Цифровой датчик температуры STLM75 представляет собой вариант популярной микросхемы LM75 от STMicroelectronics. Наличие интерфейса I2C позволяет легко интегрировать данный датчик в микроконтроллерные проекты. Предельная простота организации обмена с микросхемой и низкая стоимость делают ее весьма привлекательной для использования. По заявлениям производителя, STLM75 оснащена высокоточным температурным сенсором и сигма-дельта АЦП, позволяющим оцифровывать сигнал с разрешением 0.5°C. Точность измерений датчика при этом составляет не хуже чем ±3°C в диапазоне температур от –55°C до 125°C, и ±2°C в диапазоне от –25°C до +100°C. При этом стандартная точность заявлена на уровне разрешения - 0.5°C. Микросхема работоспособна в диапазоне напряжений от 2.7 до 5.5В и выпускается в корпусах TSSOP8 и SO8. Для работы STLM75 не требуется подключение никаких дополнительных компонентов, кроме подтягивающих резисторов I2C. В отличие от DS1621 и других сходных вариантов, данная микросхема сразу же после подачи питания начинает измерять температуру в циклическом режиме. При этом доступ к измеренному значению возможен в любое время, без организации каких-либо задержек и дополнительных команд. В простейшем случае (без режима термостата и «спящего» режима) достаточно просто прочитать регистр температуры. Температурный датчик использует стандартный протокол обмена по шине I2C, с поддержкой высокоскоростного режима. 3 аппаратных адресных линии позволяют подключать к одной шине до 8 независимых датчиков. Адрес микросхемы на шине выглядит как: Термометр STLM75 имеет дополнительный сигнальный выход, работающий в одном из двух режимов: компаратора или прерывания. Данный выход предназначен для построения термостатов. В режиме компаратора он активируется при превышении температурой значения, записанного в регистре Tos, и деактивируется, если температура становится менее значения регистра Thys. В режиме прерывания, в любом из вышеописанных случаев, формируется короткий импульс. Температурный датчик STLM75 содержит пять регистров, используемых для хранения информации и обмена с внешним устройством. В случае отсутствия необходимости работы термостата и перевода датчика в спящий режим, обращение к регистрам не требуется. Получение температуры производится с помощью команды чтения данных с шины I2C в произвольный момент времени. Состав регистров STLM75: - регистр команд/адреса - регистр конфигурации (CONF) - регистр температуры (TEMP) - регистр верхнего предела (TOS) - регистр нижнего предела (гистерезис) (THYS) Данный 8-ми разрядный регистр используется для задания адреса ячейки памяти температурного датчика, с которой будет осуществляться обмен по шине I2C. Используются только два младших бита, все остальные должны иметь значение «0». Адрес в регистре может принимать следующие значения: 00000000 – чтение 16-ти разрядного регистра температуры (TEMP) 00000001 – доступ к регистру конфигурации (CONF) 00000010 – доступ к регистру гистерезиса (THYS) 00000011 – доступ к регистру превышения температуры (TOS) Регистр конфигурации – 8-ми разрядный регистр, используемый для задания режима работы микросхемы. После включения питания, значение всех битов регистра равно 0. SD – бит режима «сна» M – бит режима работы выхода термостата (1 – режим прерывания, 0 – режим компаратора) POL – бит полярности выхода термостата (Активный уровень – 0) FT0 – бит защиты от ложных срабатываний FT1 – бит защиты от ложных срабатываний «Спящий режим» предназначен для уменьшения потребляемой мощности. Его активация выполняется путем установки в 1 бита SD. В этом режиме отключаются все внутренние элементы микросхемы, за исключением цепей, ответственных за обмен по шине I2С. Измерения температуры не производится. Вывод из «спящего режима» производится обнулением бита SD. Биты защиты от ложных срабатываний позволяют избавиться от переключений выхода термостата, в случае наличия шумов сигнала. Значения этих битов позволяют задать количество измерений температуры, необходимых для изменения состояния выхода. Возможны следующие комбинации: 00 – 1 измерение 01 – 2 измерения 10 – 4 измерения 11 – 6 измерений Регистр температуры служит для хранения последнего измеренного значения температуры. Несмотря на то, что его разрядность равна 16 битам, используются только старшие 9. При этом, возможно использование одного старшего байта, если устраивает целочисленный результат. Формат записи температуры аналогичен другим 9-ти разрядным термометрам. Старший бит старшего байта является знаковым, позволяющим реализовывать измерение отрицательных температур по шкале Цельсия. В младшем байте используется только старший бит, фактически являющийся признаком наличия дробной части измеренного значения температуры. Вес этого бита равен 0.5°C. Все остальные биты младшего байта читаются как 0. Данный 16-разрядный регистр используется для установки верхнего значения температуры, используемого при переключении выхода термостата. Формат регистра аналогичен формату регистра температуры. Начальное значение равно 80°C. 16-разрядный регистр, используемый для задания зоны нечувствительности, необходимой в режиме компаратора. Формат регистра аналогичен формату регистра температуры. Значение после подачи питания 75°C. Еще по теме: Полупроводниковые датчики температуры Преобразование кода цифровых датчиков температуры You have no rights to post comments mcucpu.ru Зависимость падения напряжения на p-n переходе от температуры было замечено сразу после создания самого этого перехода. Это свойство полупроводников используется в электронных термометрах, датчиках температуры, термореле и т.д. Простейшим датчиком температуры является p-n переход кремниевого диода, температурный коэффициент напряжения, которого равен, примерно, 3 мВ/°C, а прямое падение напряжения находится в районе 0,7В. Работать с таким маленьким напряжением неудобно, поэтому в качестве термозависимого элемента лучше использовать p-n переходы транзистора, добавив к нему базовый делитель напряжения. Полученный двухполюсник обладает свойствами цепочки диодов, т.