При решении задачи нахождения силы токов в участках сложной цепи постоянного тока при известных сопротивлениях участков цепи и заданных электродвижущих силах (ЭДС) часто применяют правила Кирхгофа. Всего их два. Правила Кирхгофа не являются самостоятельными законами. Они всего лишь следствия закона сохранения заряда (первое правило) и закона Ома (второе правило). При любой сложности цепи можно провести все расчеты параметров сети, применяя закон Ома и закон сохранения заряда. Правила Кирхгофа используют для того, чтобы упростить процедуру написания системы линейных уравнений, в которые входят искомые токи. Для формулировки первого правила Кирхгофа определим, что считается узлом цепи. Узел разветвленной цепи -это точка цепи, в которой сходятся три или больше проводников с токами. Для верной записи формулы первого правила Кирхгофа необходимо принимать во внимание направления течения токов. Следует помнить, что токи, входящие в узел и токи, выходящие из него, записываются в уравнения с разными знаками. Если в задаче направления токов не заданы, то их выбирают произвольно. Если в ходе решения задачи выясняется, что полученный ток имеет знак минус, то это означает, что истинное направление тока является противоположным. При решении задачи, следует решить, какие токи считать положительными, например, выходящие из узла, и тогда все токи в этой задаче записывать в соответствующих уравнениях со знаком плюс. Математическая запись первого правила Кирхгофа: Формула (1) значит, что сумма токов с учетом знаков в каждом узле цепи постоянного тока равна нулю. Обычно для наглядности и простоты при составлении уравнений на схемах указывают направления течения, выбирая их произвольно. Первое правило Кирхгофа иначе называют правилом узлов. Это правило следствие закона сохранения электрического заряда. Сумма токов (с учетом их знаков), которая сходится в узле — это заряд, проходящий через данный узел в единицу времени. Если токи в узле не зависят от времени, то их сумма должна быть равна нулю, в противном случае, потенциал узла будет изменяться со временем, соответственно токи будут переменными. Если ток в цепи постоянный, то в цепи не может быть точек, которые бы накапливали заряд. Иначе токи будут изменяться во времени. Используя только одно первое правило Кирхгофа не получится составить полную систему независимых уравнений, которых было бы достаточно для решения задачи нахождения всех сил токов, которые текут во всех сопротивлениях цепи при известных ЭДС и сопротивлениях. Для написания дополнительных уравнений используют второе правило Кирхгофа. ru.solverbook.com Два приема, которые применяют для упрощения процесса составления уравнений, необходимых при расчетах сложных разветвленных цепей постоянного тока называют законами (вернее было бы сказать правилами) Кирхгофа. Прежде чем перейти к самим правила Кирхгофа введем два необходимых определения. Разветвлёнными цепями названы цепи, которые имеют несколько замкнутых контуров, несколько источников электродвижущей силы (ЭДС). Узлом разветвлённой цепи называют точку, в которой сходятся три или более проводников с токами. Первое правило Кирхгофа называют правилом узлов, так как оно касается сил токов в узах цепи. Словесно первый закон Кирхгофа формулируют следующим образом: Алгебраическая сумма сил токов в узле равна нулю. В виде формулы это правило запишем как: С каким знаком сила тока будет входить в сумму (1), зависит от произвольного выбора. Но при этом следует считать, что все входящие в узел токи имеют одинаковые знаки, а все исходящие из узла токи имеют противоположные входящим, знаки. Пусть все входящие токи мы примем за положительные, тогда все исходящие их этого узла токи будут отрицательными. Если направления токов изначально не заданы, то их задают произвольно. Если при расчетах получено, что сила тока отрицательна, значит, что верное направление тока является противоположным тому, которое предполагали. Первый закон Кирхгофа является следствием закона сохранения заряда. Если в цепи текут только постоянные токи, то нет в этой цепи точек, которые накапливали бы заряд. Иначе токи не были бы постоянными. Первый закон Кирхгофа дает возможность составить независимое уравнение, при наличии в цепи k узлов. Второй закон Кирхгофа относят к замкнутым контурам, поэтому его называют правилом контуров. Согласно этому правилу суммы произведений алгебраических величин сил тока на внешние и внутренние сопротивления всех участков замкнутого контура равны алгебраической сумме величин сторонних ЭДС (), входящих в рассматриваемый контур. В виде формулы второй закон Кирхгофа запишем как: где величину часто называют падением напряжения; N – число рассматриваемых участков избранного контура. При использовании второго правила Кирхгофа важно помнить о направлении обхода контура. Как это делается? Произвольно выберем направление обхода рассматриваемого в задаче контура (по часовой стрелке или против нее). В случае совпадения направления обхода контура с направлением силы тока в рассматриваемом элементе, величина входит в (2) со знаком плюс. ЭДС войдет в сумму правой части выражения (2) со знаком плюс, если при движении вдоль контура, в соответствии с избранным направлением обхода первым мы встречаем отрицательный полюс источника ЭДС. Используя второе правило Кирхгофа можно получить независимые уравнения для тех контуров цепи, которые не получены наложением уже описанных контуров. Количестов независимых контуров (n) равно: где p – количество ветвей в цепи; k – число узлов. Количество независимых уравнений, которые дадут оба правила Кирхгофа равно (s): Делаем вывод о том, что число независимых уравнений будет равно числу разных токов в исследуемой цепи. Второе правило Кирхгофа — следствие закона Ома. В принципе любую цепь можно рассчитать, применяя только закон Ома и закон сохранения заряда. Правила Кирхгофа являются всего лишь упрощающими приемами для решения задач, рассматривающих цепи постоянного тока. Используя правила Кирхгофа для составления уравнений необходимо внимательно следить за расстановкой знаков токов и ЭДС. Первое и второе правила Кирхгофа дают метод расчета цепи, то есть используя их можно найти все токи в цепи, если известны все ЭДС и сопротивления, в том числе и внутренние сопротивления источников. ru.solverbook.com Очень часто электрическая цепь включает несколько источников тока и сопротивлений, которые соединены разными способами. Такую цепь называют сложной разветвленной электрической цепью. Значимыми для составления систем уравнений, позволяющих провести расчеты в сети постоянного тока, являются ее узлы и замкнутые контуры. Расчеты любой сети можно проводить, используя закон Ома и закон сохранения заряда. Но использование специальных правил, которые называют правилами Кирхгофа (иногда законами Кирхгофа) позволяют упростить процедуру составления уравнений для вычислений. Всего выделяют два правила Кирхгофа. Довольно часто в электрической цепи в одной точке сходятся более двух проводников, по которым текут токи. Такие точки в цепи называют узлами или разветвлениями. В любом узле, если ток в цепи постоянен, полное изменение заряда за некоторый промежуток времени равно: где суммирование проводят с учетом знаков силы тока. Если мы имеем дело с постоянным током в цепи, то потенциалы всех ее точек остаются неизменными. Значит, в узлах не может накапливаться заряд. Поэтому рассматривая силу тока, как алгебраическую величину запишем: где N – число токов, которые сходятся в узле. Выражение (2) носит название первого правила Кирхгофа (правило узлов): сумма токов, текущих через сопротивления в цепи постоянного тока, с учетом их знака, сходящихся в узле, равна нулю. Знак у тока (плюс или минус) выбирают произвольно, но при этом следует считать, что все входящие в узел токи имеют одинаковые знаки, а все исходящие из узла токи имеют противоположные входящим, знаки. Допустим, все входящие токи мы примем за положительные, тогда все исходящие их этого узла токи будут отрицательными. Первое правило Кирхгофа дает возможность составить независимое уравнение, если в цепи k узлов. Во втором правиле Кирхгофа рассматривают замкнутые контуры, поэтому оно называется правилом контуров. Формулируется это правило Кирхгофа следующим образом: Суммы произведений алгебраических величин сил тока на внешние и внутренние сопротивления всех участков замкнутого контура равны алгебраической сумме величин сторонних ЭДС (), которые входят в рассматриваемый контур. В математическом виде второй закон Кирхгофа записывают как: Величины называют падениями напряжения. Прежде, чем применять второй закон Кирхгофа определяются с направлением положительного обхода контура. Выбирается направление произвольно, либо по часовой стрелке, либо против нее. Если направление обхода совпадает с направлением течения тока в рассматриваемом элементе контура, то падение напряжения в формулу второго закона для данного контура входит с положительным знаком. ЭДС считают положительной, если при движении по контуру (в избранном направлении) первым встречается отрицательный полюс источника. Более правильно было бы сказать, сто ЭДС считают положительной, если работа сторонних сил по перемещению единичного положительного заряда на рассматриваемом участке цепи в заданном направлении обхода контура является положительной величиной. Второе правило Кирхгофа является следствием закона Ома. ru.solverbook.com Немецкий ученый Густав Кирхгоф – один из величайших физиков всех времен, написавший целую кучу работ по электричеству. Эти работы получили признание среди передовых ученых девятнадцатого века и стали основой для работ множества других ученых, а также дальнейшего развития науки и техники. Он был человеком который посвятил всю свою жизнь науке и несомненно сделал наш мир чуточку лучше. В теории, законы Ома устанавливают взаимосвязь между силой, напряжением и сопротивлению тока для простых замкнутых одноконтурных цепей. Но на практике чаще всего используются гораздо более сложные, разветвленные цепи, в систему которых может входить несколько контуров и узлов, в которые сходятся проходящие по другим ответвлениям электротоки и их невозможно описать по стандартным правилам для расчета комбинаций параллельных и последовательных цепей. Правило Кирхгофа делает возможным определение силы и напряжения тока в таких цепях. Первый закон Кирхгофа показывает связь токов и узлов электрической цепи. Формула связи очень проста. Это правило гласит, что сумма токов всех ветвей, которые сходятся в один узел электроцепи, равняется нулю (речь идёт об алгебраических значениях). При этом накопление электрических зарядов в одной точке замкнутой электроцепи невозможно.При суммировании токов принято брать положительный знак, если электроток идёт по направлению к узлу, и отрицательный знак, если ток идёт в противоположную от узла сторону. Для описания понятной аналогии для этого случая, уместны сравнения с течениями воды в соединенных между собой трубопроводах. Второй закон Кирхгофа описывает алгебраическую зависимость между электродинамической силой и напряжением в замкнутой электроцепи. В любом замкнутом контуре сумма электродинамической силы равна сумме падания напряжения на сопротивлениях, относящихся к данному контуру. Для написания формул, определяющих второй закон Кирхгофа, берут положительное значение электродинамической силы и падение напряжений, если направление на относящихся к ним отрезках контура совпадает с произвольным направлением обхода контура. А если же направление электродинамической силы и токов противоположны выбранному направлению, то эти электродинамические силы и падение напряжений берут отрицательными: Алгоритм определения знака величины электродинамической силы и падения напряжений: Пример вышеописанной формулы второго закона : Закономерности Кирхгофа применяются на практике для сложных контурных цепей, для выяснения распределений и значений токов в этих электроцепях. С помощью уравнений, положенных в основу этих закономерностей моделируется система контурных напряжений и токов, после решения которой можно сказать какое направление электротока необходимо выбрать. Первое и Второе правило Кирхгофа получили огромное применение при построении параллельных и последовательных контурных цепей. При последовательном строении электроцепи (в качестве примера отлично подойдёт новогодняя ёлочная гирлянда) сопротивление на каждом последующем элементе падает согласно закону Ома. При параллельном строении напряжение равно подаётся на все элементы электроцепи, и для определения значений токов в любом месте электроцепи используется второй закон Кирхгофа. Также часто эти правила сочетаются с другими приёмами, такими как принцип суперпозиции и метод эквивалентного электрогенератора и составления потенциальной диаграммы. Интересные факты: infoelectrik.ru Важными правилами в физике и электротехнике являются правила, выведенные Кирхгофом, которые позволяют рассчитать цепи любой сложности, работающие на переменном, постоянном и квазистационарном токе. Данные правила были предложены в 1845 году великим немецким физиком Густавом Кихгофом. Иногда эти правила ещё называют законами, хотя такое название не вполне корректно в силу того, что они не носят характера фундаментальных законов Природы, а выведены из других законов. Рассмотрим описания и значения для физики и электротехники правил Кирхгофа. Правила Кирхгофа – это соотношения между токами и напряжениями, выполняемые на участках произвольной электрической цепи. Формулировка правил осуществляется через вспомогательные понятия узла, контура и ветви электрической цепи. Рассмотрим первое правило Кирхгофа, иначе называемое правилом токов Кирхгофа. Оно вытекает из закона сохранения заряда и звучит следующим образом: алгебраическая сумма всех токов в любом узле произвольной цепи равняется нулю. Или, выражаясь более понятным языком, количество тока, втекающего в узел, равно количеству тока, вытекающего из него. В виде формулы это выглядит так: I1+I2+..In=0 При расчете, токи, втекающие в узел, считаются со знаком «плюс», а вытекающие из узла – со знаком «минус». Правило напряжений Кирхгофа, чаще называемое вторым правилом Кирхгофа, является следствием закона сохранения заряда. Оно звучит следующим образом: алгебраическая сумка падений напряжений, на всех ветвях произвольного замкнутого контура, равняется алгебраической сумме ЭДС (электродвижущих сил) ветвей этого контура. Если в данном контуре нет источников ЭДС (идеальных источников напряжения), то су elhow.ru Определение первого закона звучит так: «Алгебраическая сума токов, протекающих через узел, равна нулю». Можно сказать немного в другой форме: «Сколько токов втекло в узел, столько же и вытекло, что говорит о постоянстве тока». Узлом цепи называют точку соединения трех и больше ветвей. Токи в таком случае распределяются пропорционально сопротивлениям каждой ветви. I1=I2+I3 Такая форма записи справедлива для цепей постоянного тока. Если использовать первый закон Кирхгофа для цепи переменного тока, то используются мгновенные значения напряжений, обозначаются буквой İ и записывается в комплексной форме, а метод расчета остаётся прежним: Комплексная форма учитывает и активную и реактивную составляющие. Если первый описывает распределение токов в ветвях, то второй закон Кирхгофа звучит так: «Сумма падений напряжений в контуре равна сумме всех ЭДС». Простыми словами формулировка звучит так: «ЭДС, приложенное к участку цепи, распределится по элементам данной цепи пропорционально сопротивлениям, т.е. по закону Ома». Тогда как для переменного тока это звучит так: «Сумма амплитуд комплексных ЭДС равняется сумме комплексных падений напряжений на элементах». Z – это полное сопротивление или комплексное сопротивление, в него входит и резистивная часть и реактивная (индуктивность и ёмкость), которая зависит от частоты переменного тока (в постоянном токе есть только активное сопротивление). Ниже представлены формулы комплексного сопротивления конденсатора и индуктивности: Вот картинка, иллюстрирующая вышесказанное: Тогда: Давайте приступим к применению на практике теоретического материала. Чтобы правильно расставить знаки в уравнениях, нужно выбрать направление обхода контура. Посмотрите на схему: Предлагаем выбрать направление по часовой стрелке и обозначить его на рисунке: Штрих-пунктирной линией обозначено, как идти по контуру при составлении уравнений. Следующий шаг – составить уравнения по законам Кирхгофа. Используем сначала второй. Знаки расставляем так: перед электродвижущей силой ставится минус, если она направлена против движения часовой стрелки (выбранное нами в предыдущем шаге направление), тогда для ЭДС направленного по часовой стрелке – ставим минус. Составляем для каждого контура с учетом знаков. Для первого смотрим направление ЭДС, оно совпадает со штрих-пунтирной линией, ставим E1 плюс E2: Для второго: Для третьего: Знаки у IR (напряжения) зависят от направлением контурных токов. Здесь правило знаков такое же, как и в предыдущем случае. IR пишется с положительным знаком, если ток протекает в сторону направления обхода контура. А со знаком «–», если ток течет против направления обхода контура. Направление обхода контура — это условная величина. Нужна она только для расстановки знаков в уравнениях, выбирается произвольно и на правильность расчётов не влияет. В отдельных случаях неудачно выбранное направление обхода может усложнить расчёт, но это не критично. Рассмотрим еще одну цепь: Здесь целых четыре источника ЭДС, но порядок расчета тот же, сначала выбираем направление для составления уравнений. Теперь нужно составить уравнения согласно первому закону Кирхгофа. Для первого узла (слева на схеме цифра 1): I3 втекает, а I1, I4 вытекает, отсюда и знаки. Для второго: Для третьего: Вопрос: «Узла четыре, а уравнения всего три, почему?». Дело в том, что число уравнений первого правила Кирхгофа равно: Nуравнений=nузлов-1 Т.е. уравнений всего на 1 меньше, чем узлов, т.к. этого достаточно, чтобы описать токи во всех ветвях, советую еще раз подняться к схеме и проверить, все ли токи записаны в уравнениях. Теперь перейдем к построению уравнений по второму правилу. Для первого контура: Для второго контура: Для третьего контура: Если подставить значения реальных напряжений и сопротивлений, тогда выяснится, что первый и второй законы справедливы и выполняются. Это простые примеры, на практике приходится решать гораздо более объёмные задачи. Вывод. Главное при расчётах с помощью первого и второго законов Кирхгофа – соблюдения правила составления уравнений, т.е. учитывать направления протекания токов и обхода контура для правильной расстановки знаков для каждого элемента цепи. В электротехнике также важны и расчёты магнитных цепей, оба закона нашли своё применение и здесь. Суть остаётся той же, но вид и величины изменяются, давайте рассмотрим этот вопрос подробнее. Сначала нужно разобраться с понятиями. Магнитодвижущая сила (МДС) определяется произведением количества витков катушки, на ток через неё: F=w*I Магнитное напряжение – это произведение напряженности магнитного поля на ток, через участок, измеряется в Амперах: Um=H*I Или магнитный поток через магнитное сопротивление: Um=Ф*Rm L – средняя длина участка, μr и μ0 – относительная и абсолютная магнитная проницаемость. Проводя аналогии запишем первый закон Кирхгофа для магнитной цепи: То есть сумма всех магнитных потоков через узел равна нулю. Вы заметили, что звучит почти так же, как и для электрической цепи? Тогда второй закон Кирхгофа звучит, как «Сумма МДС в магнитном контуре равна сумме UM (магнитных напряжений). Магнитный поток равен: Для переменного магнитного поля: Он зависит только от напряжения на обмотке, но не от параметров магнитной цепи. В качестве примера рассмотрим такой контур: Тогда для ABCD получится такая формула: Для контуров с воздушным зазором выполняются следующие соотношения: Сопротивление магнитопровода: А сопротивление воздушного зазора (справа на сердечнике): Где S — это площадь сердечника. Чтобы полностью усвоить материал и наглядно просмотреть некоторые нюансы использования правил, рекомендуем ознакомиться с лекциями, которые предоставлены на видео: Открытия Густава Кирхгофа внесли весомый вклад в развитие науки, в особенности электротехники. С их помощью довольно просто рассчитать любой электрический или магнитный контур, токи в нём и напряжения. Надеемся, теперь вам стали более понятны правила Кирхгофа для электрической и магнитной цепи. Похожие материалы: samelectrik.ru Законы Кирхгофа – правила, которые показывают, как соотносятся токи и напряжения в электрических цепях. Эти правила были сформулированы Густавом Кирхгофом в 1845 году. В литературе часто называют законами Кирхгофа, но это не верно, так как они не являются законами природы, а были выведены из третьего уравнения Максвелла при неизменном магнитном поле. Но все же, первое более привычное для них название, поэтому и мы будет их называть, как это принято в литературе – законы Кирхгофа. Первый закон Кирхгофа – сумма токов сходящихся в узле равна нулю. Давайте разбираться. Узел это точка, соединяющая ветви. Ветвью называется участок цепи между узлами. На рисунке видно, что ток i входит в узел, а из узла выходят токи i1 и i2. Составляем выражение по первому закона Кирхгофа, учитывая, что токи, входящие в узел имеют знак плюс, а токи, исходящие из узла имеют знак минус i-i1-i2=0. Ток i как бы растекается на два тока поменьше и равен сумме токов i1 и i2 i=i1+i2. Но если бы, например, ток i2 входил в узел, тогда бы ток I определялся как i=i1-i2. Важно учитывать знаки при составлении уравнения. Первый закон Кирхгофа это следствие закона сохранения электричества: заряд, приходящий к узлу за некоторый промежуток времени, равен заряду, уходящему за этот же интервал времени от узла, т.е. электрический заряд в узле не накапливается и не исчезает. Второй закон Кирхгофа – алгебраическая сумма ЭДС, действующая в замкнутом контуре, равна алгебраической сумме падений напряжения в этом контуре. Напряжение выражено как произведение тока на сопротивление (по закону Ома). В этом законе тоже существуют свои правила по применению. Для начала нужно задать стрелкой направление обхода контура. Затем просуммировать ЭДС и напряжения соответственно, беря со знаком плюс, если величина совпадает с направлением обхода и минус, если не совпадает. Составим уравнение по второму закону Кирхгофа, для нашей схемы. Смотрим на нашу стрелку, E2 и Е3 совпадают с ней по направлению, значит знак плюс, а Е1 направлено в противоположную сторону, значит знак минус. Теперь смотрим на напряжения, ток I1 совпадает по направлению со стрелкой, а токи I2 и I3 направлены противоположно. Следовательно: -E1+E2+E3=I1R1-I2R2-I3R3 На основании законов Кирхгофа составлены методы анализа цепей переменного синусоидального тока. Метод контурных токов – метод основанный на применении второго закона Кирхгофа и метод узловых потенциалов основанный на применении первого закона Кирхгофа. Читайте также - Примеры решения задач на законы Кирхгофа electroandi.ruОсновные законы Кирхгофа для электрических цепей. Первое правило кирхгофа
Первое правило Кирхгофа, теория и примеры
Формулировка первого правила Кирхгофа
Примеры решения задач
Законы Кирхгофа простыми словами, теория и примеры
Первый закон (правило) Кирхгофа, простыми словами
Второй закон (правило) Кирхгофа, простыми словами
Примеры решения задач
Правила Кирхгофа, теория и примеры задач
Первое правило Кирхгофа
Второе правило Кирхгофа
Примеры решения задач
Первый и второй законы Кирхгофа
Общие понятия и описание первого закона Кирхгофа
Общие понятия и описание второго закона Кирхгофа
Области применения
Похожие статьи
Правила Кирхгофа
Определение
Первое правило
Второе правило
Законы Кирхгофа для электрической и магнитной цепи
Для расчетов задач по электротехнике в физике есть ряд правил, часто используют первый и второй закон Кирхгофа, а также закон Ома. Немецкий ученый Густав Кирхгоф имел достижения не только в физике, но и в химии, теоретической механике, термодинамике. В электротехнике используется закономерность, которую он установил для электрической цепи, из двух соотношений. Законы Кирхгофа (также их называют правилами) описывают распределение токов в узлах и падений напряжений на элементах контура. Далее мы попытаемся объяснить простым языком, как применять соотношения Кирхгофа для решения задач. Первый закон Кирхгофа
Второй закон Кирхгофа
Методы расчетов по первому и второму законам Кирхгофа
Законы Кирхгофа для магнитной цепи
Законы Кирхгофа
Поделиться с друзьями: