, полиэтилен или просто воздух. Если заменить эти диэлектрики, например спиртом или ацетоном, у которых диэлектрическая проницаемость существенно больше, то емкость конденсатора возрастет в 15…20 раз. Однако, диэлектрики с большой проницаемостью обладают достаточно высокой проводимостью, которая влияет на время разряда конденсатора через себя. Для описания этого свойства конденсаторов ввели термин тока утечки. Поэтому диэлектрики в конденсаторах характеризуются не только диэлектрической проводимостью, но и током утечки.

Электролитические конденсаторы

Электролитические конденсаторы обладают наибольшей удельной емкостью, среди всех типов конденсаторов. Емкость таких элементов может достигать 100 000 мкФ, а рабочее напряжение – до 600 В. Электролитические конденсаторы применяются в низкочастотных схемах и фильтрах блоков питания. Большая емкость электролитических конденсаторов предполагает и существенные размеры таких элементов (рисунок 4).

Рисунок 4

Электролитические конденсаторы могут хранить накопленную энергию несколько лет, однако они достаточно чувствительны к возможным перенапряжениям в цепи. При больших напряжениях или неправильном использовании (включении обычного электролитического конденсатора в цепь переменного тока) конденсаторы нагреваются, а затем просто взрываются. Особенно взрыву подвержены старые советские конденсаторы.

Принцип действия конденсаторов

Основные принципы при работе конденсаторов рассмотрим на примере простой схемы (рисунок 5). В качестве конденсатора лучше использовать электролитический конденсатор большой емкости.

Рисунок 5

Работа схемы: для начала необходимо зарядить конденсатор от источника питания через резистор R (график заряда конденсатора изображен на рисунке 6). Напряжение заряда возрастает по экспоненте, а ток заряда – спадает по экспоненте. Время полного заряда конденсатора определяется произведением емкости самого конденсатора С, величины сопротивления R и постоянной составляющей (для рассматриваемого примера t=5*C*R=5*500*0.002= 5 секунд). Далее переключатель SA переводится во второе положение, что соответствует разряду конденсатора через нагрузку (лампу накаливания). График разряда конденсатора приведен на рисунке 7.

Рисунок 6

Рисунок 7

Рассмотрим еще одну схему включения конденсатора (рисунок 8). При замыкании контакта SA произойдет кратковременная вспышка лампочки EL. Повторное замыкание контакта к вспышке не приведет, так конденсатор уже зарядился.

Рисунок 8

Конденсаторы в блоках питания

Всем электронным устройствам необходимо постоянное напряжения для питания и работы. Любой блок питания состоит из трансформатора, выпрямителя (однополупериодного или длвухполупериодного) и фильтра (рисунок 9).

Рисунок 9

Подбор необходимого конденсатора для указанных схем можно выполнять исходя из следующих соотношений:

- для двухполупериодного выпрямителя

[size=16]

C = Po / 2∙U∙f∙dU

где C - емкость конденсатора Ф, Po - мощность нагрузки Вт, U - напряжение на выходе выпрямителя В, f - частота переменного напряжения Гц, dU - амплитуда пульсаций В.

- для однополупериодного выпрямителя

C = Po / U∙f∙dU

- для трехфазного выпрямителя

C = Po / 3∙U∙f∙dU

Суперконденсатор – ионистор

Ионистор – новый класс электролитических конденсаторов (рисунок 10).

Рисунок 10

Ионисторы, по своим характеристикам сходны с обычными аккумуляторами. Заряд такого устройства происходит за несколько минут, а срок службы может превысить 40 000 часов.

Статьи по теме: Про резисторы для начинающих заниматься электроникой

ukrelektrik.com

Принцип работы конденсатора

Область применения конденсаторов очень обширная. Вместе с резисторами, они используются в таймерах, поскольку резисторы обеспечивают медленную зарядку и разрядку. Катушки индуктивности вместе с конденсаторами присутствуют в схемах колебательных контуров устройств приема-передачи. В различных конструкциях блоков питания они эффективно сглаживают пульсации напряжения после процесса выпрямления.

Через конденсаторы легко проходит переменный ток, а постоянный ток задерживается. Это позволяет изготавливать фильтры разного назначения. В электрических и радиоэлектронных схемах, конденсаторы способствуют замедлению таких процессов, как увеличение или падение напряжения.

Конденсатор: принцип действия

Основной принцип работы конденсатора заключается в его способности к сохранению электрического заряда. То есть, он может в нужный момент заряжаться или разряжаться. Это свойство наиболее ярко проявляется при параллельном или последовательном соединении конденсатора с катушкой индуктивности в схемах передатчиков или радиоприемников.

Такое соединение позволяет получить периодическую смену полярности на пластинах. Вначале, производится зарядка первой пластины положительным зарядом, а, затем, вторая пластина принимает отрицательный заряд. После полной разрядки, происходит зарядка в обратном направлении. Вместо положительного заряда, пластина получает отрицательный заряд и, наоборот, отрицательная пластина заряжается положительно. Такая смена полярности происходит после каждого заряда и разряда. Данный принцип работы положен в основу генераторов, установленных в аналоговых приемопередающих устройствах.

Основная характеристика – электрическая емкость

Рассматривая принцип работы конденсатора, не следует забывать о такой его характеристике, как электрическая емкость. Прежде всего, она заключается в способности конденсатора к сохранению электрического заряда. То есть, чем выше емкость, тем большее значение заряда может быть сохранено.

Измерение электрической емкости конденсатора производится в фарадах и обозначается буквой F. Однако, одна фарада является очень большой емкостью, поэтому, на практике используются единицы меньшего значения, такие как микро-, нано- и пикофарады.

Определение емкости конденсаторов представляет определенную сложность, в связи с различными вариантами маркировок.

electric-220.ru

Что такое конденсатор и для чего он нужен? — Записки радиолюбителя

Конденсатор (с латинского «condensare» — «уплотнять», «сгущать», в простонародье «кондер») — один из самых распространенных элементов в радиоэлектронике, после резистора. Состоит из двух обкладок разделенных диэлектриком малой толщины, по сравнению с толщиной этих обкладок. Но на практике эти обкладки свернуты в многослойный рогалик, ой рулон в форме цилиндра или параллелепипеда разделенных все тем же диэлектриком.

Конденсаторы

Принцип работы конденсатора

Заряд. При подключении к источнику питания на обкладках скапливаются заряды. При зарядке на одной пластине скапливаются положительно заряженные частицы (ионы), а на другой отрицательно заряженные частицы (электроны). Диэлектрик служит препятствием, чтобы частицы не перескакивали на другую обкладку. При зарядке вместе с емкостью растет и напряжение на выводах и достигает максимума, равного напряжению источника питания.

Разряд. Если после зарядки конденсатора отключить питание и подключить нагрузку, конденсатор уже будет играть роль источника тока.  Электроны начнут двигаться в через нагрузку, которая при подключении образовывает замкнутую цепь, к ионам (по закону притяжения между разноименными разрядами).

 

Основными параметрами конденсатора являются:
  1. Номинальная емкость — это его основная характеристика, подразумевает объем электрических зарядов. Измеряется емкость в Фарадах (сокращенно Ф), на практике часто встречаются мкФ (1мкФ = 0,000001 Ф), нФ (1нФ = 0,000000001 Ф), пФ (1пФ = 0,000000000001 Ф), так как емкость в 1Ф очень велика. Но  есть такой компонент который может иметь емкость даже больше 1 Фарады его называют ионистр (о нем и о других я расскажу позже).
  2. Номинальное напряжение — это максимальное напряжение, при котором конденсатор может надежно и долго работать, измеряется конечно же в вольтах (сокращенно В). При превышении напряжения конденсатор выйдет из строя. В случаях когда необходимо поменять конденсатор, а с нужной емкостью имеется, но он рассчитан на большее напряжение по сравнению с вышедшем из строя его можно спокойно ставить (например «сгорел» конденсатор 450мкФ 10В, его можно заменить на 450мкФ 25В). Главное чтобы он по габаритам поместился в вашу плату.
  3. Допуск отклонения —  допустимое отклонение величины его реальной ёмкости от указанной на корпусе. Обозначается в процентах. Допуск у конденсаторов может достигать 20 – 30%. В устройствах, где требуется особая точность, применяются конденсаторы с малым допуском (1% и менее).
  4. Температурный коэффициент емкости — встречается на электролитических конденсаторах. Емкость алюминиевого электролитического конденсатора зависит от температуры. С понижением температуры (особенно ниже 0°C) повышается вязкость электролита и его ESR (удельное электрическое сопротивление), что ведет к уменьшению емкости конденсатора.
Для чего же нужны конденсаторы и с чем их «едят».
  • В цепи переменного тока конденсатор нужен в роли емкостного сопротивления. Если в цепи с постоянным током конденсатор подключить последовательно лампочке, она светится не будет, а в цепи с переменном током она загорится. И будет святится даже ярче и чем выше емкость конденсатора тем ярче будет свет. За счет этого свойства конденсаторы часто используются в качестве фильтрации пульсирующего тока (его основная задача во многих схемах), он хорошо подавляет ВЧ и НЧ помехи, скачки переменного тока и пульсации напряжения.
  • За счет своей главной особенности накапливать электрический заряд и затем быстро его отдавать создавая импульс, делает их незаменимыми при изготовлении фотовспышек, магнитных ускорителей, стартеров и т.п.
  • Конденсаторы также используются для запуска трехфазных двигателей на однофазном питании, подключая к третьему выводу он сдвигает фазу на 90 градусов.
  • Благодаря способности накапливать и отдавать заряд, конденсаторы используют в схемах в которых нужно сохранить информацию на длительное время. Но к сожалению, он значительно уступает в способности накапливать энергию аккумуляторным батареям питания, из-за саморазряда и не способности накопить электроэнергию большей величины.

Если вы нашли ошибку или нерабочую ссылку на файл, выделите ее и нажмите Shift + Enter или нажмите здесь , чтобы сообщить нам.

Конденсаторы

Тебе понравилась эта статья? Поделись с друзьями!

radio-blog.ru

Конденсаторы - Практическая электроника

Конденсаторы или как в народе говорят, кондеры, образуются от латинского «condensatus», что означает как «уплотненный, сгущенный». Интересное название, не правда ли? Но теперь вопрос ставится ребром: » А что уплотняется или сгущается в кондере?»  А сгущается в кондере электрический заряд. Кондер  — это своеобразный аккумулятор, но прикол в нем такой, что он готов сразу отдать весь заряд за доли секунды.  Главное отличие от аккумулятора в том, что внутри него нету источника ЭДС.

       

В свое время, еще в школе, мы развлекались тем, что брали кондер типа МБГЧ, емкостью побольше, на долю секунды вставляли его в розетку и потом шваркали друг друга этим кондером. Ощущения  были очень «приятными» 🙂  Чем больше емкость, тем ярче ощущения))).

Но, как говорится, времена идут, а кондер остается кондером.  И используется он теперь не только, для того, чтобы гонять друг друга, но  также широко используется и в радиоэлектронике. Скорее всего, последняя фраза даже более правдивая, чем первая :-). Как  же устроен конденсатор?

Любой кондер состоит из двух обкладок и эти обкладки изолированы друг от друга и не прикасаются с друг другом. Представим себе блин:

намажем его сгущенкой

 и сверху положим точно такой же блин

Должно выполняться условие: эти два блина не должны прикасаться  друг  с другом. То есть верхний блин должен лежать на сгущенке и не прикасаться с нижним блином. Тут, думаю, все понятно. Перед Вами типичный «блинный конденсатор» :-). Вот таким образом устроены все конденсаторы, только вместо блинов используются тонкие металлические пластины, а вместо сгущенки разный диэлектрик. К каждой металлической пластине присоединен проводок — это и есть выводы конденсатора. Как я уже сказал, кондер способен накапливать электрический заряд. Эту способность называют емкостью кондера. И чем больше емкость, тем больше кондер сможет накопить электрического заряда. Емкость кондера измеряется в Фарадах (Ф или  зарубежный (буржуйский) вариант F). В радиоэлектронной и электротехнической промышленности используются кондеры абсолютно разных номиналов. Емкость кондера зависит от площади «блинов», толщины «сгущенки» намазанной между ними, а также от состава сгущенки :-).  Чем больше площадь «блинов» и тоньше «сгущенка», тем больше емкость кондера.

А вот и кондеры, которые похожи на блинчики,  но эти блинчики могут также быть и квадратной формы:

        Для того, чтобы уменьшить габариты  кондера, можно завернуть его в трубочку, как и наш тортик из двух блинов со сгущенкой:

В результате у нас получатся  малые габариты, но большой объемчик. Это не беда! Ведь свернуть в трубочку можно очень большие «блины», если «сгущенка» между ними намазана очень тонким слоем. Этот принцип используется в цилиндрических конденсаторах.

В них как раз намотан вот такой «рулончик». На фото разобранный цилиндрический кондер.

Как видите, здесь две ленты алюминиевой фольги, а между ними тонкая светло-коричневая бумага — диэлектрик. Такие кондеры обладают большой емкостью, так как у них площадь пластин, как вы видите, очень приличная.

Есть также  особый класс конденсаторов — ионисторы. Иногда их еще называют суперконденсаторами или золотыми кондерами. Нет, не потому, что  там есть золото. Сам принцип работы ионистора ценее, чем золото. Мы теперь знаем как увеличить или уменьшить емкость кондера.  Для того, чтобы получить максимальную емкость мы должны намазать «сгущенку» (диэлектрик)  тонким слоем или увеличить площадь блинов (металлических пластин). Так как без конца увеличивать слой блинов очень затратно,  разработчики решили уменьшить слой диэлектрика. Так как диэлектрический слой между обкладками ионистора , то есть «слой сгущенки», составляет 5-10 нанометров, то и емкость ионистора ого-го! Вы только представьте, какой заряд может накопить такой суперконденсатор! Емкость таких конденсаторов может достигать до десятка фарад. Поверьте, это очень много. Ионисторы выглядят, как обычные таблетки, а  также могуть выглядеть как цилиндрические конденсаторы. Для того, чтобы различить их от конденсаторов, достаточно взглянуть на емкость, которая на них указана. Если там единицы Фарад, то это однозначно ионистор!

В настоящее время ионисторы стали очень широко применяться в электронике и электротехнике. Они заменяют маленькие батарейки с малым напряжением, потому что ионистор конструктитвно пока что не могут сделать на напряжение более нескольких Вольт. Но можно соединить их последовательно и набрать нужное напряжение. Но удовольствие это не дешевое :-). Они также очень быстро заряжаются, так как их сопротивление ограничено только их выводами.  А исходя из Закона Ома, чем меньше сопротивление проводника, тем большая Сила тока течет по нему и следовательно тем быстрее заряжается ионистор. Заряжать и разряжать ионисторы можно туеву кучу раз).

Имейте также ввиду, что конденсаторы и их виды очень чувствительны к нагреву и могут менят свою емкость под воздействием температуры. Так что, при проектировании старайтесь распределять их на плате подальше от  разного рода нагревашек:  радиаторов, трасформаторов и мощных резисторов.

Все кондеры на схемах обозначаются буковкой «С». Простые кондеры делятся на два вида: полярные и неполярные. Неполярные кондеры очень распространены и занимают значительную часть радиоаппаратуры:

а также к ним относятся маленькие SMD конденсаторы вот такого типа:

на схемах неполярные кондеры обозначаются  вот таким образом:

К полярным кондерам относятся электролитические кондеры

и SMD полярные конденсаторы:

и на схемах обозначаются вот так, то есть у них есть плюсовый вывод, который в цепи должен быть соединен  с положительным потенциалом схемы.

По аналогии с Резисторами, есть на свете и  конденсаторы переменной емкости (КПЕ):

 на схемах обозначаются как-то вот так:

 

 ну и, конечно же, подстроечные кондеры:

 а вот и их схемное обозначение:

При последовательном соединении  кондеров

общая емкость вычисляется по формуле

 а при параллельном соединении

их общая емкость будет вычислятся по формуле:

Про то, как проверить кондер на работоспособность, можете  узнать, прочитав  эту статью.

Конденсаторы — это огромная тема в радиоэлектронике.  В этой статье я затронул  только основные понятия.  В настоящее время ни одно устройство не обходится без этих радиоэлементов. При выборе кондера обязательно смотрите, на какое напряжение он рассчитан.  Если он будет использоваться в цепях с высоким напряжением, то он может либо сгореть и даже взорваться.  Если, например, я собираюсь использовать кондер в цепях с напряжением в 36 Вольт, то я должен взять кондер хотя бы минимум на 50 Вольт и больше, но не меньше! Всегда обращайте внимание на этот параметр. Будьте осторожны с конденсаторами большой емкости.  Прежде, чем взять его в руки, убедитесь, что он разряжен. Желательно разряжать такие конденсаторы через сопротивление от 1 КилоОма. Для этого припаяйте к изолированному проводу резистор одним концом. Далее другим концом резистора задеваете один вывод конденсатора, а другим концом провода другой вывод. Считаете до 3 и все ОК ;-). Кондер разряжен!

www.ruselectronic.com

Конденсаторы как элементы схем | Техника и Программы

Все конденсаторы ведут свою родословную от лейденской банки, названной так по имени голландского города Лейдена, в котором трудился ученый се­редины XVIII века Питер ван Мушенбрук.

clip_image002

Рис. 5.4. Прадедушка современных конденсаторов — лейденская банка: 1 — стеклянный стакан, 2 — внешняя обкладка из станиоля, 3 — внутренняя обкладка, 4 — контакт для заряда

Банка эта представляла собой большой стеклянный стакан, обклеенный из­нутри и снаружи станиолем (тонкой оловянной фольгой, использовавшейся в те времена для тех же целей, что и современная алюминиевая— металл алюминий еще не был известен). Так как банку (рис. 5.4) заряжали от элек­тростатической машины (другого искусственного источника электричества еще не придумали), которая запросто может выдавать напряжения в несколь­ко сотен тысяч вольт, действие ее было весьма впечатляющим — в учебниках физики любят приводить случай, когда Мушенбрук продемонстрировал эф­фект от разряда своей банки через цепь гвардейцев, держащихся за руки. Ну не знали тогда, что электричество может и убить — гвардейцам сильно по­везло, что емкость этого примитивного конденсатора была весьма невелика, и запасенной энергии хватило только на то, чтобы люди ощутили чувстви­тельный удар током!

clip_image004

Рис. 5.5. Схематическое изображение плоского конденсатора и формула для расчета его емкости: С — емкость, Ф; S — площадь пластин, м^; d — расстояние между пластинами, м; е — диэлектрическая проницаемость

Схематическое изображение простейшего конденсатора показано на рис. 5.5. Из формулы, приведенной на рисунке (она носит специальное название «формула плоского конденсатора», потому что для конденсаторов иной Гео­метрии соответствующее выражение будет другим), следует, что емкость тем больше, чем больше площадь пластин и чем меньше расстояние между ними. Что же такое емкость? Согласно определению, емкость есть отношение заря­да (в кулонах) к разности потенциалов на пластинах (в вольтах): С = Q/U, то есть размерность емкости есть кулон/вольт. Такая единица называется фара­дой, по имени знаменитого английского физика и химика Майкла Фарадея (1791—1867).

Следует подчеркнуть, что величина емкости есть индивидуальная характери­стика конденсатора— подобно тому, как номинальное сопротивление есть индивидуальная характеристика конкретного резистора— и характеризует количество энергии, которое может быть в нем запасено. Емкость в одну фа­раду весьма велика — обычно на практике используют микрофарады и еще более мелкие единицы, скажем, емкость упомянутой лейденской банки со­ставляла величину всего-навсего порядка 1 нФ.

Смысл понятия емкости раскрывается так: если напряжение от источника напряжения составляет 1 В, то емкость в одну нанофараду, как у лейденской банки, может запасти 10’^ кулон электричества. Если напряжение составит 10^ вольт (типичная величина при заряде от электростатической машины, как в опытах Мушенбрука), то и запасенный на данной емкости заряд увеличится в той же степени — до 10"^ кулон. Любой конденсатор фиксированной емко­сти сохраняет это соотношение — заряд на нем в любой момент времени тем больше, чем больше напряжение, а сама величина заряда определяется номи­нальной емкостью.

Если замкнуть конденсатор на резистор, то в первый момент времени он бу­дет работать, как источник напряжения с нулевым выходным сопротивлени­ем и номинальным напряжением той величины, до которой конденсатор был заряжен, то есть ток через резистор определяется по обычному закону Ома. Скажем, в случае гвардейцев Мушенбрука характерное сопротивление цепи из нескольких человек, взявшихся за руки, составляет порядка 10"* Ом — то есть ток при начальном напряжении на конденсаторе 10^ В составит 10 А, что примерно в 10 ООО раз превышает смертельное для человека значение тока! Выручило гвардейцев то, что такой импульс был крайне кратковременным — по мере разряда конденсатора, то есть отекания заряда с пластин, напряжение быстро снижается: емкость-то остается неизменной, потому при снижении заряда, согласно формуле на рис. 5.5, падает и напряжение.

Интересно, что при фиксированном заряде (если цепь нагрузки конденсатора отсутствует), можно изменить напряжение на нем, меняя емкость. Например, при раздвижении пластин плоского конденсатора емкость его падает (так как расстояние d между пластинами увеличивается), потому для сохранения за­ряда напряжение должно увеличиться — что и происходит на деле, когда в эффектном школьном опыте между раздвигаемыми пластинами конденсато­ра проскакивает искра при превышении предельно допустимого напряжения пробоя для воздуха.

clip_image006

Рис. 5.6. Подключение конденсатора к нагрузке: К — переключатель; Б — батарея; С — конденсатор; R — сопротивление нагрузки

На рис. 5.6 изображено подключение конденсатора С к нагрузке R. Первона­чально переключатель К ставится в нижнее по схеме положение и конденса­тор заряжается до напряжения батареи Б. При переводе переключателя в верхнее положение конденсатор начинает разряжаться через сопротивление R, и напряжение на нем снижается. Насколько быстро происходит падение напряжения при подключении нагрузки? Можно предположить, что чем больше емкость конденсатора и сопротивление резистора нагрузки, тем мед­леннее происходит падение напряжения. Правда ли это?

Это легко попробовать оценить через размерности связанных между собой электрических величин — тока, емкости и напряжения. В самом деле, в оп­ределение тока входит и время (напомним, что ток есть заряд, протекающий за единицу времени), и это время должно быть тем самым временем, которое нас интересует. Если вспомнить, что размерность емкости есть кулоны на вольт, то искомое время можно попробовать описать формулой: / = CU/I, где С— емкость, а (7и /— ток и напряжение соответственно (проверьте размер­ность!). Для случая рис. 5.6 эта формула справедлива на малых отрезках вре­мени, пока ток / не падает значительно из-за уменьшения напряжения на на­грузке. Отметим, что формула эта полностью справедлива и на больших отрезках времени, если ток разряда — или заряда — конденсатора стабили­зировать, что означает подключение его к источнику втекающего (при разря­де) или вытекающего (при заряде) тока.

При обычной фиксированной нагрузке с сопротивлением R так, конечно, не происходит — напряжение на конденсаторе падает по мере истощения заря­да, значит, ток через нагрузку также пропорционально снижается — в пол­ном соответствии с законом Ома (помните, мы говорили, что простой рези­стор есть плохой источник тока?). Опять приходится брать интегралы.

потому мы приведем только конечный результат: формула для расчета про­цесса снижения напряжения на емкости при разряде ее через резистор и со­ответствующий график показаны на рис. 5.7, а, А на рис. 5.7, б показан ана­логичный процесс, который происходит при заряде емкости через резистор.

clip_image008

Рис. 5.7. Процессы при разряде и заряде конденсатора: С — емкость; R — сопротивление нагрузки; t— время; е — основание натуральных алгоритмов (2,718282)

Нужно отметить два момента: во-первых, процесс разряда по рис. 5.7, а бес­конечен (полностью конденсатор не разрядится никогда, если сопротивление нагрузки не равно нулю), но практически это не имеет значения, потому что напряжение на конденсаторе становится исчезающе малым очень скоро. Во-вторых, из формул на рис. 5.7 следует очень интересный вывод: если сопро­тивление R равно нулю, то время процесса разряда или заряда становится бесконечно малым, а ток через нагрузку— по закону Ома— бесконечно большим!

Обратимся снова к рис. 5.6— именно нечто подобное должно происходить при переключении К в положение заряда емкости от батареи. Естественно, в реальной жизни ни о каких бесконечных токах речи не идет — для этого батарея должна иметь нулевое выходное сопротивление, то есть бесконечно большую мощность (подумайте, почему эти утверждения равносильны?). Да и проводники должны обладать нулевым сопротивлением. Поэтому на прак­тике процесс заряда от источника (и разряда при коротком замыкании пла­стин) происходит за малое, но конечное время, а ток, хоть и не бесконечно велик, но все же может достигать очень больших значений. Потому-то ис­точники питания с отключением по превышению максимально допустимого тока (см. главу 2) могут выключаться при работе на нагрузку с конденсато­ром большой емкости, установленному параллельно источнику питания (мы дальше увидим, что такой конденсатор устанавливают практически всегда), хотя ток в рабочем режиме может быть и невелик.

Один из методов борьбы с этой напастью — включение последовательно с нагрузкой небольшого резистора, ограничивающего ток в начальный момент времени. Как рассчитать необходимый номинал? Для этого нужно предста­вить, что конденсатор при заряде в первый момент времени ведет себя так, как будто цепь в месте его установки замкнута накоротко (это очень точ­ное представление!). Тогда нужный номинал резистора определится просто по закону Ома, в который подставляется предельно допустимый ток источ­ника и его напряжение.

Интуитивно кажется, что должна существовать какая-то характеристика цепи из конденсатора и сопротивления, которая позволяла бы описать процесс за­ряда-разряда во времени — независимо от напряжения на конденсаторе. Та­кая характеристика рассчитывается по формуле Г= RC, Приведением единиц мы бы здесь занимались довольно долго, потому поверьте, что размерность произведения RC есть именно время в секундах. Эта величина, которая носит название постоянной времени RC-цепи, физически означает время, за кото­рое напряжение на конденсаторе при разряде его через резистор (рис. 5.7, а) снижается на величину 0,63 от начального (то есть до величины, равной доле Me от первоначального С/о, что и составляет примерно 37%). За следующий отрезок времени, равный ЛС, напряжение снизится еще на столько же от ос­тавшегося и т. д. — в полном соответствии с законом экспоненты.

Аналогично при заряде конденсатора (рис. 5.7, б), постоянная времени Г оз­начает время, за которое напряжение увеличится до доли (1 — Me) от конеч­ного значения то есть до 63% от С/о- Дальше мы увидим, что произведе­ние RC играет огромную роль при расчетах различных схем.

Есть еще одна вещь, которая следует из формулы для плоского конденсатора (рис. 5.5). В самом деле, там нет никаких ограничений на величины S и d— даже если развести пластины очень далеко, все же какую-то емкость, хотя небольшую, конденсатор будет иметь. То же происходит при уменьшении площади пластин. Практически это означает, что небольшую емкость между собой имеют любые два проводника, независимо от их конфигурации и раз­меров, хотя эти емкости и могут быть исчезающе малы. Этот факт имеет ог­ромное значение на высоких частотах — в радиочастотной технике нередко конденсаторы образуют прямо из параллельных дорожек на печатной плате. А емкости между параллельными проводами в обычном проводе-«лапше» или кабеле могут достигать и весьма больших значений — ввиду их большой длины, в большинстве случаев этот эффект весьма вреден и такие емкости называют паразитными.

Если же учесть, что проводники имеют еще и собственное сопротивление, то мы приходим к выводу, что любую пару проводов можно представить в виде «размазанной» по длине (распределенной) RC-цепи — и это действительно так, со всеми вытекающими последствиями! Например, если подать на вход пары проводников в длинном кабеле перепад напряжения (фронт прямо­угольного импульса), то на выходе мы получим картину, которая ничем не отличается от рис. 5.7,6— импульс «размажется», а если он короткий, то вообще может пропасть.

Заметки на полях

Мало того, провода обладают еще и собственной индуктивностью (об индук­тивности мы поговорим в конце главы), что еще более запутывает картину. Крайне неприятное явление, но «такова се ля ви», как любил выражаться один мой знакомый инженер. Впервые с этим делом столкнулись еще при попытке прокладки первого трансатлантического кабеля в 1857 году — телеграфные сигналы (точки-тире) представляют собой именно такие прямоугольные им­пульсы, и при длине кабеля в 4000 км они по дороге искажались до неузна­ваемости. За время до следующей попытки прокладки кабеля (1865) англий­скому физику У. Томсону пришлось разработать теорию передачи сигналов по длинным линиям, за что он получил рыцарство от королевы Виктории и вошел в историю под именем лорда Кельвина: по названию городка Кельвин на за­падном побережье Ирландии, откуда начиналась прокладка кабеля.

В выражении для емкости на рис. 5.5 фигурирует постоянная 8, представ­ляющая собой диэлектрическую проницаемость среды. Для воздуха и боль­шинства обычных изолирующих материалов (полиэтилена, хлорвинила, лав­сана, фторопласта) константа г близка к величине ее для полного вакуума 8о. Величина 8о зависит от применяемой системы единиц измерения, и в между­народной системе единиц измерения СИ равна 8,854-10~^^ Ф/м. На практике удобно применять относительную диэлектрическую проницаемость конкрет­ного материала: 8г = 8/8о. Естественно, что в практических конструкциях кон­денсаторов желательно, чтобы величина 8г была как можно выше — если вы заполните промежуток между пластинами, скажем, ацетоном или спиртом, то емкость такого конденсатора сразу возрастет раз в двадцать! К сожалению, чем выше 8г, тем обычно выше и собственная проводимость материала, по­тому такой конденсатор быстро разрядится за счет собственных токов утечки через среду между пластинами. Ясно, что производители конденсаторов ста­раются упаковать как можно большую емкость в как можно меньшие разме­ры, пытаясь одновременно обеспечить токи утечки на приемлемом уровне. По этой причине количество практически используемых типов конденсато­ров значительно больше, чем сопротивлений. Причем надо также учесть, что чем тоньше прослойка диэлектрика между пластинами, тем меньше предель­но допустимое напряжение (то есть напряжение, при котором наступает электрический пробой и конденсатор выходит из строя).

Самым высоким соотношением емкость/габариты обладают электролитиче­ские (оксидные) конденсаторы, которые в настоящее времся широко пред­ставлены серией, известной под отечественным наименованием К50-35 (им­портные конденсаторы такого же типа обычно все равно продают под этим названием). Емкости их достигают ЮООООмкФ, а допустимые напряже­ния — 600 В, но у них есть три главных недостатка, которыми приходится платить за повышенную емкость. Первый и самый главный — эти конденса­торы полярны, то есть подразумевают включение только в определенной ориентации по отношению к полярности источника питания. Обычно на кор­пусе таких конденсаторов обозначается либо отрицательный (жирным «ми­нусом»), либо положительный (знаком «плюс») вывод. Если же габариты корпуса не позволяют применить обозначение (либо производителям лень налаживать соответствующую полиграфию), то полярность пытаются обо­значить толщиной или длиной вывода: более длинный и/или более толстый вывод обычно обозначает положительный контакт (но не всегда!). Если же включить такой электролитический конденсатор в противоположной поляр­ности, то он может просто взорваться, забрызгав электролитом всю осталь­ную схему. Есть и другие, более дорогие типы полярных конденсаторов (на­пример, танталовые К52 или ниобиевые К53), которые обладают значительно меньшими токами утечки. Электролитические конденсаторы обычно исполь­зуют в качестве фильтров в источниках питания — хотя и иные применения не исключены.

Следует учесть и вторую дурную особенность «электролитов» (как их назы­вают на инженерном жаргоне, и как мы будем называть их в дальнейшем) — они обеспечивают номинальную емкость только на низких частотах. При бы­стром перезаряде их емкость существенно снижается — поэтому в фильтрах источников питания рекомендуется параллельно ставить неполярные (кера­мические или иные) конденсаторы — в целях лучшей защиты от высокочас­тотных помех. На самом деле, эти конденсаторы лучше ставить не в источ­нике питания, а непосредственно вблизи выводов компонента, для которого высокочастотные помехи критичны, и на практике так и поступают (такие конденсаторы называют «развязывающими»).

Эта особенность связана с третьим паразитным свойством электролитов: эф­фектом «аккумулятора» (или «накопления заряда»). То есть, если вы полно­стью разрядите электролитический конденсатор (например, коротким замы­канием выводов), через некоторое время напряжение на выводах опять восстановится до некоторого значения (обычно небольшого— около 1— 1,5 В), и чтобы этот заряд полностью рассосался, требуется довольно значи­тельное время (часы или даже сутки). Этот эффект тем сильнее, чем больше емкость и чем выше допустимое напряжение электролита. Имеют электроли­ты и высокий заводской разброс номинального значения — до нескольких десятков процентов. По эти1й причинам полярные конденсаторы очень не ре­комендуется употреблять во времязадающих цепях, если требуется хоть ка­кая-то точность.

clip_image010

Рис. 5.8. Сравнительные размеры конденсаторов. Вверху: слева — электролитический конденсатор К50-35 3,3 мк х 25 В; справа — близкий к нему по допустимому напряжению неполярный конденсатор К73-17 3,3 МК с лавсановым диэлектриком. Внизу: электролитические конденсаторы К50-35 (справа налево: 6800 мк х 35 В; 2200 мк х 35 В; 2200 мк х 16 В; далее два идентичных конденсатора 100 мк х 16 В, но производства разных фирм)

Для использования в других областях применяют конденсаторы с неполяр­ным диэлектриком— бумажные, слюдяные, керамические, полиэтиленте­рефталатные (лавсановые) или фторопластовые (тефлоновые). Емкость их (в соотношении емкость/габариты) значительно меньше, и номинальная ем­кость обычно не превышает нескольких микрофарад (сравнительные разме­ры конденсаторов показаны на рис. 5.8).

У старинных металлобумажных конденсаторов (типа МБГ или МБГЧ) есть интересная особенность — они могут самовосстанавливаться после пробоя. Но чаще всего сейчас употребляются неполярные конденсаторы с керамиче­ским или органическим диэлектриком (типы К10, К73 и другие), и под непо­лярными мы будем обычно понимать конденсаторы именно этих серий. Именно они обеспечивают наиболее точное соответствие кривой заряда-разряда теоретической форме (как на рис. 5.7). Причем при применении в точных времязадающих цепях рекомендуется не просто выбирать конденса­тор с подходящим изолятором (лучше всего — тефлоновый или старинный слюдяной), но и с как можно большим допустимым напряжением (в приме­нении конденсатора с номинальным допустимым напряжением 630 В в цепях с напряжением 12 В нет ничего особенного).

Наиболее распространенны неполярные керамические конденсаторы (отече­ственный аналог— К10), которые имеют оптимальное соотношение ем­кость/габариты и приемлемые характеристики по долговечности и стабиль­ности. Они выпускаются как с гибкими выводами (обычно почему-то в корпусах желтого цвета), так и в SMD-исполнении. Емкости их могут быть в широком диапазоне от 1 пФ до 47 мкФ, а максимально допустимое напряже­ние, как правило, не менее 50 В.

В добавление к тому, что бьшо сказано в разделе «Резисторы» про условные обозначения, нужно сказать, что, поскольку емкости обычно употребляемых конденсаторов находятся в пределах от пико- до микрофарад, то при обозна­чении на схемах единицу измерения Ф часто опускают и пишут просто «мк» (мкФ), «н» или «п» (нФ), «п» или «р» (пФ). Пикофарады (подобно омам) мо­гут и не писать вообще. Часто микрофарады обозначаются просто лишним десятичным знаком (мы именно так и будем поступать) — например, запись 100,0 означает 100 мкФ, в то время как просто 100 — 100 пФ.

Параллельное и последовательное включение конденсаторов

Как и резисторы, конденсаторы могут включаться последовательно или па­раллельно, однако расчет полученных величин производится ровно противо­положно правилам для резисторов: при параллельном соединении емкости складываются (по правилу «больше большего»), а при последовательном со­единении складываются их обратные величины (правило «меньше меньше­го»). К счастью, в отличие от резисторов, конденсаторы включают практиче­ски только параллельно — можно это представить так, как будто площади их пластин при этом складываются, следовательно, складываются и емкости. Последовательное же соединение емкостей само по себе не имеет практиче­ского смысла, и знание правил сложения для него необходимо лишь изредка при анализе цепей переменного тока.

nauchebe.net

Что такое конденсатор и зачем он нужен? - Для начинающих - Каталог статей

.

Роль конденсатора в электронной схеме заключается в накоплении электрического заряда, разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и многое другое. Как и резисторы, конденсатор бывают разных типов и емкостей. Выпускаются в разных корпусах, самые маленькие это ЧИП SMD конденсаторы, которые применяются например в сотовых телефонах.

Конструктивно конденсатор состоит из двух проводящих обкладок, изолированных диэлектриком. В зависимости от конструкции и назначения конденсатора диэлектриком может служить воздух, бумага, керамика, слюда.

Основными параметрами конденсаторов являются:

Номинальная ёмкость. Ёмкость измеряют в Фарадах (Ф). В электронике используются конденсаторы с разными емкостями, это пикофарады, нанофарады и микрофарады.

Номинальное напряжение. Это напряжение, при котором конденсатор выполняет свои функции. Номинальное напряжение маркируют на корпусе конденсатора, при превышении этого напряжения конденсаторы взрываются.

Допуск. Также как у резисторов и у конденсаторов есть допустимое отклонение величины его реальной ёмкости от той, что указана на его корпусе, у конденсаторов может достигать 20 – 30%. В технике, где требуется особая точность номинальных значений ёмкости, применяются конденсаторы с малым допуском (1% и менее).

Изображается конденсатор на принципиальных схемах так, как показано на рисунке.

Типы конденсаторов

Электролитический полярный конденсатор.

Кроме обычных конденсаторов (пико и нанофарадов) существуют электролитические. Емкость их намного больше, чем у обычных, следовательно, габариты также существенно больше. Отличительная особенность электролитических конденсаторов – полярность.

Если обычные конденсаторы можно впаивать в схему не беспокоясь о полярности прикладываемого к конденсатору напряжения, то электролитический конденсатор необходимо включать в схему строго в соответствии с полярностью напряжения. У электролитических конденсаторов один вывод плюсовой, другой минусовой.

Подстроечный конденсатор.

Также широкое применение получили подстроечные конденсаторы. Подстроечные конденсаторы необходимы в тех случаях, когда требуется точная подстройка ёмкости в электронной схеме. В таких конденсаторах подстройку ёмкости производят один раз или очень редко.

Конденсатор переменной емкости (КПЕ).

Наряду с подстроечными конденсаторами существуют и конденсаторы переменной ёмкости. В отличие от подстроечных, переменные конденсаторы служат для частой подстройки ёмкости. В простом (не цифровом) приёмнике настройка на радиостанцию как раз и осуществляется с помощью конденсатора переменной ёмкости.

Конденсатор не пропускает постоянный ток и является для него изолятором.

Для переменного тока конденсатор не является преградой. Сопротивление конденсатора (ёмкостное сопротивление) переменному току уменьшается с увеличением его ёмкости и частоты тока, и наоборот, увеличивается с уменьшением его ёмкости и частоты тока.

Расшифровка номинала конденсаторов.

Что касается подобных конденсаторов, они маркируются кодовой маркировкой, ниже дана таблице по их расшифровке. Следует упомянуть, что микрофарады можно переводить в нано или пикофарады и т.п. Например конденсатор 100 пикофарад можно заменить конденсатором в 0.1 нанофарад.

Похожие статьи:

cxema21.ru


Каталог товаров
    .