е. падение напряжения на нем можно устанавливать намного больше, чем 0,7В. Зависит оно от соотношения базовых резисторов R1 и R2 см. рис. 1. Обладая отрицательным температурным коэффициентом сопротивления, этот двухполюсник нашел применение в схеме питания варикапов. При повышении температуры, емкость варикапов начинает увеличиваться, но одновременно уменьшается падение напряжения на двухполюснике VT1, R1,R2, что ведет к увеличению напряжения на переменном резисторе и соответственно на варикапе, уменьшая его емкость. Таким образом, достигается температурная стабилизация резонансной частоты колебательного контура. На рисунке 2 показана схема двухполюсника, который можно использовать в качестве термодатчика в схемах электронных термореле и термометрах. Здесь есть одно неудобство, кристалл транзистора КТ315 размещен в пластмассовом корпусе, что повышает инерцию измерения температуры или срабатывания реле. И второе, это неудобство крепления его к объекту, температуру которого необходимо отслеживать. Например, для отслеживания температуры теплоотводов мощных ПП, лучше применить в качестве термодатчика транзистор КТ814. Конструкция этого транзистора позволяет крепить его непосредственно к радиатору, находящемуся под потенциалом земли, всего одним винтиком. Такой датчик используется в схеме терморегулятора для вентилятора, размещенной на сайте www. ixbt.com/spu/fan-thermal-control.shtml На рисунке 4 показана практическая схема для вентилятора охлаждения блока питания. Применение операционного усилителя средней мощности К157УД1 в качестве компаратора, позволило подключить пару вентиляторов от блока питания компьютера непосредственно на выход микросхемы, выходной ток которой, равен 0,3А. Температуру включения вентиляторов устанавливают резистором R5. Схема работает следующим образом. При нормальной температуре теплоотвода напряжение на выводе 9 микросхемы DA1 должно быть больше, чем на выводе 8. При этом на выходе DA1, выводе 6, будет потенциал близкий к напряжению питания схемы. Напряжение на вентиляторах при таких условиях будет практически равно «0». Вентиляторы выключены. При повышении температуры теплоотводов будет повышаться и температура транзистора VT1, что в свою очередь вызовет уменьшение напряжения на неинвертирующем входе 8 микросхемы DA1. Как только это напряжение будет меньше напряжения, установленного резистором R5, состояние компаратора изменится и на его выходе напряжение упадет примерно до потенциала земли. Вентиляторы включатся. Резистор R7 обеспечивает небольшой гистерезис схемы, что исключает неопределенное состояние выходного напряжения на выходе DA1 при равенстве входных напряжений. Плату терморегулятора лучше установить прямо на контролируемом радиаторе, чтобы его микросхема тоже обдувалась вентилятором. Транзистор VT1 соединяется с платой тремя проводами и устанавливается в непосредственной близости от мощных ПП. Просмотров:25 183 www.kondratev-v.ru Микросхема DS1621 представляет собой термометр и термостат «в одном флаконе» с цифровым вводом и выводом, которая гарантирует точность измерения и контроля с погрешностью плюс – минус 0,5 гр. Цельсия. Если использовать датчик DS1621 в роли термометра, то данные должны обрабатываться через I2C/SMBus последовательную шину в дополнительном девяти - битном коде с точностью младшего разряда плюс – минус 0,5 гр. Цельсия. Для приложений, которым нужно повышенное разрешение контролируемой величины температуры, необходимо считать дополнительные регистры и выполнить несложные арифметические операции, для того чтобы получить более чем 12-битового разрешения (при этом цена самого наименьшего разряда составляет 0,0625 гр. Цельсия). Микросхема DS1621 имеет три адресных входа, таким образом, появляется возможность подключить к одной шине до восьми датчиков DS1621. Применяя датчик DS1621 в роли термостата, в DS1621 имеются регистры TH (повышенная температура) и TL (пониженная температура). При превышении текущей температуры уровня TH выход датчика перейдет в активное состояние, и будет продолжать оставаться в нем, пока текущая температура не опустится ниже отметки TL. Таким образом, реализуется управление с заданным гистерезисом. Принцип измерения основан на нестабильности частоты колебаний при изменении температуры. Для реализации этого принципа измерения в структуру микросхемы включены два генератора. Первый из них обладает высокой температурной стабильностью. Его рабочая частота соответствует температуре - 55 гр. Цельсия и фактически не изменяется. Рабочая частота же второго генератора, напротив, меняется соразмерно изменению температуры. Особые счетчики совершают подсчет импульсов за равный промежуток времени и на базе разности, производится расчет текущей температуры, который представлен в виде 9-разряднго двоичного кода. Данные делятся на старший и младший байты. Если для каких либо целей необходимо целое значение температуры, то нужно использовать, лишь старший байт. Младший же байт обладает только одним информационным битом - LSB, который реализует дискретность в 0,5 гр. Цельсия. Оставшиеся биты младшего байта постоянно равны нулю. Микросхема DS1621 располагает несколькими режимами работы. Настройка и контроль данных режимов осуществляется с помощью регистра состояний. Существуют следующие биты: Обмен данными с датчиком DS1621 происходит по типовому протоколу I2C. Датчик принимает участие в нем в качестве SLAVE - устройства. Его SLAVE - адрес имеет вид следующий вид: 1001ххх где ххх – состояние линий А0-А2 микросхемы. Для взаимодействия с DS1621 применяются следующие команды: В датчике DS1621 возможно повышение точности измеряемой температуры. Для этого доступны величины счетчиков стабильного N [A9h] и зависимого от температуры N[A8h] генератора. Зная измеренное значение температуры T[AAh]и значения счетчиков можно получить точное показание применив формулу: T=T[AAh] – 0.25 + (N[A9h]-N[A8h])/N[A9h] У датчика DS1621 так же есть режим работы в роли термостата. Для управления исполнительными устройствами имеется цифровой выход Tout, устанавливаемый в зависимости от величины температуры. Уровни включения и выключения выхода выставляются в регистрах TH и TL, а полярность выхода выбирается битом POL регистра конфигурации. www.joyta.ru Спектр приложений и задач, в которых может потребоваться измерение температуры, очень