интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Сила и плотность тока. Электродвижущая сила и напряжение. Сила и напряжение тока


Сила и плотность тока. Электродвижущая сила и напряжение.

Электродинамика - основной раздел учения об электричестве, в котором рассматривается явление и процессы, связанные с движением электрических зарядов или макроскопических заряженных тел.

Важнейшим понятием электродинамики является понятие электрического тока.

Электрическим током называется упорядоченное движение электрических зарядов.

Ток может течь в газах, жидкостях и твердых телах.

Ток, обусловленный упорядоченным движением свободных зарядов, называется током проводимости (ток в металлах, полупроводниках, электролитах, газах).

Ток, возникающий при упорядоченном движении макроскопических заряженных тел (пылинок, капелек) называется конвекционным.

В дальнейшем будут рассматриваться только токи проводимости.

Для возникновения и существования тока необходимо выполнение 2-х условий:

1) наличие в данной среде свободных носителей тока, способных перемещаться в пределах всей среды:

в металлах и полупроводниках – электроны;

в электролитах - ионы обоих знаков;

в газах - ионы обоих знаков и электроны;

2) существование в данной среде электрического поля, энергия которого расходуется на упорядоченное перемещение электрических зарядов.

 

За направление тока условно принимают направление движения положительных зарядов.

В отсутствии электрического поля все носители тока совершают хаотическое тепловое движение, скорость которого зависит от массы частиц и температуры, при

Электрическое поле сообщает носителям тока дополнительную скорость упорядоченного движения При включении поля на хаотическое движение накладывается упорядоченное движение со скоростью . Так, в металлах, электроны проводимости, не прекращая своего хаотического движения, медленно «сносятся» полем вдоль проводника со скоростью , т.е. довольно медленно. Однако, эта скорость не имеет никакого отношения к скорости распространения тока вдоль проводника. При замыкании электрической цепи возникает направленный сдвиг электронов, который вызывает электромагнитную волну, распространяющуюся вдоль всей цепи. Скорость этой волны и является скоростью распространения тока вдоль проводника.

Количественной характеристикой тока является сила тока - скалярная физическая величина, равная отношению заряда , проходящего через поперечное сечение проводника за малый промежуток времени , к величине этого промежутка

Весь заряд, прошедший за время t через поперечное сечение проводника, можно определить, взяв интеграл:

 

Ток, сила и направление которого не изменяются со временем, называется постоянным. Для постоянного тока:

т.е. сила постоянного тока численно равна заряду, проходящему через поперечное сечение проводника за единицу времени. В этом случае:

 

 

1A - сила постоянного тока, текущего по двум бесконечно длинным параллельным проводникам, расположенным в вакууме на расстоянии 1 м друг от друга и взаимодействующим с силой 2×10-7H на каждый метр их длины. Взаимодействие проводников обусловлено магнитными полями, порождаемыми этими токами.

Электрический ток может быть распределен по поперечному сечению проводника неравномерно. Распределение тока определяется плотностью тока:

 

 

Плотность тока численно равна отношению силы тока сквозь малый элемент поверхности, нормальный (т.е. перпендикулярный) к направлению движения зарядов, к величине площади этого элемента.

Вектор сонаправлен с вектором средней скорости упорядоченного движения положительных носителей.

Зная в каждой точке проводника, можно найти I через любое поперечное сечение проводника:

Для постоянного тока:

т.е. плотность постоянного тока численно равна силе тока, проходящего через единицу площади поперечного сечения проводника, перпендикулярного направлению тока.

Выразим силу и плотность постоянного тока через среднюю скорость упорядоченного движения зарядов.

Согласно определению:

(1)

заряд, проходящий за время t через поперечное сечение проводника, равен

q = e N, (2)

 

где е = 1,6×10-19Кл - электрический заряд,

N - число свободных электронов, прошедших за время t через поперечное сечение проводника.

Для определения N рассмотрим проводник цилиндрической формы с площадью поперечного сечения S и выделим на нем участок длиной , т.е. - это путь, который проходят электроны за время t, двигаясь под действием электрического поля с . Как видно из рисунка, те электроны, которые в данный момент находятся на левом основании цилиндра, через t дойдут до правого основания. Следовательно, за время t через правое основание пройдут все свободные электроны, содержащиеся внутри рассматриваемого цилиндра, т.е.

(3)

где - концентрация электронов,

- объем цилиндра.

Подставим (3)® в (2) ® в(1)

Если два разноименно заряженных до потенциалов j1 и j2 проводника А и В соединить проводником С, то под действием электрического поля электроны будут перемещаться в направлении АСВ (т.е. в направлении ВСА пойдет ток ) до тех пор, пока потенциалы точек А и В не станут одинаковыми, после чего ток прекратится.

Очевидно, что для поддержания в цепи постоянного тока необходимо, чтобы потенциалы j1 и j2 не менялись со временем, несмотря на то, что каждую секунду определенное число электронов уходит из точки А и приходит в точку В. Для этого необходимо иметь специальное устройство - источник тока, внутри которого происходило бы непрерывное разделение разноименных зарядов и перенос отрицательных зарядов к проводнику А, положительных - к проводнику В. Проводники А и В при этом называются полюсами источника тока.

Источник тока - устройство, внутри которого происходит непрерывное разделение разноименных зарядов и перенос их к соответствующим полюсам источника.

Очевидно, что разъединение разноименных зарядов происходит под действием сил неэлектростатического происхождения (т.к. электростатические силы приводят к соединению разноименных зарядов). Эти силы называют сторонними силами.

Сторонние силы - это силы, неэлектростатического происхождения, действующие на заряды внутри источников тока и поддерживающие разность потенциалов между полюсами.

Природа сторонних сил в различных источниках тока различна: в гальванических элементах эти силы возникают за счет энергии химической реакции между электродами и электролитом; в электрических генераторах работа сторонних сил совершается за счет механической энергии, затрачиваемой на вращение ротора генератора и т.д.

Сторонние силы, перемещая электрические заряды, совершают работу.

Физическая величина, равная работе сторонних сил по перемещению единичного положительного заряда, называется э.д.с., действующей в цепи или на ее участке:

 

Эта работа производится за счет энергии, затрачиваемой в источнике тока, поэтому величину e называют э.д.с. источника тока.

Э.д.с. - скалярная величина. Если в некоторой цепи действуют несколько э.д.с., то они могут быть положительными и отрицательными, т.е. э.д.с. - алгебраическая величина.

Рассмотрим некоторый участок цепи, содержащий э.д.с. e12; R - сопротивление этого участка, j1 и j2 - разность потенциалов между его концами.

Работа по перемещению заряда q на этом участке совершается как кулоновскими, так и сторонними силами:

А12 = Ак + Аст

Как известно из электростатики, работа кулоновских сил при перемещении заряда из точки с потенциалом j1 в точку с потенциалом j2 определяется выражением:

 

Ак = q(j1-j2).

Т.к. т.е.

 

Физическая величина, равная работе, совершаемой электростатическими и сторонними силами при перемещении единичного положительного заряда по некоторому участку цепи, называется напряжением на данном участке цепи:

U12 = j1 - j2 + e12 - напряжение на неоднородном участке цепи.

 

Участок цепи, на котором действуют сторонние силы, т.е. содержащий э.д.с., называется неоднородным.

Участок цепи, на котором не действуют сторонние силы, т.е. не содержащий э.д.с., называется однородным.

U12 = j1 - j2 - напряжение на однородном участке цепи равно разности потенциалов между его концами.

 

Похожие статьи:

poznayka.org

Сила и плотность тока. Электродвижущая сила и напряжение.

Стр 1 из 4Следующая ⇒

Лекция 15. Постоянный электрический ток.

[1] гл.12

 

План лекции:

1. Сила и плотность тока. Электродвижущая сила и напряжение.

2. Закон Ома. Сопротивление проводников. Последовательное и параллельное соединение проводников.

3. Работа и мощность тока. Закон Джоуля-Ленца.

4. Правила Кирхгофа для разветвленных цепей.

 

Сила и плотность тока. Электродвижущая сила и напряжение.

Электродинамика - основной раздел учения об электричестве, в котором рассматривается явление и процессы, связанные с движением электрических зарядов или макроскопических заряженных тел.

Важнейшим понятием электродинамики является понятие электрического тока.

Электрическим током называется упорядоченное движение электрических зарядов.

Ток может течь в газах, жидкостях и твердых телах.

Ток, обусловленный упорядоченным движением свободных зарядов, называется током проводимости (ток в металлах, полупроводниках, электролитах, газах).

Ток, возникающий при упорядоченном движении макроскопических заряженных тел (пылинок, капелек) называется конвекционным.

В дальнейшем будут рассматриваться только токи проводимости.

Для возникновения и существования тока необходимо выполнение 2-х условий:

1) наличие в данной среде свободных носителей тока, способных перемещаться в пределах всей среды:

в металлах и полупроводниках – электроны;

в электролитах - ионы обоих знаков;

в газах - ионы обоих знаков и электроны;

2) существование в данной среде электрического поля, энергия которого расходуется на упорядоченное перемещение электрических зарядов.

 

За направление тока условно принимают направление движения положительных зарядов.

В отсутствии электрического поля все носители тока совершают хаотическое тепловое движение, скорость которого зависит от массы частиц и температуры, при

Электрическое поле сообщает носителям тока дополнительную скорость упорядоченного движения При включении поля на хаотическое движение накладывается упорядоченное движение со скоростью . Так, в металлах, электроны проводимости, не прекращая своего хаотического движения, медленно «сносятся» полем вдоль проводника со скоростью , т.е. довольно медленно. Однако, эта скорость не имеет никакого отношения к скорости распространения тока вдоль проводника. При замыкании электрической цепи возникает направленный сдвиг электронов, который вызывает электромагнитную волну, распространяющуюся вдоль всей цепи. Скорость этой волны и является скоростью распространения тока вдоль проводника.

Количественной характеристикой тока является сила тока - скалярная физическая величина, равная отношению заряда , проходящего через поперечное сечение проводника за малый промежуток времени , к величине этого промежутка

Весь заряд, прошедший за время t через поперечное сечение проводника, можно определить, взяв интеграл:

 

Ток, сила и направление которого не изменяются со временем, называется постоянным. Для постоянного тока:

т.е. сила постоянного тока численно равна заряду, проходящему через поперечное сечение проводника за единицу времени. В этом случае:

 

 

1A - сила постоянного тока, текущего по двум бесконечно длинным параллельным проводникам, расположенным в вакууме на расстоянии 1 м друг от друга и взаимодействующим с силой 2×10-7H на каждый метр их длины. Взаимодействие проводников обусловлено магнитными полями, порождаемыми этими токами.

Электрический ток может быть распределен по поперечному сечению проводника неравномерно. Распределение тока определяется плотностью тока:

 

 

Плотность тока численно равна отношению силы тока сквозь малый элемент поверхности, нормальный (т.е. перпендикулярный) к направлению движения зарядов, к величине площади этого элемента.

Вектор сонаправлен с вектором средней скорости упорядоченного движения положительных носителей.

Зная в каждой точке проводника, можно найти I через любое поперечное сечение проводника:

Для постоянного тока:

т.е. плотность постоянного тока численно равна силе тока, проходящего через единицу площади поперечного сечения проводника, перпендикулярного направлению тока.

Выразим силу и плотность постоянного тока через среднюю скорость упорядоченного движения зарядов.

Согласно определению:

(1)

заряд, проходящий за время t через поперечное сечение проводника, равен

q = e N, (2)

 

где е = 1,6×10-19Кл - электрический заряд,

N - число свободных электронов, прошедших за время t через поперечное сечение проводника.

Для определения N рассмотрим проводник цилиндрической формы с площадью поперечного сечения S и выделим на нем участок длиной , т.е. - это путь, который проходят электроны за время t, двигаясь под действием электрического поля с . Как видно из рисунка, те электроны, которые в данный момент находятся на левом основании цилиндра, через t дойдут до правого основания. Следовательно, за время t через правое основание пройдут все свободные электроны, содержащиеся внутри рассматриваемого цилиндра, т.е.

(3)

где - концентрация электронов,

- объем цилиндра.

Подставим (3)® в (2) ® в(1)

Если два разноименно заряженных до потенциалов j1 и j2 проводника А и В соединить проводником С, то под действием электрического поля электроны будут перемещаться в направлении АСВ (т.е. в направлении ВСА пойдет ток ) до тех пор, пока потенциалы точек А и В не станут одинаковыми, после чего ток прекратится.

Очевидно, что для поддержания в цепи постоянного тока необходимо, чтобы потенциалы j1 и j2 не менялись со временем, несмотря на то, что каждую секунду определенное число электронов уходит из точки А и приходит в точку В. Для этого необходимо иметь специальное устройство - источник тока, внутри которого происходило бы непрерывное разделение разноименных зарядов и перенос отрицательных зарядов к проводнику А, положительных - к проводнику В. Проводники А и В при этом называются полюсами источника тока.

Источник тока - устройство, внутри которого происходит непрерывное разделение разноименных зарядов и перенос их к соответствующим полюсам источника.

Очевидно, что разъединение разноименных зарядов происходит под действием сил неэлектростатического происхождения (т.к. электростатические силы приводят к соединению разноименных зарядов). Эти силы называют сторонними силами.

Сторонние силы - это силы, неэлектростатического происхождения, действующие на заряды внутри источников тока и поддерживающие разность потенциалов между полюсами.

Природа сторонних сил в различных источниках тока различна: в гальванических элементах эти силы возникают за счет энергии химической реакции между электродами и электролитом; в электрических генераторах работа сторонних сил совершается за счет механической энергии, затрачиваемой на вращение ротора генератора и т.д.

Сторонние силы, перемещая электрические заряды, совершают работу.

Физическая величина, равная работе сторонних сил по перемещению единичного положительного заряда, называется э.д.с., действующей в цепи или на ее участке:

 

Эта работа производится за счет энергии, затрачиваемой в источнике тока, поэтому величину e называют э.д.с. источника тока.

Э.д.с. - скалярная величина. Если в некоторой цепи действуют несколько э.д.с., то они могут быть положительными и отрицательными, т.е. э.д.с. - алгебраическая величина.

Рассмотрим некоторый участок цепи, содержащий э.д.с. e12; R - сопротивление этого участка, j1 и j2 - разность потенциалов между его концами.

Работа по перемещению заряда q на этом участке совершается как кулоновскими, так и сторонними силами:

А12 = Ак + Аст

Как известно из электростатики, работа кулоновских сил при перемещении заряда из точки с потенциалом j1 в точку с потенциалом j2 определяется выражением:

 

Ак = q(j1-j2).

Т.к. т.е.

 

Физическая величина, равная работе, совершаемой электростатическими и сторонними силами при перемещении единичного положительного заряда по некоторому участку цепи, называется напряжением на данном участке цепи:

U12 = j1 - j2 + e12 - напряжение на неоднородном участке цепи.

 

Участок цепи, на котором действуют сторонние силы, т.е. содержащий э.д.с., называется неоднородным.

Участок цепи, на котором не действуют сторонние силы, т.е. не содержащий э.д.с., называется однородным.

U12 = j1 - j2 - напряжение на однородном участке цепи равно разности потенциалов между его концами.

 

mykonspekts.ru

Список параметров напряжения и силы электрического тока — WiKi

Далее для определенности будем говорить большей частью о параметрах напряжения, хотя они справедливы и для токов.

Мгновенное значение

Мгновенное значение — это значение сигнала в определённый момент времени, функцией которого является (  u(t) ,i(t){\displaystyle u(t)~,\quad i(t)}     ). Мгновенные значения медленно изменяющегося сигнала можно определить с помощью малоинерционного вольтметра постоянного тока, самописца или шлейфового осциллографа, для периодических быстротекущих процессов используется электронно-лучевой или цифровой осциллограф.

Амплитудное значение

  • Амплитудное (пиковое) значение, иногда называемое просто «амплитуда» — наибольшее мгновенное значение напряжения или силы тока за период (без учёта знака):
UM=max(|u(t)|) ,IM=max(|i(t)|){\displaystyle U_{M}=\max(|u(t)|)~,\qquad I_{M}=\max(|i(t)|)} 

Пиковое значение напряжения измеряется с помощью импульсного вольтметра или осциллографа.

Среднеквадратичное значение

Среднеквадратичное значение (устар. действующее, эффективное) — корень квадратный из среднего значения квадрата напряжения или тока.

U=1T∫0Tu2(t)dt ,I=1T∫0Ti2(t)dt{\displaystyle U={\sqrt {{\frac {1}{T}}\int \limits _{0}^{T}u^{2}(t)dt}}~,\qquad I={\sqrt {{\frac {1}{T}}\int \limits _{0}^{T}i^{2}(t)dt}}} 

Среднеквадратичные значения являются самыми распространёнными, так как они наиболее удобны для практических расчётов, поскольку в линейных цепях с чисто активной нагрузкой переменный ток с действующими значениями I{\displaystyle I}  и U{\displaystyle U}  совершает ту же работу, что и постоянный ток с теми же значениями тока и напряжения. Например, лампа накаливания или кипятильник, включённые в сеть с переменным напряжением с действующим значением 220 В, работают (светят, греют) точно так же, как и будучи подключенными к источнику постоянного напряжения с тем же значением напряжения.

Когда не оговаривают особо, то обычно имеют в виду именно среднеквадратичные значения величины напряжения или силы тока.

В среднеквадратичных значениях проградуированы показывающие устройства большинства вольтметров и амперметров переменного тока, за исключением специальных приборов, однако эти обычные приборы дают правильные показания для среднеквадратических значений только при форме сигнала синусоидальной формы. Некритичны к форме сигнала приборы с термопреобразователем, в которых измеряемый ток или напряжение с помощью нагревателя, представляющим собой активное сопротивление, преобразуется в далее измеряемую температуру, которая и характеризует величину электрического сигнала. Также нечувствительны к форме сигнала специальные устройства, возводящие мгновенное значение сигнала в квадрат с последующим усреднением во времени (с квадратичным детектором) или АЦП, возводящие в входной сигнал в квадрат тоже с усреднением по времени. Квадратный корень из выходного сигнала таких устройств как раз и является среднеквадратическим значением.

Квадрат среднеквадратичного значения напряжения, выраженного в вольтах, численно равен средней рассеиваемой мощности в ваттах на резисторе с сопротивлением 1 Ом.

Среднее значение

Среднее значение (смещение) — постоянная составляющая напряжения или силы тока

U=1T∫0Tu(t)dt ,I=1T∫0Ti(t)dt{\displaystyle U={\frac {1}{T}}\int \limits _{0}^{T}u(t)dt~,\qquad I={\frac {1}{T}}\int \limits _{0}^{T}i(t)dt} 

В электротехнике используется редко, но сравнительно часто используется в радиотехнике (ток смещения и напряжение смещения). Геометрически это разность площадей под и над осью времени, делённая на период. Для синусоидального сигнала смещение равно нулю.

Средневыпрямленное значение

Средневыпрямленное значение — среднее значение модуля сигнала

U=1T∫0T∣u(t)∣dt ,I=1T∫0T∣i(t)∣dt{\displaystyle U={\frac {1}{T}}\int \limits _{0}^{T}\mid u(t)\mid dt~,\qquad I={\frac {1}{T}}\int \limits _{0}^{T}\mid i(t)\mid dt} 

На практике используется редко, однако большинство измерительных приборов переменного тока - магнитоэлектрической системы (т. е., в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала проградуирована по среднеквадратичным значениям для синусоидальной формы сигнала. Если сигнал заметно отличается от синусоидального, показания приборов магнитоэлектрической системы имеют систематическую ошибку. В отличие от приборов магнитоэлектрической системы, приборы электромагнитной, электродинамической и тепловой систем измерения всегда реагируют на действующее значение, независимо от формы электрического тока.

Геометрически это сумма площадей, ограниченная кривой над и под осью времени за время измерения. При однополярном измеряемом напряжении среднее и средневыпрямленное значения равны между собой.

ru-wiki.org

Действующие значения силы тока и напряжения

Действующее значение переменного тока

Действующее (эффективное) значение переменного тока равно величине такого постоянного тока, который за время, равное одному периоду переменного тока, произведёт такую же работу (тепловой или электродинамический эффект), что и рассматриваемый переменный ток.

В современной литературе чаще используется математическое определение этой величины — среднеквадратичное значение переменного тока.

Иначе говоря, действующее значение переменного тока можно определить по формуле:

I = 1 T ∫ 0 T i 2 d t . {\displaystyle I={\sqrt {{\frac {1}{T}}\int _{0}^{T}i^{2}dt}}.}

Для синусоидального тока:

I = 1 2 ⋅ I m ≈ 0,707 ⋅ I m , {\displaystyle I={\frac {1}{\sqrt {2}}}\cdot I_{m}\approx 0{,}707\cdot I_{m},}

где

I m {\displaystyle I_{m}}  — амплитудное значение тока.

Для тока треугольной и пилообразной формы:

I = 1 3 ⋅ I m ≈ 0,577 ⋅ I m . {\displaystyle I={\frac {1}{\sqrt {3}}}\cdot I_{m}\approx 0{,}577\cdot I_{m}.}

Аналогичным образом определяются действующие значения ЭДС и напряжения.

Дополнительные сведения

В англоязычной технической литературе для обозначения действующего значения употребляется термин effective value — эффективное значение. Также применяется аббревиатура RMS (rms) — root mean square — среднеквадратичное (значение).

В электротехнике приборы электромагнитной, электродинамической и тепловой систем калибруются на действующее значение.

Источники

  • «Справочник по физике», Яворский Б. М., Детлаф А. А., изд. «Наука», 1979 г.1
  • Курс физики. А. А. Детлаф, Б. М. Яворский М.: Высш. шк., 1989. § 28.3, п.5
  • «Теоретические основы электротехники», Л. А. Бессонов: Высш. шк., 1996. § 7.8 — § 7.10

Ссылки

  • Действующие значения тока и напряжения
  • Среднеквадратичное значение
Это заготовка статьи по физике. Вы можете помочь проекту, дополнив её.

ru.wikipedia.org>

Мгновенные, максимальные, действующие и средние значения электрических величин переменного тока

Мгновенное и максимальное значения. Величину переменной электродвижущей силы, силы тока, напряжения и мощности в любой момент времени называют мгновенными значениями этих величин и обозначают соответственно строчными буквами (e, i, u, p).

Максимальным значением (амплитудой) переменной э. д. с. (или напряжения или тока) называется та наибольшая величина, которой она достигает за один период. Максимальное значение электродвижущей силы обозначается Еm, напряжения — Um, тока — Im.

Действующим (или эффективным) значением переменного тока называется такая сила постоянного тока, которая, протекая через равное сопротивление и за одно и то же время, что и переменный ток, выделяет одинаковое количество тепла.

Для синусоидального переменного тока действующее значение меньше максимального в 1,41 раз, т. е. в

раз.

Аналогично действующие значения переменной электродвижущей силы и напряжения меньше их максимальных значений тоже в 1,41 раза.

По величине измеренных действующих значений силы переменного тока, напряжения или электродвижущей силы можно вычислить их максимальные значения:

Em = E · 1,41; Um = U · 1,41; Im = I · 1,41;

Среднее значение= отношению количества эл энергии прошедшего через сечение проводника за половину периода к величине этого полупериода.

Под средним значением понимают среднеарифметическое ее значение за половину периода.

studopedia.ru>

/ Среднее и действующие значения синусоидальных токов и напряжений

Действующее значение переменного тока - это значение постоянного тока, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при переменном токе. 

Под средним значением синусоидально изменяющейся величины понимают ее среднее значение за полпериода. Среднее значение тока

т. е. среднее значение синусоидального тока составляет 

от амплитудного. Аналогично, 

Широко применяют понятие действующего значения синусоидально изменяющейся величины (его называют также эффективным или среднеквадратичным). Действующее значение тока

Следовательно, действующее значение синусоидального тока равно 0,707 от амплитудного. Аналогично,

Можно сопоставить тепловое действие синусоидального тока с тепловым действием постоянного тока, текущего то же время по тому же сопротивлению.

Количество теплоты, выделенное за один период синусоидальным током,

Выделенная за то же время постоянным током теплота равна 

Приравняем их:

Таким образом, действующее значение синусоидального тока 

численно равно значению такого постоянного тока, который за время, равное периоду синусоидального тока, выделяет такое же количество теплоты, что и синусоидальный ток.

Для установления эквивалентности переменного тока в отношении энергии и мощности, общности методов расчета, а также сокращения вычислительной работы изменяющиеся непрерывно во времени токи. ЭДС и напряжения заменяют эквивалентными неизменными во времени величинами. Действующим или эквивалентным значением называется такой неизменный во времени ток, при котором выделяется в резистивном элементе с активным сопротивлением r за период то же количество энергии, что и при действительном изменяющемся синусоидально токе.

Энергия за период, выделяющаяся в резистивном элементе при синусоидальном  токе,

T

T

w =

i2r dt =

Im2sin2 ωt r dt..

0

0

При неизменном во времени токе энергия

W = I2rT

Приравняв правые части

T

I2rT =

Im2sin2 ωt r dt,.

0

получим действующее значение тока

I =

1

T

Im2sin2 ωt r dt

0

=

Im

= 0,707Im .

T

√2

Таким образом, действующее значение тока меньше амплитудного в √2 раз.

Аналогично определяют действующие значения ЭДС и напряжения:

Е = Em /√2, U = Um /√2.

Действующему значению тока пропорциональна сила, действующая на ротор двигателя переменного тока, подвижную часть измерительного прибора и т. д. Когда говорят о значе­ниях напряжения, ЭДС и тока в цепях переменного тока, имеют в виду их действующие значения. Шкалы измерительных приборов переменного тока отградуированы соответственно в действующих значениях тока и напряжения. Например, если прибор показывает 10 А, то это значит, что амплитуда тока

Im = √2I = 1,41 • 10 = 14,1 A,

и мгновенное значение тока

i = Im sin (ωt + ψ) = 14,1 sin (ωt + ψ).

При анализе и расчет выпрямительных устройств пользуются средними значениями тока, ЭДС и напряжения, под которыми понимают среднее арифметическое значение соответствующей величины за полпериода (среднее значение за период, как известно, равно нулю):

T2

Еср =

Ет sin ωt dt =

sin ωt dωt =

|cos ωt|π0 =

= 0,637Ет .

0

0

Аналогично можно найти средние значения тока и напряжения:

Iср = 2Iт /π;    Uср = 2Uт /π.

Отношение действующего значения к среднему значению какой-либо периодически изменяющейся величины называется коэффициентом формы кривой. Для синусоидального тока

Кф =

Е

=

I

=

U

=

π

= 1,11.

Ес

Iср

Uср

2√2

Переменный синусоидальный ток в течение периода имеет различные мгновенные значения. Естественно поставить вопрос, какое же значение тока будет измеряться амперметром, включенным в цепь?

При расчетах цепей переменного тока, а также при электрических измерениях неудобно пользоваться мгновенными или амплитудными значениями токов и напряжений, а их средние значения за период равны нулю. Кроме того, об электрическом эффекте периодически изменяющегося тока (о количестве выделенной теплоты, о совершенной работе и т. д.) нельзя судить по амплитуде этого тока.

Наиболее удобным оказалось введение понятий так называемых действующих значений тока и напряжения. В основу этих понятий положено тепловое (или механическое) действие тока, не зависящее от его направления.

Действующее значение переменного тока - это значение постоянного тока, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при переменном токе. 

Для оценки действия, производимого переменным током, мы сравним его действия с тепловым эффектом постоянного тока. 

Мощность Р постоянного тока I, проходящего через сопротивление r, будет Р = Р2r.

Мощность переменного тока выразится как средний эффект мгновенной мощности I2r за целый период или среднее значение от (Im х sinωt)2 х rза то же время.

Пусть среднее значение t2 за период будет М. Приравнивая мощность постоянного тока и мощность при переменном токе, имеем: I2r = Mr, откуда I = √M,

Величина I называется действующим значением переменного тока.

Среднее значение i2 при переменном токе определим следующим образом.

Построим синусоидальную кривую изменения тока. Возведя в квадрат каждое мгновенное значение тока, получим кривую зависимости Р от времени. 

Действующее значение переменного тока

Обе половины этой кривой лежат выше горизонтальной оси, так как отрицательные значения тока (-i) во второй половине периода, будучи возведены в квадрат, дают положительные величины.

Построим прямоугольник с основанием Т и площадью, равной площади, ограниченной кривой i2 и горизонтальной осью. Высота прямоугольника М будет соответствовать среднему значению Р за период. Это значение за период, вычисленное при помощи высшей математики, будет равно1/2I2m. Следовательно, М = 1/2I2m

Так как действующее значение I переменного тока равно I = √M, то окончательно I = Im / √2

Аналогично зависимость между действующим и амплитудным значениями для напряжения U и Е имеет вид:

U = Um / √2,E= Em / √2

Действующие значения переменных величин обозначаются прописными буквами без индексов (I, U, Е).

На основании сказанного выше можно сказать, что действующее значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время выделяет такое же количество энергии.

Электроизмерительные приборы (амперметры, вольтметры), включенные в цепь переменного тока, показывают действующие значения тока или напряжения.

При построении векторных диаграмм удобнее откладывать не амплитудные, а действующие значения векторов. Для этого длины векторов уменьшают в √2 раз. От этого расположение векторов на диаграмме не изменяется.

StudFiles.ru>

Список параметров напряжения и силы электрического тока

В связи с тем, что электрические сигналы представляют собой изменяющиеся во времени величины, в электротехнике и радиоэлектронике используются по необходимости разные способы представлений напряжения и силы электрического тока

Значения переменного напряжения (тока)

Далее для определенности будем говорить большей частью о параметрах напряжения, хотя они справедливы и для токов.

Мгновенное значение

Мгновенное значение — это значение сигнала в определённый момент времени, функцией которого является (   u ( t ) , i ( t ) {\displaystyle u(t)~,\quad i(t)}    ). Мгновенные значения медленно изменяющегося сигнала можно определить с помощью малоинерционного вольтметра постоянного тока, самописца или шлейфового осциллографа, для периодических быстротекущих процессов используется электронно-лучевой или цифровой осциллограф.

Амплитудное значение
  • Амплитудное (пиковое) значение, иногда называемое просто «амплитуда» — наибольшее мгновенное значение напряжения или силы тока за период (без учёта знака):
U M = max ( | u ( t ) | ) , I M = max ( | i ( t ) | ) {\displaystyle U_{M}=\max(|u(t)|)~,\qquad I_{M}=\max(|i(t)|)}

Пиковое значение напряжения измеряется с помощью импульсного вольтметра или осциллографа.

Среднеквадратичное значение

Среднеквадратичное значение (устар. действующее, эффективное) — корень квадратный из среднего значения квадрата напряжения или тока.

U = 1 T ∫ 0 T u 2 ( t ) d t , I = 1 T ∫ 0 T i 2 ( t ) d t {\displaystyle U={\sqrt {{\frac {1}{T}}\int \limits _{0}^{T}u^{2}(t)dt}}~,\qquad I={\sqrt {{\frac {1}{T}}\int \limits _{0}^{T}i^{2}(t)dt}}}

Среднеквадратичные значения являются самыми распространёнными, так как они наиболее удобны для практических расчётов, поскольку в линейных цепях с чисто активной нагрузкой переменный ток с действующими значениями I {\displaystyle I} и U {\displaystyle U} совершает ту же работу, что и постоянный ток с теми же значениями тока и напряжения. Например, лампа накаливания или кипятильник, включённые в сеть с переменным напряжением с действующим значением 220 В, работают (светят, греют) точно так же, как и будучи подключенными к источнику постоянного напряжения с тем же значением напряжения.

Когда не оговаривают особо, то обычно имеют ввиду именно среднеквадратичные значения величины напряжения или силы тока.

В среднеквадратичных значениях проградуированы показывающие устройства большинства вольтметров и амперметров переменного тока, за исключением специальных приборов, однако эти обычные приборы дают правильные показания для среднеквадратических значений только при форме сигнала синусоидальной формы. Некритичны к форме сигнала приборы с термопреобразователем, в которых измеряемый ток или напряжение с помощью нагревателя, представляющим собой активное сопротивление, преобразуется в далее измеряемую температуру, которая и характеризует величину электрического сигнала. Также нечувствительны к форме сигнала специальные устройства, возводящие мгновенное значение сигнала в квадрат с последующим усреднением во времени (с квадратичным детектором) или АЦП, возводящие в входной сигнал в квадрат тоже с усреднением по времени. Квадратный корень из выходного сигнала таких устройств как раз и является среднеквадратическим значением.

Квадрат среднеквадратичного значения напряжения, выраженного в вольтах, численно равен средней рассеиваемой мощности в ваттах на резисторе с сопротивлением 1 Ом.

Среднее значение

Среднее значение (смещение) — постоянная составляющая напряжения или силы тока

U = 1 T ∫ 0 T u ( t ) d t , I = 1 T ∫ 0 T i ( t ) d t {\displaystyle U={\frac {1}{T}}\int \limits _{0}^{T}u(t)dt~,\qquad I={\frac {1}{T}}\int \limits _{0}^{T}i(t)dt}

В электротехнике используется редко, но сравнительно часто используется в радиотехнике (ток смещения и напряжение смещения). Геометрически это разность площадей под и над осью времени, делённая на период. Для синусоидального сигнала смещение равно нулю.

Средневыпрямленное значение

Средневыпрямленное значение — среднее значение модуля сигнала

U = 1 T ∫ 0 T ∣ u ( t ) ∣ d t , I = 1 T ∫ 0 T ∣ i ( t ) ∣ d t {\displaystyle U={\frac {1}{T}}\int \limits _{0}^{T}\mid u(t)\mid dt~,\qquad I={\frac {1}{T}}\int \limits _{0}^{T}\mid i(t)\mid dt}

На практике используется редко, однако большинство измерительных приборов переменного тока - магнитоэлектрической системы (т. е., в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала проградуирована по среднеквадратичным значениям для синусоидальной формы сигнала. Если сигнал заметно отличается от синусоидального, показания приборов магнитоэлектрической системы имеют систематическую ошибку. В отличие от приборов магнитоэлектрической системы, приборы электромагнитной, электродинамической и тепловой систем измерения всегда реагируют на действующее значение, независимо от формы электрического тока.

Геометрически это сумма площадей, ограниченная кривой над и под осью времени за время измерения. При однополярном измеряемом напряжении среднее и средневыпрямленное значения равны между собой.

Коэффициенты пересчёта значений

  • Коэффициент формы кривой переменного напряжения (тока) — величина, равная отношению действующего значения периодического напряжения (тока) к его средневыпрямленному значению. Для синусоидального напряжения (тока) равен π / 2 2 ≈ 1.11 {\displaystyle {\frac {{\pi }/2}{\sqrt {2}}}\approx 1.11} .
  • Коэффициент амплитуды кривой переменного напряжения (тока) — величина, равная отношению максимального по модулю за период значения напряжения (тока) к действующему значению периодического напряжения (тока). Для синусоидального напряжения (тока) равен 2 {\displaystyle {\sqrt {2}}} .

Параметры постоянного тока

  • Размах пульсации напряжения (тока) — величина, равная разности между наибольшим и наименьшим значениями пульсирующего напряжения (тока) за определенный интервал времени
  • Коэффициент пульсации напряжения (тока) — величина, равная отношению наибольшего значения переменной составляющей пульсирующего напряжения (тока) к его постоянной составляющей.
    • Коэффициент пульсации напряжения (тока) по действующему значению — величина, равная отношению действующего значения переменной составляющей пульсирующего напряжения (тока) к его постоянной составляющей
    • Коэффициент пульсации напряжения (тока) пo среднему значению — величина, равная отношению среднего значения переменной составляющей пульсирующего напряжения (тока) к его постоянной составляющей

Параметры пульсации определяются по осциллографу, либо с помощью двух вольтметров или амперметров (постоянного и переменного тока)

Литература и документация

Литература
  • Справочник по радиоэлектронным устройствам: В 2-х т.; Под ред. Д. П. Линде — М.: Энергия, 1978
  • Шульц Ю. Электроизмерительная техника: 1000 понятий для практиков: Справочник: Пер. с нем. М.:Энергоатомиздат, 1989
Нормативно-техническая документация
  • ГОСТ 16465-70 Сигналы радиотехнические измерительные. Термины и определения
  • ГОСТ 23875-88 Качество электрической энергии. Термины и определения
  • ГОСТ 13109-97 Электрическая энергия. Совместимость технических средств. Нормы качества электрической энергии в системах электроснабжения общего назначения

Ссылки

  • Электрические цепи постоянного тока
  • Переменный ток. Изображение синусоидальных переменных
  • Амплитудное, среднее, эффективное
  • Периодические несинусоидальные ЭДС, токи и напряжения в электрических цепях
  • Системы тока и номинальные напряжения электроустановок
  • Электричество
  • Проблемы высших гармоник в современных системах электропитания

ru.wikipedia.org>

Какой физический смысл имеет действующее значение напряжения и тока

Александр титов

Действующее значение силы ПЕРЕМЕННОГО тока - это такое значение величины ПОСТОЯННОГО тока, действие которого произведёт ту же самую работу (или тепловой эффект) , что и действие переменного тока за время одного периода его действия. Пусть, например, ток проходит через резистор, сопротивлением R = 1 Ом. Тогда количество теплоты, выделившееся в резисторе за период равно интегралу от (i(t)^2 * R * T). На рисунке показаны графики силы тока и квадрата силы тока, отнесённых к максимальному значению. Т. к. R = 1, то площадь под вторым графиком (жёлтая область) - это и есть количество теплоты. А то значение постоянного тока, при протекании которого через резистор выделится такое же количество теплоты, и есть действующее значение тока. Нетрудно определить, что указанная площадь (определяется через интеграл) , равна 1/2, т. е. кол-во теплоты равно Im^2 * R * T / 2 Значит, если через резистор протекает постоянный ток I, то выделившееся количество теплоты будет равно I^2 * R * T. Приравнивая эти выражения и сокращая на R*T, получаем I^2 = Im/2, откуда I = Im / корень из 2. Это и есть действующее значение тока.

То же самое с действующим значением напряжения и ЭДС.

Vitas latish

можно грубо сказать - напряжение - потенциальная энергия.... расческа- волосы.... напряжение = свечение, искорки, подъем волос... . - ток это работа, действие, сила.. . тепло, горение, движение выплеск кенетической энергии

Читайте также

zna4enie.ru


Каталог товаров
    .