интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Применение конденсаторов. Конденсатор как работает


Как работает конденсатор. Емкость конденсатора. — МикроПрогер

Конденсатор — полупроводник, состоящий из двух обкладок, диэлектрика между ними и двумя выводами на обкладках.

 

Основная характеристика — емкость (C), измеряется в Фарадах.

Фарад. Единица измерения.

Формула емкости конденсатора

Формула емкости конденсатора

Формула емкости конденсатора показывает какое количество заряда способен «вместить» в себя конденсатор при текущем напряжении(потенциале) между его обкладками. Емкость зависит от диэлектрической проницаемости, размеров и формы конденсатора.

 

Работа конденсатора

Работа конденсатора

 

В схемах постоянного тока один вывод конденсатора стыкуется к земле(точка 4, 0V), второй к тому месту в схеме(точка 1, 5V), где требуется, собственно, работа конденсатора.

 

Цикл полной зарядки и разрядки конденсатора

Рассмотрим цикл полной зарядки и полной разрядки конденсатора.

Заряд конденсатора

При возникновении тока в схеме(на рисунке выше), ток через конденсатор не течет, но обкладки конденсатора заряжаются(в точке 2 на обкладке конденсатора скапливается электрический заряд) и ток течет от точки 1 к обкладке 2. Заряд достигает определенного уровня(зависит от характеристик конденсатора и напряжения в цепи) и после этого ток от точки 1 до точки 2 перестает течь.

Разрядка конденсатора

Как только напряжение 5V в цепи пропадает, происходит разрядка конденсатора, ток начинает течь обратно от точки 2 на обкладке конденсатора к точке 1, стараясь поддерживать напряжение в цепи. Затем конденсатор полностью разряжается ток перестает течь.

 

Стабилизация напряжения

Практическое применение этого свойства конденсатора заключается в поддерживании стабильности напряжения в цепи в точке 1. Как только напряжение становится чуть ниже 5V, конденсатор начинает отдавать свой накопленный заряд. Как только напряжение стабилизируется, становится равным 5V, конденсатор вновь начинает заряжаться.

 

Свойство накапливать и отдавать заряд используется во многих схемах электронной и аналоговой аппаратуры. На основе конденсатора изготавливаются следующие основные элементы схем:

  • Фильтр.  Используется в радиоэлектронной аппаратуре, акустических системах, в самых различных аналоговых и электронных устройствах. Допустим, у нас есть линия(5V), соединяющая два устройства — источник звукового сигнала и усилитель(который подает звуковой сигнал на динамики). Допустим, сигнал 5V приходит с определенной частотой, не превышающей 20кГц, длина одного импульса равна 2мс. Но на линию передачи влияют помехи и из-за помех в линии постоянно появляются импульсы напряжением 5V, но кратковременные — например, длительностью не более 10мкс. Чтобы в колонки не проходили эти импульсы помех(и мы не слышали посторонних звуков из динамиков), мы встраиваем в схему между усилителем и источником сигнала конденсатор, рассчитанный на время заряда при 5V более 10мкс, но намного меньше 2мс. Конденсатор будет заряжаться импульсами помех(брать их на себя, то есть фильтровать) и эти импульсы не будут проходить в усилитель. Так же он будет отбирать часть полезного сигнала, но так как время его зарядки намного меньше 2мс, то его влияния мы не заметим.
  • Выпрямитель напряжения. При выпрямлении переменного напряжения используется диодный мост. Диодный мост попеременно пропускает напряжение, подавая его на одну общую линию. Но в момент перепада переменного напряжения происходит пропадание тока в цепи. И в итоге вместо +-5V переменки у нас получается постоянное напряжение, изменяющееся от 0 до +5V. Чтобы этих колебаний не происходило, опять же, встраиваем после диодного моста конденсатор. Он будет заряжаться и отдавать ток в моменты перепада и пропадания напряжения на общем выводе
  • Генераторы импульсов и таймеры. Обычно в таких устройствах конденсатор применяется вместе с катушкой индуктивности. Вместе они составляют колебательный контур, основанный на свойствах конденсатора копить и отдавать заряд и на свойствах катушки копить и отдавать магнитную составляющую тока. Они работают в паре. Конденсатор заряжается и разряжается определенное время, зависящее от характеристик конденсатора. Подобрав нужные конденсаторы, можно рассчитать время разряда и заряда каждого из них и, исходя из этого, собрать целый таймер или генератор импульсов определенной длины и частоты.

 

Остались вопросы? Напишите комментарий. Мы ответим и поможем разобраться =)

Автор публикации

не в сети 3 недели

wandrys

877 Комментарии: 1Публикации: 31Регистрация: 17-03-2016

micro-proger.ru

Применение конденсаторов, принцип работы конденсатора, электрическая ёмкость конденсатора

Применение конденсаторов весьма обширно: совместно с резисторами в таймерах, потому, что резисторы позволяет им медленно заряжаться и/или разряжаться; в колебательных контурах приёмопередающих устройств совместно с катушками индуктивности; в блоках питания для сглаживания пульсаций напряжения после выпрямления; в различных фильтрах потому, что конденсаторы легко пропускают переменный ток и не пропускают постоянный; просто в схемах, где необходимо замедлить процесс увеличения или падения напряжения и др.

Принцип работы конденсатора

Принципом работы конденсатора считается способность конденсатора сохранять электрический заряд, т.е. заряжаться и в нужный момент разряжаться. Например в колебательном контуре радиоприёмника или передатчика, когда он соединён (как правило параллельно, но может и последовательно) с катушкой индуктивности. При таком соединении получается, что на пластинах конденсатора периодически происходит смена полярности. Сначала одна пластина заряжается положительным зарядом, а вторая отрицательным. После того, как он зарядится полностью, он начинает разряжаться. После полного разряда он начинает заряжаться в обратном направлении. Та пластина, что была с положительным зарядом, заряжается отрицательным, а другая - положительным. Так до полного заряда и снова разряд. На этом принципе работы конденсатора основана работа всех генераторов аналоговых приёмопередающих устройств.

Электрическая ёмкость конденсатора

Электрическая ёмкость конденсатора характеризует способность конденсатора сохранять электрический заряд. Чем больше ёмкость, тем больший заряд может быть сохранен. Электрическая ёмкость конденсатора измеряется в Фарадах, обозначается F. Однако 1F - очень большая емкость, поэтому для обозначения ёмкости как правило используются префиксы, обозначающие меньшие значения емкости.

Используются три префикса: µ (микро), n (нано) и p (пико):

  • µ (микро) означает 10-6 (одна миллионная часть), т.е. 1000000µF = 1F
  • n (нано) означает 10-9 (одна миллиардная часть), т.е. 1000nF = 1µF
  • p (пико) означает 10-12 (одна триллионная часть), т.е. 1000pF = 1nF
Ёмкость конденсатора не всегда просто определить, т.к. существует множество типов конденсаторов с различными системами маркировки.

 

Все существующие типы конденсаторов разделяются на две основные группы: электролитические конденсаторы (так же называемые полярными) и неполярные. Неполярные в свою очередь подразделяются на конденсаторы постоянной ёмкости и конденсаторы переменной ёмкости, разновидностью которых являются подстроечные конденсаторы. Каждая группа имеет собственное схематическое обозначение.

katod-anod.ru

Принцип работы конденсатора | Бакарабан

В одной из статей мы поговорили о том, что такое конденсатор. Сейчас же хочется рассказать, как он работает и где используется.

Емкость

По своей сути, конденсатор – пассивный элемент электрической цепи, обладающий способностью накапливать электрический заряд и энергию. Мера этой способности – емкость, чем она выше тем больше энергии способен накопить конденсатор и освободить в дальнейшем.

емкость конденсатораЕмкость измеряется в Фарадах (Ф = [Кл/В] = [А · с / В]), где А – сила тока, с – время, В — напряжение. Аккумулятор также имеет накопленный заряд, но конденсатор разряжается практически мгновенно, а аккумулятор – постепенно.

Типы соединения

 соединение конденсаторов

Чтобы в цепи получить большую емкость, конденсаторы соединяют параллельно. Общая емкость будет равна С=С1+С2+…+Сn.  Такой тип нужен для устройств, которым требуется повышенный кратковременный заряд энергии, например, для запуска.

Если же их соединить последовательно, то общая емкость будет равна С = 1/С1+1/С2+…+1/Сn, то есть емкость минимальна, что позволяет исключить пробоя (сгорания конденсатора) при высоком напряжении. Последовательное соединение используют не так часто, как параллельное, так как сейчас можно найти конденсаторы очень малой емкости, работающих при повышенном напряжении, а такое соединение только усложнит цепь.

Существует также смешанный тип соединения, в зависимости от расположения и количества элементов, расчетная формула меняется.

Из чего состоит

Из чего состоит конденсаторПлощадь пластины A должна быть намного больше расстояния d

В простейшем случае конденсатор состоит из двух обкладок и диэлектрика, который расположен между ними, но, в основном, это многослойное устройство.

В качестве диэлектрика в нем используются:

  • Воздух
  • Керамика
  • Слюда
  • Бумага
  • Стекло
  • Вакуум

 

Виды конденсаторов

  • Бумажные конденсаторы
бумажный конденсаторбумажный конденсатор
  • Электролитические конденсаторы
    • Алюминиевые
    • Танталовые
электролитический конденсаторэлектролитический конденсаторполимерный конденсаторполимерный конденсатор
  • Конденсатор переменной емкости
Конденсатор переменной емкостиКонденсатор переменной емкостиконденсатор пленочныйконденсатор пленочныйконденсатор керамическийконденсатор керамический

Принцип действия

Чтобы зарядить конденсатор, нужно подключить его обкладки к источнику тока, из-за того, что между пластинами конденсатора находиться диэлектрик, который не позволяет перейти разноименным зарядам на противоположную сторону, на одной пластине будут накапливаться положительные ионы, а на другой – отрицательные электроны.

 

конденсатор зарядка

Ток будет течь по проводнику до тех пор, пока на обкладках будет «место» для частиц, то есть пока не кончится емкость, в то же время будет расти напряжение.

конденсатор зарядка график

В итоге, на двух пластинах будет заряд одинаковым по модулю, но разным по знаку. По мере заполнения обкладок, ток будет уменьшаться. После того, как конденсатор зарядился, его можно подключить к потребителю, например, к лампочке, будет резкая разрядка (электроны с одной пластины, устремятся к ионам на другой), лампа на короткое время загорится (это используется в фотоаппаратах, в качестве вспышки).

Ток будет течь по проводнику до тех пор, пока на обкладках есть разность потенциалов, то есть пока заряды на двух пластинах не станут одинаковыми по знаку, в то же время будет падать напряжение.

конденсатор разрядка график

Хочется добавить, что это упрощенный разбор без углубления в расчеты, без различных формул, но для понимания принципа работы конденсатора эта статья будет полезна.

Спасибо за внимание!

 

Facebook

Twitter

Мой мир

Вконтакте

Одноклассники

Google+

bakaraban.ru

Принцип работы и устройство конденсатора

Всем доброго времени суток. В прошлой статье я рассказывал о методах расчёта электрических цепей, в которых основным элементом является резистор. Резистор представляет собой один из элементов с сосредоточенными параметрами, в данном случае таким параметром является сопротивление. Однако кроме сопротивления ещё одними из основных параметров элементов цепи являются ёмкость и индуктивность, которые представлены элементами конденсатор и индуктивными элементами (различные дросселя, катушки, трансформаторы и т.д.). В данной статье я рассмотрю такой элемент с сосредоточенными параметрами, как конденсатор.

Проводник в электрическом поле

Помещая проводник в электрическое поле, носители заряда внутри проводника начинают перемещаться. Причем данное перемещение подчиняется двум правилам:

  1. Напряжённость электрического поля внутри проводника должно равняться нулю

    Это означает, что потенциал внутри проводника остается постоянным (φ = const).

  2. Напряжённость поля на поверхности проводника направлена перпендикулярно к самой поверхности данного проводника. Или другими словами поверхность проводника становится эквипотенциальной, то есть все точки данной поверхности имеют одинаковый потенциал.

Из этих двух правил следует, что когда проводник вносится в электрическое поле его носители заряда (в металлах это электроны, а в жидкостях – ионы) приходят в движение, причем положительные по направлению напряжённости электрического поля, а отрицательные в противоположную сторону. Результатом движения зарядов в проводнике является возникновение зарядов противоположного знака на концах проводника, такие заряды называют индуцированными. Перераспределение заряда в проводнике показано на рисунке ниже

Распределение носителей зарядов проводника в электрическом полеРаспределение носителей зарядов проводника в электрическом поле.

Таким образом, нейтральный проводник, помещённый в электрическое поле, как бы разрывает часть линий электрического поля, а индуцированные заряды распределяются по поверхности проводника.

Практический интерес представляет следующая ситуация, когда внутри проводника имеется некоторая полость. Так как индуцирование зарядов происходит на поверхности проводника, то внутри этого проводника, а значит и во внутренней полости электрическое поле обращается в нуль. На данном явлении основана электростатическая защита, когда необходимо защитить какой-нибудь прибор от воздействия электрического поля, то его помещают внутрь экрана из проводника. Индуцированные заряды на поверхности экрана скомпенсируют электростатическое поле. Вместо сплошного экрана часто используют экран из электропроводящей сетки, что тоже позволяет создать защиту от электростатического поля.

Электроемкость

Если на проводник переместить некоторый заряд q, то он как мы уже знаем, распределится по всей поверхности проводника, так чтобы напряженность электрического поля внутри него была равна нулю. Однако относительно любой точки пространства данный проводник будет обладать некоторым потенциалом φ. Если на данный заряженный проводник переместить ещё один заряд, то опять же он равномерно распределится по всей поверхности проводника, а величина потенциала вырастит на некоторую величину.

Таким образом, между величиной заряда проводника и его потенциалом существует связь, которая определяется следующим выражением

где q – величина заряда, сообщенная проводнику,

φ – потенциал проводника относительно любой точки пространства,

С – коэффициент пропорциональности, называемый электроемкостью проводника, или просто емкостью.

Исходя из этого, электроемкость проводника может быть вычислена из следующего выражения

Таким образом, электроемкость численно равна заряду, передача которого проводнику повышает его потенциал на единицу. Единица измерения электроемкости называется Фарада (обозначается Ф).

Однако емкость уединенного проводника невелика, так емкостью в 1 Ф обладает шар радиусом 9*109 м, что почти в 1500 раз больше радиуса Земли. Поэтому на практике используют специальные устройства для накопления зарядов и обладающие большой емкостью при минимальных размерах. Такие устройства называются конденсаторами.

Конденсаторы

Принцип действия конденсатора основывается на явлении индуцирования зарядов на проводнике в электрическом поле или на свойстве диэлектрика поляризоваться под воздействием электрического поля, а также возрастания электроемкости проводника при приближении к нему других тел. Рассмотрим подробнее.

Как известно из предыдущего параграфа, что если к заряженному телу, вокруг которого существует электрическое поле поднести проводник, то на поднесенном проводнике начнут индуцироваться заряды, в результате чего потенциал заряженного проводника будет уменьшаться, а, следовательно, электроемкость возрастать. Поэтому конденсаторы делают в виде двух близкорасположенных проводников, называемых обкладками конденсатора.

Чтобы ограничить влияние посторонних предметов на электрическое поле конденсатора, а следовательно и его емкость, обкладки изготавливают такими, чтобы электрическое поле создаваемое ими было полностью сосредоточенно внутри конденсатора. Такому условию соответствуют плоские, цилиндрические и сферические конденсаторы.

Так как обкладки расположены очень близко, то практически весь заряд обкладок будет сосредоточен на их внутренних поверхностях, то есть обращённых друг к другу, поэтому емкость конденсатора будет определяться следующим выражением

где q – заряд одной из обкладок конденсатора,

φ1 и φ2 – потенциалы обкладок конденсатора.

Самым простым является плоский конденсатор, его мы и рассмотрим в качестве примера.

Плоский конденсатор

Плоский конденсатор представляет собой две одинаковые пластины площадью S, расположенные параллельно, расстояние между пластинами d очень незначительно по отношению к размерам самих пластин, поэтому практически всё электрическое поле сосредоточенно между пластинами-обкладками. Кроме этого между пластинами расположен диэлектрик, который имеет диэлектрическую проницаемость ε, зависящую от свойств диэлектрика.

Плоский конденсаторПлоский конденсатор.

Тогда разность потенциалов между обкладками конденсатора будет определяться следующим выражением

где S – площадь обкладки конденсатора,

d – расстояние между обкладками,

ε0 – электрическая постоянная, ε0 = 8,85 * 10-12 Кл2/(Н*м2),

ε – относительная диэлектрическая проницаемость диэлектрика, зависящая от его свойств.

Тогда емкость плоского конденсатора будет определяться по следующей формуле

На этом с физикой, пожалуй, закончим и приступим к электронике.

Реальный конденсатор

В прошлой статье я рассказал об идеальных элементах электрических схем (я рассматривал сопротивление, как идеальный резистор). Идеальный элемент конденсатор отличается от реального конденсатора наличием паразитных характеристик, для определения этих характеристик рассмотрим эквивалентную схему реального конденсатора изображённую ниже

Эквивалентная схема конденсатораЭквивалентная схема замещения конденсатора.

Кроме непосредственно емкости конденсатора можно выделить следующие параметры, которые являются паразитными и в некоторых схемах не позволяют использовать конденсаторы некоторых типов. Таким параметрами являются сопротивление утечки Rут, эквивалентное последовательное сопротивление RЭПС (или ESR) и эквивалентная последовательная индуктивность LЭПИ (или ESL). Разберём каждый параметр в отдельности.

Сопротивление утечки Rут конденсатора определяется как отношение постоянного напряжения, до которого заряжен конденсатор Uc к току утечки Iут

эквивалентную схему реального конденсатора изображённую ниже

Ток утечки существует в любом случае, так как сопротивление изоляции и диэлектрика не может быть бесконечным. Вследствие этого заряженный конденсатор с течением времени теряет некоторый заряд. Поэтому часто в документации на конденсаторы вводится параметр постоянная времени саморазряда конденсатора Т = RутС0.

Современные высококачественные конденсаторы имеют постоянную времени саморазряда несколько сотен тысяч часов.

Эквивалентное последовательное сопротивление RЭПС или ESR довольно важный параметр в некоторых схемах, в частности, в схемах выпрямления импульсных блоков питания и стабилизаторах напряжения. Связан с непосредственным сопротивлением обкладок конденсатора и его выводов, а также с потерями в диэлектрике. Довольно часто служит показателем исправности конденсатора и для его измерения используют приборы ESR-метры.

Эквивалентная последовательная индуктивность LЭПИ или ESL, данный параметр обусловлен, прежде всего, индуктивностью обкладок конденсатора и его выводов. Данный паразитный параметр вместе с емкостью конденсатора образует последовательный колебательный контур с собственной частотой резонанса. Поэтому для конденсаторов нормируется максимальная частота работы.

Тангенс угла потерь конденсатора tgδ характеризует работу конденсатора при переменном напряжении. В идеальном конденсаторе, в котором отсутствуют паразитные параметры tgδ = 90°. Но в реальных конденсаторах часть энергии рассеивается на сопротивлении обкладок и в диэлектрике, то есть на RЭПС вследствие чего tgδ отличается от 90° в меньшую сторону. Тангенс угла потерь вычисляется по следующему выражению

В следующих статьях я расскажу о работе конденсаторов при переменном напряжении, где проявляются основные свойства данного электронного компонента.

Теория это хорошо, но теория без практики - это просто сотрясание воздуха. Перейдя по ссылке всё это можно сделать своими руками

Скажи спасибо автору нажми на кнопку социальной сети

www.electronicsblog.ru

Как работает конденсатор? | New-Best.com Самый простой поиск ответов на наилучшие вопросы

Конденсатор - двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для скопления энергии электронного поля. Конденсатор является пассивным электрическим компонентом. Обычно состоит из 2-ух электродов в форме пластинок (именуемых обкладками), разделённых диэлектриком, толщина которого мала по сопоставлению с размерами обкладок.

История

В 1745 году в Лейдене германский физик Эвальд Юрген фон Клейст и голландский физик Питер ван Мушенбрук сделали 1-ый конденсатор - «лейденскую банку».

Характеристики конденсатораКонденсатор в цепи неизменного тока может проводить ток в момент включения его в цепь (происходит заряд либо перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течет, потому что его обкладки разбиты диэлектриком. В цепи же переменного тока он проводит колебания переменного тока средством повторяющейся перезарядки конденсатора.

В определениях способа всеохватывающих амплитуд конденсатор обладает всеохватывающим импедансом

,

где - надуманная единица, - частота протекающего синусоидального тока, - ёмкость конденсатора. Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для неизменного тока частота равна нулю, как следует, реактивное сопротивление конденсатора нескончаемо (в безупречном случае).

При изменении частоты меняются диэлектрическая проницаемость диэлектрика и степень воздействия паразитных характеристик - своей индуктивности и сопротивления утрат. На больших частотах хоть какой конденсатор есть возможность подвергать рассмотрению как поочередный колебательный контур, образуемый ёмкостью , своей индуктивностью и сопротивлением утрат .

Резонансная частота конденсатора равна

При конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Как следует, конденсатор целенаправлено применять только на частотах

где - напряжение (разность потенциалов), до которого заряжен конденсатор.

Обозначение конденсаторов на схемахВ Рф условные графические обозначения конденсаторов на схемах должны соответствовать ГОСТ 2.728-74 или интернациональному эталону IEEE 315-1975:

Обозначениепо ГОСТ 2.728-74ОписаниеКонденсатор неизменной ёмкостиПоляризованный конденсаторПодстроечный конденсатор переменной ёмкости

На электронных принципных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 106 пФ) и пикофарадах, однако часто и в нанофарадах. При ёмкости менее 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при всем этом допустимо не указывать единицу измерения, т.е. постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения (пикоФарад). Для электролитических конденсаторов, также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их наибольшее рабочее напряжение в вольтах (В) либо киловольтах (кВ). К примеру так: «10 мк x 10 В». Для переменных конденсаторов указывают диапазон конфигурации ёмкости, к примеру так: «10 - 180». В текущее время делаются конденсаторы с номинальными ёмкостями из десятичнологарифмических рядов значений Е3, Е6, Е12, Е24, т.е. на одну декаду приходится 3, 6, 12, 24 значения, так, чтоб значения с подходящим допуском (разбросом) перекрывали всю декаду.

Свойства конденсаторов

Главные характеристики

ЁмкостьОсновной чертой конденсатора является его ёмкость. В обозначении конденсатора бытует значение номинальной ёмкости, в то время как настоящая ёмкость может существенно изменяться зависимо от многих причин. Настоящая ёмкость конденсатора определяет его электронные характеристики. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению меж обкладками (q = CU). Обычные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Но есть конденсаторы с ёмкостью до 10-ов фарад.

Ёмкость плоского конденсатора, состоящего из 2-ух параллельных железных пластинок площадью любая, расположенных на расстоянии друг от друга, в системе СИ выражается формулой: , где - относительная диэлектрическая проницаемость среды, заполняющей место меж пластинами (эта формула справедлива, только когда много меньше линейных размеров пластинок).

Для получения огромных ёмкостей конденсаторы соединяют параллельно. При всем этом напряжение меж обкладками всех конденсаторов идиентично. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

либо

В том случае у всех параллельно соединённых конденсаторов расстояние меж обкладками и характеристики диэлектрика схожи, то эти конденсаторы есть возможность представить как один большой конденсатор, разделённый на куски наименьшей площади.

При поочередном соединении конденсаторов заряды всех конденсаторов схожи. Общая ёмкость батареи поочередно соединённых конденсаторов равна

либо

Эта ёмкость всегда меньше малой ёмкости конденсатора, входящего в батарею. Но при поочередном соединении миниатюризируется возможность пробоя конденсаторов, потому что на каждый конденсатор приходится только часть различия потенциалов источника напряжения.

В том случае площадь обкладок всех конденсаторов, соединённых поочередно, схожа, то эти конденсаторы есть возможность представить в виде 1-го огромного конденсатора, меж обкладками которого находится стопка из пластинок диэлектрика всех частей его конденсаторов.

Удельная ёмкостьКонденсаторы также характеризуются удельной ёмкостью - отношением ёмкости к объёму (либо массе) диэлектрика. Наибольшее значение удельной ёмкости достигается при малой толщине диэлектрика, но при всем этом миниатюризируется его напряжение пробоя.

Номинальное напряжениеДругой, более принципиальной чертой конденсаторов является номинальное напряжение - значение напряжения, обозначенное на конденсаторе, при котором он может работать в данных критериях в направление срока службы с сохранением характеристик в допустимых границах.

Номинальное напряжение находится в зависимости от конструкции конденсатора и параметров используемых материалов. При эксплуатации напряжение на конденсаторе не обязано превосходить номинального. Для многих типов конденсаторов с повышением температуры допустимое напряжение понижается.

ПолярностьМногие конденсаторы с оксидным диэлектриком (электролитические) работают только при корректной полярности напряжения из-за хим особенностей взаимодействия электролита с диэлектриком. При оборотной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за хим разрушения диэлектрика с следующим повышением тока, вскипанием электролита снутри и, как следствие, с вероятностью взрыва корпуса.

Взрывы электролитических конденсаторов - достаточно распространённое явление. Основной предпосылкой взрывов является перегрев конденсатора, вызываемый почти всегда утечкой либо увеличением эквивалентного поочередного сопротивления вследствие старения (актуально для импульсных устройств). Для уменьшения повреждений других деталей и травматизма персонала в современных конденсаторах большой ёмкости устанавливают клапан либо делают насечку на корпусе (нередко есть возможность увидеть её в форме буквы X, K либо Т на торце). При повышении внутреннего давления раскрывается клапан либо корпус разрушается по насечке, испарившийся электролит выходит в виде едкого газа, и давление спадает в отсутствие взрыва и осколков.

Паразитные параметрыРеальные конденсаторы, кроме ёмкости, владеют также своими сопротивлением и индуктивностью. С высочайшей степенью точности, эквивалентную схему реального конденсатора есть возможность представить последующим образом:

  • - собственная ёмкость конденсатора;
  • - сопротивление изоляции конденсатора;
  • - эквивалентное последовательное сопротивление;
  • - эквивалентная поочередная индуктивность.
  • Электронное сопротивление изоляции конденсатора - rСопротивление изоляции - это сопротивление конденсатора неизменному току, определяемое соотношением r = U / Iут , где U - напряжение, приложенное к конденсатору, Iут - ток утечки.

    Эквивалентное последовательное сопротивление - RЭквивалентное последовательное сопротивление (ЭПС, англ. ESR) обосновано приемущественно электронным сопротивлением материала обкладок и выводов конденсатора и контакта(-ов) меж ними, также потерями в диэлектрике. Обычно ЭПС растет с повышением частоты тока, протекающего через конденсатор.

    Почти всегда этим параметром есть возможность пренебречь, однако время от времени (напр., в случае использования электролитических конденсаторов в фильтрах импульсных блоков питания) довольно маленькое его значение может быть актуально принципиальным для надёжности устройства (см., напр., Capacitor plague(англ.)).

    Эквивалентная поочередная индуктивность - LЭквивалентная поочередная индуктивность обоснована, в главном, своей индуктивностью обкладок и выводов конденсатора. На низких частотах (до единиц килогерц) обычно не учитывается в силу собственной незначительности.

    Тангенс угла потерьТангенс угла утрат - отношение надуманной и вещественной части всеохватывающей диэлектрической проницаемости.

    Энергопотери в конденсаторе определяются потерями в диэлектрике и обкладках. При протекании переменного тока через конденсатор векторы напряжения и тока смещены на угол , где - угол диэлектрических утрат. При отсутствии утрат . Тангенс угла утрат определяется отношением активной мощности Pа к реактивной Pр при синусоидальном напряжении определённой частоты. Величина, оборотная , именуется добротностью конденсатора. Определения добротности и тангенса угла утрат используются также для катушек индуктивности и трансформаторов.

    Температурный коэффициент ёмкости (ТКЕ)ТКЕ - относительное изменению емкости при изменении температуры среды на один градус Цельсия (Кельвина). Следовательно значение ёмкости от температуры представляется линейной формулой:

    , где ΔT - повышение температуры в °C либо °К относительно обычных критерий, при которых специфицировано значение ёмкости. TKE применяется для свойства конденсаторов со значимой линейной зависимостью ёмкости от температуры. Но ТКЕ определяется не для всех типов конденсаторов. Конденсаторы, имеющие нелинейную зависимость емкости от температуры, и конденсаторы с большими уходами емкости от воздействия температуры среды в обозначении имеют указание на относительное изменение емкости в рабочем спектре температур.

    Диэлектрическое поглощениеЕсли заряженный конденсатор стремительно разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а потом снять нагрузку и следить за напряжением на выводах конденсатора, то мы увидим, что напряжение медлительно увеличивается. Это явление получило заглавие диэлектрическое поглощение либо адсорбция электронного заряда. Конденсатор ведёт себя так, как будто параллельно ему подключено огромное количество поочередных RC-цепочек с различной неизменной времени. Интенсивность проявления этого эффекта зависит в главном от параметров диэлектрика конденсатора. Схожий эффект есть возможность следить и на большинстве электролитических конденсаторов, однако в их он является следствием хим реакций меж электролитом и обкладками. Минимальным диэлектрическим поглощением владеют конденсаторы с органическими диэлектриками: тефлон (фторопласт), полистирол, полиэтилентерефталат, поликарбонат.

    Систематизация конденсаторовОсновная систематизация конденсаторов проводится по типу диэлектрика в конденсаторе. Класс диэлектрика определяет главные электронные характеристики конденсаторов: сопротивление изоляции, стабильность ёмкости, величину утрат и др.

    По виду диэлектрика различают:

  • Конденсаторы вакуумные (обкладки в отсутствие диэлектрика находятся в вакууме).
  • Конденсаторы с газообразным диэлектриком.
  • Конденсаторы с водянистым диэлектриком.
  • Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, глиняние, тонкослойные из неорганических плёнок.
  • Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные - бумажноплёночные, тонкослойные из органических синтетических плёнок.
  • Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех иных типов сначала собственной большой удельной ёмкостью. В качестве диэлектрика употребляется оксидный слой на железном аноде. 2-ая обкладка (катод) - это либо электролит (в электролитических конденсаторах) либо слой полупроводника (в оксидно-полупроводниковых), нанесённый прямо на оксидный слой. Анод изготовляется, зависимо от класса конденсатора, из алюминиевой, ниобиевой либо танталовой фольги либо спеченного порошка.
  • Не считая того, конденсаторы различаются по способности конфигурации собственной ёмкости:
  • Неизменные конденсаторы - основной класс конденсаторов, не меняющие собственной ёмкости (не считая как в направление срока службы).
  • Переменные конденсаторы - конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электронным напряжением (вариконды, варикапы) и температурой (термо-конденсаторы). Используются, к примеру, в радиоприемниках для перестройки частоты резонансного контура.
  • Подстроечные конденсаторы - конденсаторы, ёмкость которых меняется при разовой либо повторяющейся регулировке и не меняется в процессе функционирования аппаратуры. Их употребляют для подстройки и выравнивания исходных ёмкостей сопрягаемых контуров, для повторяющейся подстройки и регулировки цепей схем, где требуется малозначительное изменение ёмкости.
  • Зависимо от предназначения есть возможность условно поделить конденсаторы на конденсаторы общего и специального предназначения. Конденсаторы общего предназначения употребляются фактически в большинстве видов и классов аппаратуры. Обычно к ним относят более распространённые низковольтные конденсаторы, к которым не предъявляются особенные требования. Все другие конденсаторы являются особыми. К ним относятся высоковольтные, импульсные, помехоподавляюшие, дозиметрические, пусковые и другие конденсаторы.

    Применение конденсаторовКонденсаторы отыскивают применение фактически во всех областях электротехники.

  • Конденсаторы (вместе с катушками индуктивности и/либо резисторами) употребляются для построения разных цепей с частотно-зависимыми качествами, а именно, фильтров, цепей оборотной связи, колебательных контуров и т. п..
  • При резвом разряде конденсатора есть возможность получить импульс большой мощности, к примеру, в фотовспышках, импульсных лазерах с оптической накачкой, генераторах Маркса, (ГИН; ГИТ), генераторах Кокрофта-Уолтона и т. п.
  • Потому что конденсатор способен долгое время сохранять заряд, то его есть возможность применять в качестве элемента памяти либо устройства хранения электронной энергии.
  • В промышленной электротехнике конденсаторы употребляются для компенсации реактивной мощности и в фильтрах высших гармоник.
  • Измерительный преобразователь (ИП) малых перемещений: маленькое изменение расстояния меж обкладками очень приметно сказывается на ёмкости конденсатора.
  • ИП влажности воздуха (изменение состава диэлектрика приводит к изменению емкости)
  • ИП влажности древесной породы
  • В схемах РЗиА конденсаторы употребляются для реализации логики работы неких защит. А именно, в схеме работы АПВ внедрение конденсатора позволяет обеспечить требуемую кратность срабатывания защиты.
  • Источники и наружные Полезные ссылки:
  • Описание работы конденсатора и емкости на аналогии с водопроводом.
  • Статические конденсаторы для компенсации реактивной мощности
  • Программка для расчёта реактивного сопротивления конденсатора
  • Электронный конденсатор - Википедия
  • Источник материала Интернет-сайт www.genon.ru

    new-best.com


    Каталог товаров