широк. Пожалуй, температуру можно назвать одним из самых часто измеряемых параметров. В некоторых случаях это может быть температура внешней среды, температура охлаждающих сред, в некоторых — самих приборов или их частей. Различаются также абсолютные диапазоны измерений и требования к точности измерений. Некоторое влияние оказывает и способ обработки измеренных данных — локально или удаленно. Приобретение компании National Semiconductor добавило в спектр продукции Texas Instruments ряд линеек продуктов. В частности, это коснулось и интегральных датчиков температуры. В линейке датчиков температуры National представлены аналоговые и цифровые изделия, некоторые — с рядом дополнительных функций. Имеются температурные датчики, основанные на различных физических эффектах — резистивные, полупроводниковые, микросхемы для работы с термопарами. Среди аналоговых датчиков присутствуют датчики с выходом по напряжению, токовые датчики, интегральные микросхемы датчиков с программируемым коэффициентом усиления, микросхемы, содержащие схемы сравнения — т.н. термостаты или термосигнализаторы. Целый ряд микросхем предназначен для работы с удаленными датчиками температуры (в основном — с полупроводниковыми диодами). Кроме этого, отдельно стоит выделить интегральные контроллеры аппаратуры, содержащие в себе, помимо температурных датчиков или схем их опроса, схемы управления внешними устройствами, в частности, скоростью вращения вентилятора охлаждения [1]. Аналоговые полупроводниковые температурные датчики National отличает компактность, простота схем включения, достаточно высокая стабильность передаточной характеристики, широкий диапазон напряжений питания и малый потребляемый ток. Температурный диапазон работы большинства датчиков лежит в пределах -40…125°С, есть датчики, работающие и в более широком диапазоне — от -50 до 150°С. Ряд наиболее популярных серий приведены в таблице 1. Таблица 1. Пример аналоговых датчиков температуры линейки National Датчики с выходом по напряжению можно разделить на три большие группы: Датчики с программируемым коэффициентом усиления представлены серией LM9402x. На текущий момент в нее входит три микросхемы — LM94021, LM94022 и LM94023. Среди основных возможностей — широкий температурный диапазон измерений — от -50 до 150°С при минимальном напряжении питания всего 1,5 В, токе потребления не более 15 мкА и ошибке измерений не более 2,1°С. Выход защищен от короткого замыкания, его малое выходное сопротивление позволяет ему работать с высокоемкостными входами — до величин порядка 1 нФ (например, УВХ АЦП или фильтр нижних частот). Один, как в случае с LM94023, или два (LM94021, LM94022) управляющих вывода GSx позволяют выбирать один из двух или четырех коэффициентов усиления. Это позволяет достигать оптимальных результатов в зависимости от требований приложения — или расширение измеряемого диапазона температур, или повышение чувствительности — от 5,5 до 13,6 мВ/°С для LM94021, LM94022 (от 5,5 до 8,2 мВ/°С для LM94023). Датчики выполняются в компактных корпусах типа SC70 и microSMD. Минимальная схема включения не требует наличия внешних дополнительных элементов. Управляющие входы допускают непосредственное подключение, как к общему проводу, так и к питанию без дополнительных подтягивающих резисторов. Температурные датчики с фиксированной чувствительностью представляют собой достаточно простое решение для многих задач измерения и контроля температуры. Высокая линейность характеристики, надежность, высокая точность и низкое энергопотребление привели к тому, что ряд из них были признаны промышленным стандартом по факту, в частности — популярный датчик LM20. На текущий момент к таким датчикам можно отнести датчики серий LM19, LM20. Датчики способны работать в диапазоне -50…130°С, что перекрывает многие задачи контроля температуры. Диапазон питающих напряжений от 2,7 до 5,5 В при токе потребления порядка нескольких микроампер позволяет применять датчики в устройствах как со стационарным, так и с батарейным питанием. Чувствительность их составляет 11 мВ/°С. Весьма интересным подмножеством аналоговых датчиков температуры National можно назвать датчики с выходными уровнями напряжения, пропорциональными одной из температурных шкал — Цельсия, Кельвина или Фаренгейта. Общим их свойством является линейная характеристика с чувствительностью 10 мВ/градус одной из шкал. Так, серии LM135, LM235 и LM335 являются температурными датчиками с выходным напряжением, пропорциональным шкале Кельвина — номинальное напряжение на выходе при температуре 0°С (273°К) равно 2,73 В, при температуре 100°С — 3,73 В. Температурный коэффициент датчиков — 10 мВ/°К при максимальной ошибке на всей измеряемой шкале ±2,7°С. При помощи внешнего подстроечного резистора можно добиться точности порядка ±1°С. Датчики доступны в пластиковых — TO-92 и SO-8, и металлических — TO-46 корпусах. Датчики серий LM35, LM45, LM50 имеют выход в шкале Цельсия. Номинальный выход датчиков LM35, LM45 при 25°С — 250 мВ, а при 100°С — 1 В, чувствительность 10 мВ/°С. Более того, подключение резистора к выходу и отрицательному напряжению питания позволяет измерять и отрицательные температуры (ниже 0°С). Точность измерений датчиков в самом плохом варианте укладывается в ±3°С. Стоит отметить, что ряд серий датчиков в данной группе способен обеспечить более высокую точность: так, погрешность LM35 в диапазоне -55 до 150°С составляет всего ±1°С. Датчик LM50 отличается от LM35/45 тем, что при аналогичной зависимости выходного напряжения от температуры (10 мВ/°С) при 0°С имеет на выходе постоянное смещение в 500 мВ. Т.е., при температуре 0°С — на выходе датчика 500 мВ, 100°С — 1,5 В, и при -40°С — 100 мВ. Функциональным аналогом LM50 для систем с низковольтным питанием (от 2,7 В) является LM60/61/62 — при 0°С его выход равен 424 мВ, 1049 мВ при 100°С и 174 мВ при -40°С, температурная зависимость их положительна и равна 6,25 мВ/°С. Аналогичная ситуация и с датчиками температуры по шкале Фаренгейта — LM34, способными измерять температуры от -50 до 300°F с погрешностью 2°F при аналогичном температурном коэффициенте 10 мВ/°F. Устройства серий LM134/LM234/LM334 можно применять по-разному. С одной стороны, они могут служить регулируемыми источниками тока (значение выходного тока задается внешним резистором), с другой — их выходной ток зависит от температуры: от 1 до 3 мкА/°С. Путем подбора величины внешнего сопротивления можно регулировать чувствительность датчиков или измерительный диапазон. Конечно, чувствительность в пару микроампер на градус не назовешь высокой, да и датчик на их основе будет требовать последующей калибровки, или использования в схеме прецизионного резистора. Но аргументом в пользу их выбора может стать то, что для их работы достаточно напряжения всего 1,2 В, следовательно, они могут быть востребованы в приложениях с батарейным или аккумуляторным питанием. Одна из частых задач, возникающих в бытовой и промышленной технике — обнаружение перегрева прибора или его узла. В линейке аналоговых датчиков температуры от National есть ряд приборов, сочетающих в себе температурный датчик, формирователь порогового уровня, компаратор и выходные силовые цепи (таблица 2). Таблица 2. Температурные ключи Примерами таких устройств являются высокоинтегрированные температурные ключи серий LM26 и LM27, выпускаемые в корпусе SOT-23. Обе серии могут эксплуатироваться в весьма жестких температурных условиях. Так серия LM26 работает в диапазоне от -55 до 125°C, а LM27 от -40 до 150°C при порогах срабатывания в диапазоне 120…150°C. Таким образом, они оптимальны для мониторинга перегрева силовых узлов, тем более, что обе имеют вход HYST, позволяющий задать гистерезис. Ширина петли гистерезиса от 2°C (при подключении вывода к общему проводу), до 10°C (при подключении к линии питания). Микросхемы имеют два выходных сигнала — аналоговый выход температурного датчика и выход с открытым стоком. Порог срабатывания задается при производстве. Дальнейшим развитием является серия LM26LV. LM26LV представляет собой прецизионный низковольтный ключ, срабатывающий при превышении температуры определенного уровня. На выходе датчика формируется напряжение, пропорциональное температуре, и два пороговых сигнала. Аналоговый выход обладает достаточным входным/выходным током для работы на емкостную нагрузку. Один из пороговых сигналов — OVERTEMP — генерирует логический сигнал высокого уровня при превышении заданного порога, параллельно выход с открытым стоком ~OVERTEMP становится активным. Входной сигнал TRIPTEST предназначен для внутрисхемного тестирования ключа. Высокий уровень на нем имитирует превышение порога и приводит к срабатыванию ключа. Порог срабатывания, так же, как и для LM26, LM27, задается при производстве и находится в пределах от 0 до 150°С с шагом 1°С. Диапазон напряжений питания от 1,6 до 5,5 В. В качестве температурного ключа с задаваемым порогом срабатывания может применяться серия LM57, для которой порог задается парой внешних резисторов. LM56 является интегральной микросхемой-термостатом. Она содержит источник опорного напряжения 1,25 В, два компаратора со встроенным гистерезисом, температурный датчик (аналогичный LM60). Рабочий температурный диапазон LM56 составляет -40…125°С. Суммарная погрешность датчика и компараторов в пределах температур от 25 до 85°С составляет не более 2°С, в полном рабочем диапазоне от -40…125°С — не более 3°С, не считая погрешности внешних резисторов. Цифровые датчики температуры объединяют в себе чувствительный полупроводниковый элемент, аналого-цифровой преобразователь, блок управления, содержащий управляющую логику и регистры конфигурации, и интерфейсный блок. Для датчиков Texas Instruments линейки National традиционно используются двухпроводной интерфейс SMBus/I2C, или трехпроводной SPI/Microwire. В линейку поставок входят датчики с разрядностью от 8 бит с погрешностью ±4°С до 16-бит с погрешностью при комнатных температурах всего ±0,33°С (таблица 3). Таблица 3. Цифровые датчики температуры линейки National Некоторые из цифровых датчиков имеют дополнительные сигнализирующие пороговые выходы. Но, в отличие от температурных ключей, порог их срабатывания, включая гистерезис, задается пользователем. Примером подобного датчика является прецизионный датчик LM73 (корпус SOT23-6) с двухпроводным интерфейсом, совместимым с шинами SMBus и I2C. При полном рабочем диапазоне от -40 до 150°С его погрешность в в пределах от -10 до 80 ±1°С. При помощи всего одной линии выбора адреса датчика на шине возможна установка для него одного из трех адресов в зависимости от состояния адресной линии — не подключена, подключена к общему проводу или подключена к напряжению питания. Настройки LM73 позволяют оптимизировать его скорость и точность работы — разрешение датчика может варьироваться от 0,25°С/бит до 0,03°С/бит (11…14-битное преобразование). Датчик имеет два режима работы. Это — обычный режим, в котором датчик все время находится в режиме непрерывного преобразования и выдачи данных, и режим низкого потребления, когда запуск преобразования и выдача результата проводятся по запросу внешнего устройства. Датчик серии LM92 может служить примером цифрового термостата. Он позволяет существенно упростить создание систем контроля температуры. При прекрасных показателях точности порядка 0,5°С, диапазоне питания 2,7…5,5 В и 12-битном АЦП, LM92 имеет два программируемых пороговых выхода INT и T_CRIT_A. Первый из них, INT, становится активным при выходе температуры за установленные пределы. Выход T_CRIT_A срабатывает при превышении температуры заданного порога. Два входа селекции адреса позволяют выбрать один из четырех адресов датчика на последовательной шине I2C. Примерами датчиков, управляемых по шине SPI, могут служить популярные датчики LM70, LM74, LM95071 и ряд других. 14-битный датчик LM95071 обеспечивает точность 2°С на полном рабочем температурном диапазоне и до 1°С в пределах 0…70°С, цифровой шум составляет всего один младший разряд. Для данного датчика также доступен режим непрерывного преобразования и режим низкого энергопотребления. Он выпускается в миниатюрном корпусе SOT-23. Украшением линейки цифровых датчиков можно считать 24-битную однокристальную систему сбора данных с температурных датчиков — LMP90100. Ключевыми ее свойствами является низкое энергопотребление, 24-битное сигма-дельта АЦП с автоматической калибровкой, управляемый коэффициент усиления, а также малый дрейф параметров в зависимости от времени или температуры. LPM90100 может работать как от внутреннего, так и от внешнего источника синхронизирующих импульсов, имеет несколько конфигурируемых цифровых линий ввода-вывода, SPI-интерфейс управления. Встроенные опорные источники тока и напряжения позволяют напрямую работать с резистивными типами датчиков (мосты, терморезисторы, а также датчики давления и тензодатчики). Гибкий конфигурируемый входной мультиплексор позволяет работать даже с дифференциальными сигналами — например, возможны конфигурация на четыре дифференциальных входа или на семь одиночных, а также различные комбинации. Данный тип датчиков предназначен для мониторинга температуры электронных компонентов, например, центрального процессора, специализированных микросхем типа ASIC или программируемых логических схем FPGA. Как правило, в таких устройствах предусмотрены выходы сенсорного диода (чаще всего сенсорным диодом является p-n-p-транзистор). В случаях критически важных систем, не имеющих подобного чувствительного диода, вместо него применяют транзистор 2N3904. Впервые идея сенсорного температурного диода была воплощена в жизнь рядом производителей полупроводниковой продукции в 90-нм технологическом процессе (таблица 4). Таблица 4. Датчики температуры удаленных диодов В технологиях с меньшими размерами (например, 45 нм), выходной сигнал сенсорного диода может существенно отличаться в пределах серии элементов или в зависимости от конкретной реализации технологии производителями. Для решения данной проблемы National предложила уникальную технологию компенсации, называемую TruTherm® (BTJ/Transistor beta-compensation technology). Помимо специализированных датчиков, работу с удаленными диодами поддерживает ряд серий цифровых температурных датчиков и мониторов аппаратуры. В рамках семейства датчиков температуры удаленного диода присутствуют устройства, работающие с одним, двумя или четырьмя каналами. Серии LM86, LM89, LM90, и LM99 являются традиционными одноканальными датчиками температуры, управляемыми по шине SMBus. Кроме показаний температуры датчик имеет два сигнализирующих вывода ALERT и T_CRIT_A, генерирующих сигналы при выходе температуры за заданные диапазоны и превышении критического уровня, соответственно. Одноканальные датчики LM95235 и LM95245 выполнены с применением технологии TruTherm® BTJ/Transistor beta-compensation. LM95235 предназначены для мониторинга температуры процессоров Intel, выполненных по 65 и 90 нм технологии. LM95245 способны работать с сенсорными диодами по 45-, 60- и 90-нм технологии. В качестве дополнительной возможности LM95235 может осуществлять цифровую фильтрацию сигнала. LM95221 имеет два сигнальных канала с разрешением 0,125°С. Более универсальным вариантом являются датчики LM95231 и LM95241, выполненные с применением технологии TruTherm®. В отдельный ряд можно вынести серии приборов, способных измерять собственную температуру и температуры удаленных диодов наряду с выполнением действий по управлению внешними устройствами. Общее их название — мониторы аппаратуры (Hardware Monitors). Типовыми задачами для них являются управление системами охлаждения/нагрева приборов или узлов, например, управление скоростью вращения вентилятора охлаждения. Кроме схем измерения температуры, настройки и управления порогами срабатывания, данные серии микросхем имеют схемы ШИМ- или PID-регулирования (таблица 5). Таблица 5. Контроллеры аппаратуры Процесс разработки сенсорных решений имеет мощную поддержку в виде он-лайн инструментария WEBENCH, позволяющего помимо ряда других функций производить выбор необходимого типа температурного датчика для требований конкретных приложений. Также он позволяет определиться с типом чувствительного элемента — термопара/резистивный/полупроводниковый датчик и характеристиками последующего аналогового тракта [2-4]. Инструментарий SensorEval предназначен для работы с отладочными платами температурных датчиков и мониторов аппаратуры через USB-интерфейс. Более того — он поддерживает прямой доступ к температурным датчикам, расположенным непосредственно на материнских платах (с поддержкой наборов микросхем Intel) [5]. Для каждого из типов продукции National предлагаются отладочные платы, позволяющие оценить основные возможности датчиков, температурных ключей и мониторов аппаратуры. Как видно из данного далеко не полного обзора продуктов, предназначенных для задач измерения, контроля температуры, их спектр, предоставляемый линейкой National, довольно широк. Он гармонично дополняет собственный ряд температурных датчиков Texas Instruments, легко интегрируется с микроконтроллерами, АЦП и силовой продукцией TI, как в плане точности и надежности, так и в плане энергопотребления. 1. Temp Sensors National Semiconductor — Temperature Sensors with TruTherm® Technology, Temp Switches, Hardware Monitors, Fan Controls, & other Thermal Management Products// http://www.national.com/en/tempsensors/index.html 2. Temp Sensor Eval Boards & Reference Designs National Semiconductor// http://www.national.com/en/tempsensors/boards.html 3. SensorEval Sensor Evaluation Software for Temperature Sensor Eval Boards National Semiconductor// http://www.national.com/en/tempsensors/SensorEvalDescription.html 4. Temp Sensor Software National Semiconductor// http://www.national.com/en/tempsensors/software.html 5. WEBENCH® SensorAFE Designer & WEBENCH Sensor Designer Tools National Semiconductor — Precision Sensor Path Circuit Design// http://www.national.com/en/webench/sensors/index.html. Получение технической информации, заказ образцов, поставка — e-mail: [email protected] Рубрика: новинки элементной базы Метки: NSC, TI, Датчики температуры National Semiconductor была основана в 1959 году, в год создания первой интегральной схемы. В 1966 году National Semiconductor переместил штаб-квартиру компании на небольшой участок земли в Санта Кларе, штат Калифорния - место это позже стало известным как "Силиконовая долина". Известный для нас как производитель мирового класса, гарант надежности и лидер инновационных технологий, National Semiconductor имеет за последние 50 лет множество наград "Лидер промышленности".
Наиболее распространенн ...читать далее www.compel.ru В этой статье мы рассмотрим популярные датчики температуры для Arduino ds18b20, dht11, dht22, lm35, tmp36. Как правило, именно эти датчики становятся основой для инженерных проектов начального уровня для Arduino. Мы рассмотрим также основные способы измерения температуры, классификацию датчиков температуры и приведем сравнение различных датчиков в одной таблице. Температурные датчики предназначены для измерения температуры объекта или вещества с помощью свойств и характеристик измеряемой среды. Все датчики работают по-разному. По принципу измерения эти устройства можно разделить на несколько групп: По области применения можно выделить датчики температуры воздуха, жидкости и другие. Они могут быть как наружные, так и внутренние. Любой температурный датчик можно описать набором характеристик и параметров, которые позволяют сравнивать их между собой и выбирать подходящий под конкретную задачу вариант. Основными характеристиками являются: Выбор датчика в первую очередь определяется температурным диапазоном измерения. Важно учитывать и точность измерения – для обучения вполне сойдет датчик с малой точностью, а для научных работ и опытов требуется высокая надежность измерения. При работе с микроконтроллером Ардуино наиболее часто используются следующие датчики температуры: DS18B20, DHT11, DHT22, LM35, TMP36. Схема подключения к микроконтроллеру Ардуино достаточно проста. Желательно датчик прижимать к контролируемой поверхности, чтобы увеличить точность измерения. Примеры применения: LM35CH, LM35CAH, LM35DH) TO-92 (для датчиков LM35CZ, LM35CAZ, LM35DZ) SO-8 для датчика LM35DM TO-220 для датчика LM35DT. arduinomaster.ru Измерение температуры с помощью полупроводниковых диодов представляет особый интерес для массового применения, тк. они доступнее и дешевле других датчиков и имеют хорошую повторяемость параметров. Для измерений используется прямая ветвь ВАХ диодов, поскольку обратная ветвь менее стабильна. Нелинейность показаний легко учитывается двумя программными методами. Во-первых, можно плавно аппроксимировать температурную характеристику эмпирической формулой, во-вторых, можно использовать дискретную таблицу поправок с сохранением коэффициентов в ПЗУ МК. В термодатчиках выгодно применять германиевые (а не кремниевые) диоды, поскольку у них сильнее проявляется зависимость параметров от температуры. Однако устаревшие германиевые диоды типа Д2Б, Д7Ж, выпущенные 40…50 лет назад, уже не обладают заявленными техническими параметрами. Сточки зрения надёжности они давно выработали ресурс хранения и эксплуатации, что в любой момент грозит выходом элемента из строя. Считается, что термодатчики на диодах обеспечивают приемлемую линейность измерения температуры в диапазоне 0…+ 100°С (по некоторым оценкам -60…+ 150°С). Для достоверности достаточно откалиброваться в двух крайних точках диапазона по образцовому термометру ТЛ-4 ГОСТ 28498-90. Если таковой отсутствует, то используют … обычную очищенную воду. Известно, что температуру 0°С можно получить в момент образования льда (смесь воды с льдинками в морозильной камере холодильника). Температура +100°С соответствует кипящей воде в кухонном чайнике. Контрольная проверка — температура тела человека. Электрический режим работы диодов должен быть стабильным во времени и максимально не нагруженным по току (Рис. 3.66, а…д), в связи с чем уменьшаются ошибки измерений, связанные с саморазогревом кристалла. а) высокоомный резистор /?/служит своеобразным генератором стабильного тока для термодатчика VD1. Напряжение на входе МК пропорционально температуре окружающей среды в диапазоне-50…+100°С. Коэффициент преобразования составляет 2…2.5 мВ/°С, погрешность меньше 1%. Конденсатор С/снижает уровень помех при большом удалении диода VD1 от МК; б) к двум каналам АЦП МК подключаются одинаковые цепи, но измеряемые напряжения будут разными, поскольку VD1 служит термодатчиком, а VD2 — обычным диодом. Используется дифференциальный режим работы АЦП. Фиксируются не абсолютные температуры, а их разность в двух удалённых местах, например, в помещении {VD2) и на улице {VD1). Диоды могут быть не только германиевыми, но и кремниевыми. Их можно зашунтировать конденсаторами 0.1 мкФ; Рис. 3.66. Схемы подключения диодных термодатчиков к МК {окончание)’. в) усилитель DA1 расширяет динамический диапазон сигнала, поступающего от термодатчика на диоде VD1. Резистором R2 калибруется начальное значение, резистором R6 — диапазон температур. Чтобы повысить линейность по краям, ОУ Z)/l/следует применить «rail-to-rail»; г) «нижнее» включение диодов Шоттки VDI…VD4, выступающих в качестве термодатчиков. Их последовательное соединение повышает чувствительность в четыре раза. Температура определяется табличным методом по замерам напряжений АЦП МК. Резистор RI имеет высокое сопротивление, что снижает протекающий через термодатчики ток и устраняет их саморазогрев. Резистор обеспечивает оптимальное входное сопротивление для АЦП МК; д) «верхнее» включение кремниевых диодов VDI, VD2, выступающих в качестве термодатчиков. Для нормальной работы АЦП МК требуется, чтобы на вход подавалось напряжение, близкое к питанию +5 В. Для сравнения, в схемах с «нижним» включением диодов можно подавать на вход более низкое (а значит и более стабильное) напряжение +1.2…+2.5 В от внешнего ИОН. Возможная замена диодов VD1, VD2— 1N4148. nauchebe.net Данный светодиодный индикатор температуры на датчике LM35 можно применить для визуальной индикации положительной температуры внутри холодильника, двигателя автомобиля, воды в аквариуме и так далее. Индикация построена на 10 светодиодах под управлением микросхемы LM3914. Температурным датчиком данного устройства служит LM35. Простота светодиодного индикатора обусловлена применением только лишь двух интегральных радиокомпонентов, идеально подходящих для данного случая. Питается датчик от 4…30 вольт, точность измерения не хуже 0,3 гр. С, имеет отличную линейную зависимость выходного сигнала от температуры. На выходе у него напряжение равное температуре датчика умноженное на 10мВ, то есть при температуре 22 градуса на выходе LM35 будет: 22 х 10мВ = 0,22 вольта. Для усиления амплитуды выходного напряжения с датчика LM35 индикатора, использован делитель напряжения на основе подстроечного резистора RЗ. Так как в схеме минусовой вывод датчика LM35 соединен с бегунком подстроечного резистора, то потенциал на выходе равно соотношению сопротивлений верхней и нижней частей подстроечного резистора. Если оставить соотношение как на схеме (9 кОм и 1 кОм) то коэффициент будет равен 10. В таком случае, к примеру, при 22 гр. С напряжение на выходе делителя будет равно 2,2 вольта. Визуализацию измеренной температуры, светодиодного индикатора, осуществляет микросхема LM3914, которая как нельзя, кстати, подходит для данной роли. Она имеет в своем составе один управляющий вход и десять компараторов к выходам, которых подключаются светодиоды. На ножке 8 микросхемы LM3914 находится стабилизированное напряжение 1,25 В. Верхний предел, при котором зажигается светодиод HL10, можно выставить при помощи переменного резистора R2, который играет роль делителя напряжения. Чтобы установить, к примеру, для HL10 уровень в 30 гр. С, необходимо на ножках 6, 7 выставить 3,0 вольта. Нижний же порог, когда зажигается только HL1, устанавливается при помощи сопротивления R1, соединенного с ножкой 4. Необходимые величины нижнего и верхнего температурного уровня индикатора выставляются при помощи точного цифрового термометра. Источник: «Электронные устройства для рыбалки», Изабель Г. www.joyta.ruМикроконтроллеры Процессоры, проекты, программирование. Датчики температуры микросхемы
Цифровой датчик температуры STLM75.
Цифровой датчик температуры STLM75.
Обозначения выводов микросхемы
SDA
Линия данных шины I2C
SCL
Линия тактирования шины I2C
OS/Int
Выход термостатирования
A0-A2
Линии задания младших битов адреса на шине I2С
Разряды
7
6
5
4
3
2
1
0
Значение
1
0
0
1
A2
A1
A0
R/W
Регистры микросхемы STLM75.
Регистр команд/адреса
Регистр конфигурации
Регистр температуры.
Режимы термостататирования в STLM75
Регистр верхнего предела (TOS)
Регистр нижнего предела (гистерезис) (THYS)
Датчик температуры | Все своими руками
Опубликовал admin | Дата 9 июня, 2014 Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".
Датчик температуры DS1621. Подробное описание датчика
Описание выводов датчика DS1621
Принцип работы датчика DS1621
Регистр состояния
Команды обмена
Улучшение точности измерений
Режим термостата DS1621
измеряем где и как угодно
Аналоговые температурные датчики
Наименование Погрешность измерения, °C Диапазон напряжений питания, В Рабочий температурный диапазон, °C LM94023 ±1,5 1,5…5,5 @ 5,4 мкА -50…150 LM94022 ±1,5 1,5…5,5 @ 5,4 мкА -50…150 LM94021 ±1,5 1,5…5,5 @ 9 мкА -50…150 LM20 ±1,5 2,4…5,5 @ 4,5 мкА -55…130 LM35 ±0,5 4…30 @ 56 мкА -55…150 Датчики с выходом напряжения
Токовые датчики
«Термоключи»
Наименование Метод задания порога,точность, °C Напряжение питания, В;ток потребления, мкА Диапазон пороговых уровней температуры, °C LM26LV Заводские предустановки, ± 2,2 1,6…5,5; 8 0…150, шаг 1 LM26 Заводские предустановки, ± 3 2,7…5,5; 16 -55…125, шаг 1 LM27 Заводские предустановки, ± 3 2,7…5,5; 15 120…150, шаг 1 LM56 Пользовательский, ± 2 2,7…10; 110 -40…125, внешние резисторы LM57 Пользовательский, ± 1,5 2,4…5,5; 24 -40…150, внешние резисторы Цифровые температурные датчики
Наименование Точность, °C;разрядность, бит Напряжение питания, В; ток потребления, мА Температурный диапазон, °C Интерфейс LM73 ±2,0; 9 3…5,5; 1 -55…125 2-wire LM75A ±2,0°; 9 3…5,5В; 1 -55…125 2-wire LM92 ±0,33 & ±0,5; 13 2,7…5,5; 0,625 -55…150 2-wire LM71 ±1,5; 13 2,65…5,5; 0,55 -40…150 3-wire LM95071 ±1,0; 14 2,4…5,5; 0,28 -55…150 3-wire LM74 ±1,25; 13 3…5,5; 0,52 -55…150 3-wire Датчики локальной температуры
Датчики температуры удаленного диода
Наименование Точность, °C; корпус; число сигнальных линий Метод измерений Количество каналов LM95245 ±0,75; MSOP-8; 1 45 нм, TruTherm® 1 LM95235 ±0,75; MSOP-8; 1 65 нм, TruTherm 1 LM95241 ±1,25; MSOP-8; 1 65 нм, TruTherm 2 LM95234 ±0,875; LLP-14; 3 65 нм, TruTherm 0…4 LM95214 ±1,1; LLP-14; 3 Тр-р 2N3904 0…4 Мониторы аппаратуры
Серия Метод контроля Ключевые особенности LMP92001 – 16-каналов, 12-бит АЦП, точность ±0,1% TUE, двенадцать 12-битных ЦАП, внутренний источник опорного напряжения, встроенный температурный датчик, 8-линий ввода-вывода, интерфейс I2C. LM96080 – 10-бит сигма-дельта АЦП. отслеживание 7 напряжений, локальная температура, измерение скорости вращения двух кулеров; интерфейс I2C, совместимый с LM80 LM96194 PI & LUT Монитор рабочей станции, 4 канала работы с удаленными диодами с технологией TruTherm, 4 сенсорных входа, 2 контроля кулера, 8 мониторов напряжения. LM94 PI & LUT Монитор сервера, 4 TruTherm канала работы с удаленными диодами, 4 сенсорных тач-входа, 2 контроллера кулеров, 16 линий контроля напряжения, контроллер 4-пинового кулера LM96000 Linear Монитор персонального компьютера, два канала измерения температуры удаленных диодов, dual RDTS, контроллер 4-пинового кулера LM96163 12-point LUT 11-бит удаленный диод с TruTherm, улучшенный аналоговый тракт, цифровая фильтрация сигнала LM81 – Монитор напряжения, выход ЦАП, тач-входы Средства отладки и разработки
Заключение
Литература
Наши информационные каналы
О компании National Semiconductor (от Texas Instruments)
Подключение датчика температуры ds18b20, dht, lm35, tmp36 к Arduino
Описание датчиков температуры
Датчики температуры по типу
Датчики температуры для работы с Ардуино
Датчик температуры DS18B20
DS18B20 – цифровой 12-разрядный температурный датчик. Устройство доступно в 3 вариантах корпусов — 8-Pin SO (150 mils), 8-Pin µSOP, и 3-Pin TO-92, чаще всего используется именно последний. Он же изготавливается во влагозащитном корпусе с тремя выходами. Датчик прост и удобен в использовании, к плате Ардуино можно подключать сразу несколько таких приборов. А так как каждое устройство обладает своим уникальным серийным номером, они не перепутаются в результате измерения. Важной особенностью датчика является возможность сохранять данные при выключении прибора. Также DS18B20 может работать в режиме паразитного питания, то есть без внешнего питания через подтягивающий резистор. Подробная статья о ds18b20.
Датчики температуры DHT
DHT11 и DHT22 – две версии датчика DHT, обладающие одинаковой распиновкой. Разливаются по своим характеристикам. Для DHT11 характерно определение температуры в диапазоне от 0С до 50С, определение влажности в диапазоне 20-80% и частота измерений 1 раз в секунду. Датчик DHT22 обладает лучшими характеристиками, он определяет влажность 0-100%, температурный диапазон увеличен – от -40С до 125С, частота опроса 1 раз за 2 секунды. Соответственно, стоимость второго датчика дороже. Оба устройства состоят из 2 основных частей – это термистор и датчик влажности. Приборы имеют 4 выхода – питание, вывод сигнала, земля и один из каналов не используется. Датчик DHT11 обычно используется в учебных целях, так как он показывает невысокую точность измерений, но при этом он очень прост в использовании. Другие технические характеристики устройства: напряжение питания от 3В до 5В, наибольший ток 2,5мА. Для подключения к ардуино между выводами питания и выводами данных нужно установить резистор. Можно купить готовый модуль DHT11 или 22 с установленными резисторами.
Датчик температуры LM35
LM35 – интегральный температурный датчик. Обладает большим диапазоном температур (от -55С до 150С), высокой точностью (+-0,25С) и калиброванным выходом. Выводов всего 3 – земля, питание и выходной мигнал. Датчик стоит дешево, его удобно подключать к цепи, так как он откалиброван уже на этапе изготовления, обладает низким сопротивлением и линейной зависимостью выходного напряжения. Важным преимуществом датчика является его калибровка по шкале Цельсия. Особенности датчика: низкая стоимость, гарантированная точность 0,5С, широкий диапазон напряжений (от 4 до 30В) ток менее 60мА, малый уровень собственного разогрева (до 0,1С), выходное сопротивление 0,1 Ом при токе 1мА. Из недостатков можно выделить ухудшение параметров при удалении на значительное расстояние. В этом случае источниками помех могут стать радиопередатчики, реле, переключатели и другие устройства. Также существует проблема, когда температура измеряемой поверхности и температура окружающей среды сильно различаются. В этом случае датчик показывает среднее значение между двумя температурами. Чтобы избавиться от этой проблемы, можно покрыть поверхность, к которой подключается термодатчик, компаундом.
TMP36 – аналоговый термодатчик
Датчик температуры Использует технологии твердотельной электроники для определения температуры. Устройства обладают высокой точностью, малым износом, не требуют дополнительной калибровки, просты в использовании и стоят недорого. Измеряет температуру в диапазоне от -40С до 150С. Параметры схожи с датчиком LM35, но TMP36 имеет больший диапазон чувствительности и не выдает отрицательное значение напряжения, если температура ниже нуля. Напряжение питания от 2,7В до 5,5В. Ток – 0.05мА. При использовании нескольких датчиков может возникнуть проблема, при которой полученные данные будут противоречивы. Причиной этого являются помехи от других термодатчиков. Чтобы исправить эту неполадку нужно увеличить задержку между записью измерений. Низкое выходное сопротивление и линейность результатов позволяют подключать датчик напрямую к схеме контроля температуры. TMP36 также, как и LM34 обладает малым нагревом прибора в нормальных условиях.
Сравнение характеристик датчиков температуры Ардуино
Название Температурный диапазон Точность Погрешность Вариант исполнения Библиотека DS18B20 -55С…125С +-0.0625С +-2% Существует в 3 видах — 8-Pin SO (150 mils), 8-Pin µSOP, и 3-Pin TO-92, последний изготавливается во влагозащитном корпусе. Onewire.h DHT11 0С…50С +-2С +-2% температура, +-5% влажность Изготавливается в виде готового прямоугольного модуля с 4 ножками, третья не используется. Также встречаются модули с тремя ножками и сразу установленным резистором на 10 кОм. DHT.h DHT22 -40С…125С +-0,5С +-0,5% температура, от +-2 до +-5% влажность DHT.h LM35 -55С…150С +-0.5С (при 25С) +-2% Существует несколько видов корпуса: TO-46 (для датчиков LM35H, LM35AH, TMP36 -40С…150С +-1С +-2% Изготавливается в трехвыводном корпусе TO-92, восьмивыводном SOIC и пятивыводном SOT-23. Термодатчики на диодах в схемах на МК
Светодиодный индикатор температуры на датчике LM35. Схема
Описание работы светодиодного индикатора на LM35
Для получения повышенной точности светодиодного индикатора температуры и облегчения его калибровки, выбор был сделан в пользу полупроводникового датчика температуры LM35.
Поделиться с друзьями: