интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Трансформатор. Холостой и рабочий ход трансформатора. Передача и потребление электроэнергии. Напряжение холостого хода трансформатора


Страничка эмбеддера » Напряжение холостого хода трансформаторов

Обычные сетевые трансформаторы, если их не нагружать, выдают напряжение больше заявленного. Но на сколько больше? От ответа зависит, какое напряжение фильтрующего конденсатора в блоке питания выбрать.

n10

 

Помню еще у отца был конструктор усилителя “электроника-25” и там в инструкции было сказано, что включать блок питания без нагрузки запрещается. Тогда меня это очень удивляло. Теперь уже – нет. Итак, тестируем трансформаторы на напряжение холостого хода.

 

Первым под тестер попал 10Вт трансформатор из Николаева (фото — сверху). У него напряжение холостого хода на 11% больше, чем при номинальной нагрузке.

 

Вторым пошел 5Вт трансформатор из того-же завода, у него напряжения холостого хода на 12.5% больше, чем номинальное.

n5

Вот такой 200Вт трансформатор от того самого усилителя “электроника-25” выдал на 10.5% больше вольтов без нагрузки, чем с оной.

t25

Ну, и последним и самым худшим стал залитый трансформатор от тортранса. Он выдает аж на 40% больше. С таким трансформатором придется ставить огромные бочки, низачот.

tn5.5

Общая тенденция такова – чем больше мощи, тем меньше напряжение холостого хода превышает напряжение под нагрузкой. Если использовать приличный трансформатор, то достаточно 15% запаса по напряжению у фильтрующих конденсаторов.

Для примера, посчитаю на какое напряжение нужно брать конденсаторы простого блока питания. Итак у нас 15В трансформатор не от тортранс’а.

Umax = 15 * 1.4 * 1.15 = 24.15

На диодном мосту будет падать минимум 1.2В. В итоге, пиковое напряжение получается 23В. Разброс напряжения трансформатора пусть будет порядка 10%. 23 * 1.1 = 25.3. В итоге, по нужно брать конденсатор на 35В.

В реальной жизни, естественно, нужно все мерять. Вполне возможно, что просто стабилизатор нагрузит трансформатор достаточно, чтобы его напряжение просело до безопасного уровня.

Ах, как жаль, что производители не публикуют нагрузочных характеристик!

bsvi.ru

Что такое холостой ход трансформатора

Трансформаторы являются устройствами, предназначенными для повышения и понижения переменного напряжения. При этом частота тока не меняется, также, как и практически не изменяются его мощностные характеристики. Каким бы ни был трансформатор (по разным критериям их можно разделить на несколько групп), он имеет ряд сходных характеристик, на которые следует обращать особое внимание, не только во время эксплуатации, но и во время проверки работоспособности устройства.

Содержание:

Трансформаторы и режимы их работы

Работа всех трансформаторных устройств, а их около десятка различных видов, способны соответствует одному из трех основных режимов:

  • Холостому ходу.
  • Короткому замыканию.
  • Нагрузочному режиму.

Один из наиболее важных режимов - холостой ход трансформатора, ведь именно на основании информативных показателей опытов холостого хода проводится доскональный анализ любого их режимов. Для этого также требуются параметры схемы замещения.

Как определить коэффициент трансформации и другие параметры? ↑

Что такое «холостой ход трансформатора»? По сути, это особый режим работы устройства, условием которого является разомкнутость вторичной обмотки, а первичная обмотка имеет номинальное напряжение. В таком состоянии, при проведении ряда расчетов, можно определить точные параметры целого ряда показателей, например, для трансформаторных устройств распространенного однофазного типа так рассчитываются:

  • коэффициент трансформации;
  • активное, полное, индуктивное сопротивление ветви намагничивания;
  • коэффициент мощности, процентное значение тока и измерения холостого хода.

Алгоритм проведения измерений холостого хода выглядит так:

  • Измеряется ток, который был приложен к первичной обмотке, посредством измерительных приборов, которые включены в общую цепь.
  • Замыкается вторичная обмотка на вольтметре. Сопротивление должно быть такой величины, чтобы значение тока вторичной обмотки приближалось к минимальной отметке.
  • Величина тока холостого хода в первичной обмотке минимальна относительно значения номинала, если сравнивать с прикладываемым напряжением, которое приводит в равновесие электродвижущая сила первичной обмотки. И оба этих показателя отличаются незначительно, а значит значение хода электродвижущей силы в первичной обмотке можно определить по данным вольтметра.

Наиболее точные искомые значения можно получить, используя обмотки различного напряжения - низкого и высокого. Точность таких измерений будет определяться разницей номиналов между ними.

Причины и следствия потерь холостого хода трансформатора ↑

Потери холостого хода трансформаторных устройств любого типа — это следствие износа устройств. Со временем их магнитная система и структура используемого металла стареет и меняется, межлистовая изоляция становится хуже, а прессовка сердечника ослабляется. Естественно, вы это негативно сказывается на уровне потерь электроэнергии.Практика показывает, что вопреки установленных нормам, согласно которым потери могут отличаться от заводских показателей не более, чем на пять процентов, во многих случаях они превышают порог в пятьдесят процентов. Особенно это касается трансформаторов силового типа. Данные измерений такого типа устройств позволяют довольно точно прогнозировать потери энергии в каждом отдельном муниципалитете.

Инженерный центр "ПрофЭнергия" имеет все необходимые инструменты для качественного проведения обслуживания трансформаторных подстанций, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории "ПрофЭнергия" вы выбираете надежную и качествунную работу своего оборудования!

Если хотите заказать обслуживание трансформаторных подстанций или задать вопрос, звоните по телефону: +7 (495) 181-50-34.

Как измерить потери холостого хода трансформатора? ↑

Основные принципы измерений потерь холостого хода всех видов трансформаторных приборов прописаны в ГОСТах.Главной причиной ошибочных результатов, полученных во время проведения измерений, можно назвать низкую точность измерительных устройств и неверные действия замерщиков, а также несоответствие необходимым условий проведения измерений.Чтобы избежать отклонений, влияющих на прогнозы и корректировку условий и интенсивности эксплуатации приборов, стоит предварительно разработать, согласовать с изготовителем и утвердить методику измерения потерь в данном режиме.

Плавность регулировки сварочного трансформатора ↑

Эффективность действия устройства напрямую зависит от такого явления, как электромагнитная индукция. Что такое режим холостого хода сварочного трансформатора? Напомним, что такой режим устанавливается при разомкнутой вторичной обмотке в тот момент, когда подключается первичная обмотка с током I1. Напряжение сети переменного тока в данном случае равно U1.

Ток, идущий по первичной обмотке, моделирует магнитный поток с переменными характеристиками, индуцирующий переменное напряжение U2, возникающее во вторичной обмотке. А так как ее цепь находится в разомкнутом состоянии, соответственно ток I2 имеет нулевое значение. То есть во вторичной цепи нет никаких затрат электроэнергии. В этих условиях вторичное напряжение, которое возникает в комментируемом режиме, достигает пиковых значений. Такая величина является напряжением холостого хода.

Принцип действия таких устройств базируется на преобразовании стандартного сетевого напряжения. Этот стандарт преобразуется в напряжение холостого хода, имеющее приблизительный диапазон от 60 до 80 В.

Все параметры и их соотношение влияют на уровень и плавность регулировки. Делать это можно двумя путями: меняя значение либо индуктивного сопротивления, либо напряжения холостого хода.

В первом случае, который является более частотным и популярным, регулировка сварочного тока происходит более плавно. Вторым предпочитают пользоваться, как альтернативным.Плавность двухдиапазонного регулирования мощности тока в процессе работы трансформатора сварочного типа играет важную роль, так как дает возможность значительно снизить показатели массы, а также ощутимо уменьшить размеры устройства. Получить широкий диапазон больших токов можно, включая попарно параллельно катушки как первичной, так и вторичной обмоток, а чтобы получить диапазон токов малой мощности, их необходимо включать в последовательном режиме.

energiatrend.ru

Холостой ход трансформатора

Опыт холостого хода трансформатора

Холостым ходом трансформатора является такой предельный режим работы, когда его вторичная обмотка разомкнута и ток вто­ричной обмотки равен нулю (I2 = 0). Опыт холостого хода позволяет определить коэффициент трансформации, ток, потери и сопротивление холостого хода трансформатора.

При опыте холостого хода первичную обмотку однофазного трансформатора включают в сеть переменного тока на номинальное напряжение U1 (рис. 4).

Под действием приложенного напряжения по обмотке протекает ток I1=I0 равный току холостого хода. Практически ток холостого хода равен примерно 5—10% номинального, а в трансформаторах малой мощности (десятки вольт-ампер) достигает значений 30% и более номинального. Для измерения тока холостого хода, приложенного к первичной обмотке напряжения и потребляемой мощности в цепь первичной обмотки трансформатора включены измерительные приборы (амперметр А, вольтметр V и ваттметр W). Вторичная обмотка трансформатора замкнута на вольтметр, сопротивление которого очень велико, так что ток вторичной обмотки практически равен нулю.

Ток холостого хода возбуждает в магнитопроводе трансформатора магнитный поток, который индуктирует э. д. с. Е1 и Е2 в первичной и во вторичной обмотках.

Во вторичной обмотке трансформатора нет тока и, следовательно, нет падения напряжения в сопротивлении этой обмотки, поэтому э. д. с. равна напряжению, т. е. Е2=1/2. Поэтому э. д. с. вторичной обмотки определяется показанием вольтметра, включенного в эту обмотку.

Ток холостого хода, протекающий в первичной обмотке, очень мал по сравнению с номинальным, так что падение напряжения в сопротивлении первичной обмотки очень мало по сравнению с приложенным напряжением. Поэтому приложенное напряжение практически уравновешивается э. д. с. первичной обмотки и численные значения напряжения V и э. д. с. Е приблизительно равны. Следовательно, при опыте холостого хода э. д. с. первичной обмотки определится показанием вольтметра, включенного в ее цепь.

Для большей точности измерения при опыте холостого хода первичной обмоткой служит обмотка низшего напряжения, а вторичной — обмотка высшего напряжения. Это объясняется тем, что для обмотки НН номинальный ток будет больше, чем для обмотки ВН. Так как ток холостого хода небольшой и составляет несколько процентов номинального, то при использовании обмотки НН в качест­ве первичной ток холостого хода окажется больше и может быть измерен более точно, чем в случае использования обмотки ВН в ка­честве первичной.

Имея в виду равенства E2=U2 и E1~U1 коэффициент транс­формации можно определить отношением э. д. с. или чисел витков обмоток. Таким образом, при холостом ходе трансформатора коэффици­ент трансформации определится отношением показателей вольтмет­ров, включенных в первичной и вторичной обмотках.

Для трехфазного трансформатора различают фазный и линей­ный коэффициенты трансформации. Фазный коэффициент транс­формации определяет соотношение чисел витков обмоток ВН и НН и равен отношению фазных напряжений. Линейный коэффициент трансформации равен отношению линейных напряжений на стороне ВН и НН.

Если схемы соединения обмоток ВН и НН одинаковы (напри­мер, звезда — звезда или треугольник — треугольник), отношения фазных и линейных напряжений также одинаковы, т. е. фазный и линейный коэффициенты трансформации равны. Если же схемы соединения обмоток ВН и НН различны (звезда — треугольник или треугольник — звезда), фазный и линейный коэффициенты трансформации отличаются в 1,73 раз.

voasw.ru

Холостой ход трансформатора, особенности работы в режиме холостого хода.

 

 

 

Тема: какими особенностями обладает трансформатор в режиме холостого хода.

 

Холостой ход трансформатора представляет собой такой режим работы (предельный), когда его вторичная электрическая обмотка разомкнута (не соединена с электроцепью) и сила тока вторичной обмотки приравнивается нулю (то есть I2 = 0). Наблюдение работы холостого хода трансформатора позволяет определить действительный коэффициент трансформации, силу тока, реальные потери и электрическое сопротивление холостого хода трансформатора.

 

 

При работе холостого хода трансформатора его первичную обмотку подключают в электрическую сеть переменного синусоидального тока на некоторое номинальное напряжение U1. Под воздействием подсоединённого электрического напряжения по первичной обмотке трансформатора начинает течь некоторая сила тока (который равен электрическому току холостого хода). Сила тока холостого хода трансформатора равна около 5—10% номинального его значения, а в электрических трансформаторах с малой мощностью (примерно десятки вольт-ампер) может достигать величины в 30% и даже больше номинального рабочего.

 

Для непосредственного измерения электрического тока холостого хода, которое возникает при подсоединении к первичной обмотке трансформатора напряжения и потребляемой электрической мощности в имеющейся цепь этой обмотки включены различные измерительные электроприборы (вольтметр V, амперметр А и ваттметр W). Вторичная обмотка проверяемого электрического трансформатора, в свою очередь, замкнута на вольтметр, внутреннее сопротивление которого довольно большое, поэтому сила тока на вторичной обмотки трансформатора почти равна нулю.

 

 

Сила тока холостого хода трансформатора возбуждает в его магнитопроводе электромагнитный поток, что в свою очередь индуктирует электродвижущую силу (ЭДС) Е1 и Е2, как в первичной, так и во вторичной обмотках нашего трансформатора. Во вторичной обмотке электрического трансформатора тока нет, а следовательно, не будет и падения электрического напряжения в имеющемся сопротивлении данной обмотки, по этой причине электродвижущая сила (ЭДС) приравнивается действительному напряжению, то есть Е2=1/2. Отсюда следует, что электродвижущая сила (ЭДС) вторичной обмотки трансформатора определяется значениями вольтметра, подключенного в эту обмотку.

 

Сила тока холостого хода трансформатора, который протекает в его первичной обмотке, весьма мала, если сравнивать с номинальным его значением, поэтому имеющееся падение электрического напряжения во внутреннее сопротивлении первичной обмотки довольно маленькое по сравнению с подключённым электрическим напряжением. Отсюда следует, что подключённое напряжение почти полностью сбалансируется электродвижущей силой (ЭДС) первичной обмотки трансформатора и реальная величина электрического напряжения и электродвижущая сила (ЭДС) приблизительно равны между собой. Значит, при работе холостого хода трансформатора электродвижущая сила первичной обмотки полностью определится действительным показанием вольтметра, который включен в ее электроцепь.

 

Для точности нашего измерения при работе холостого хода трансформатора первичной обмоткой является обмотка меньшего электрического напряжения, ну, а вторичной обмоткой — обмотка большего электрического напряжения трансформатора. Для трансформаторной обмотки «НН» рабочий номинальный ток будет по своему значению больше, по сравнению с обмоткой «ВН». Поскольку сила тока холостого хода трансформатора относительно малая и приравнивается к нескольким процентам от номинального, то при работе обмотки «НН» в качестве первичной обмотки трансформатора сила тока холостого хода будет немного больше и даже может быть измерен точно, по сравнению использования обмотки «ВН» в качестве первичной обмотки трансформатора.

 

Принимая во внимание равенства E1~U1 и E2=U2 коэффициент трансформации возможно будет определить отношением электродвижущей силы либо же количества витков обмоток трансформатора. При холостом ходе трансформатора его действительный коэффициент трансформации будет определиться неким отношением рабочих показателей вольтметров, которые подключены к первичной и вторичной обмотке трансформатора.

 

Для электрического силового трехфазного трансформатора ещё различают линейный и фазный коэффициент трансформации. Линейный коэффициент трансформации приравнен некоторому отношению линейных электрических напряжений на стороне «ВН» и «НН». Фазный коэффициент трансформации обычно определяет имеющееся соотношение количества намотанных витков обмоток «ВН» и «НН» и приравнен некоторому отношению фазных электрических напряжений.

 

P.S. Тестирование работы силового трансформатора может много о чём сказать. Зная, как именно работает данная электрическая машина без нагрузки можно судить о тех изменениях в режиме функционирования, что происходят уже с подключёнными устройствами к трансформатору. Понимание общего принципа работы трансформаторов даёт возможность легко их эксплуатировать в различных режимах своего дейстия, не допуская критических перегрузок, ведущими к преждевременному износу и выходу из строя.

electrohobby.ru

Холостой ход - трансформатор - Большая Энциклопедия Нефти и Газа, статья, страница 1

Холостой ход - трансформатор

Cтраница 1

Холостой ход трансформатора - это режим, при котором его вторичная обмотка разомкнута. В этом случае сопротивление r2 ( l - s) / soo, что аналогично размыканию цепи вторичной обмотки. Электрические потери вследствие малой величины тока / 0 незначительны и ими можно пренебречь.  [1]

Холостой ход трансформатора имеет место, когда к зажимам его первичной обмотки подводится переменное напряжение, а цепь вторичной обмотки разомкнута. На основании опыта холостого хода ( рис. 10 - 5) по показаниям измерительных приборов определяются потери в стали сердечника, ток холостого хода и коэффициент трансформации трансформатора.  [3]

Холостой ход трансформатора отключается в этом случае разъединителем / или выключателем, имеющимся на питающем конце линии.  [5]

Холостым ходом трансформатора является его работа при разомкнутой вторичной обмотке.  [6]

Холостым ходом трансформатора называют такой режим его работы, при котором первичная обмотка присоединена к сети, а вторичная - разомкнута.  [7]

Холостым ходом трансформатора называется режим, когда ко вторичной обмотке ничего не подключено.  [8]

Ток холостого хода трансформатора составляет единицы или десятки ампер, емкость трансформаторов очень мала ( см. табл. 4 - 4), в то время как индуктивность, обусловленная рассеянием, достаточно велика. Эти высокие кратности получаются, несмотря на активные сопротивления и потери в стали трансформаторов, демпфирующие перенапряжения.  [9]

Напряжения холостого хода трансформаторов согласно ГОСТ 9680 - 61 составляют 400 / 230 или 230 / 133 В; первое предназначено для питания ламп номинального напряжения 220 В, второе для питания ламп 127 В.  [10]

Напряжение холостого хода трансформатора должно быть не ниже 60 в. При этом способе сварки применяется и постоянный ток от сварочного преобразователя.  [12]

Ток холостого хода трансформатора увеличивает этот сдвиг.  [13]

Мощность холостого хода трансформатора относительно мала. Тем не менее она имеет важное практическое значение, так как силовые трансформаторы отключаются от первичной сети довольно редко. Следовательно, в течение 24 ч в сутки трансформатор расходует электроэнергию на потери в сердечнике. Такой постоянный расход электроэнергии при трансформировании весьма нежелателен.  [14]

Страницы:      1    2    3    4

www.ngpedia.ru

Трансформатор. Холостой и рабочий ход

трансформаторТрансформатор

Электрический ток можно преобразовывать практически без потерь. На практике чаще всего требуется невысокое напряжение. Устройство, служащее для преобразования (повышения или понижения) переменного напряжения, называется трансформатором. Или трансформатором называется статический электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток той же частоты, но другого напряжения.

Впервые трансформаторы были использованы в 1878 г. русским ученым П.Н.Яблочковым.

Простейший трансформатор состоит из сердечника 2 (магнитопровода) замкнутой формы, на который намотаны две обмотки: первичная 1 и вторичная 2. Сердечник собирают из множества тонких пластин ферромагнитного сплава для того, чтобы снизить воздействия вихревых токов внутри стали, возникающих при появлении магнитного поля.

Условное обозначение трансформатораУсловное обозначение трансформатора

Принцип действия трансформатора основано на  явлении электромагнитной индукции. Первичная обмотка трансформатора подсоединяется к источнику переменного тока, а вторичная, соответственно, к потребителям электроэнергии. Протекающий по первичной обмотке ток создает переменный магнитный поток (Ф) в сердечнике трансформатора. В результате магнитной индукции переменный магнитный поток   в сердечнике трансформатора создает в обмотке ЭДС индукции, в том числе и в первичной обмотке.

Напряжение на вторичной обмотке зависит от числа витков в первичной и вторичной обмотках трансформатора: фициент трансформации

U1  —  напряжение на первичной обмотке трансформатора, В;

U2  —  напряжение на вторичной обмотке трансформатора, В;

N1  — число витков на первичной обмотке;

N2  — число витков на вторичной обмотке;

K – коэффициент трансформации.

При k > 1 трансформатор будет понижающим, при k < 1 — повышающим.

Режимы работы трансформатора:

  • Режим холостого хода трансформатора называется режим с разомкнутой вторичной обмоткой;
  • рабочим режимом (ходом) трансформатора называется режим, при котором в цепь его вторичной обмотки включена нагрузка с сопротивлением R = 0;
  • режимом короткого замыкания называется режим, при котором вторичная обмотка трансформатора замкнута без нагрузки. Данный режим опасен для трансформатора, т.к. в этом случае ток во вторичной обмотке максимален и происходит электрическая и тепловая перегрузка системы.

Передача и использование электрической энергии

Электрическая энергия, которая вырабатывается генераторами на электростанциях, передается к потребителям на большие расстояния. Трансформаторы в случае широко используются Линии, по которым электрическая энергия передается от электростанций к потребителям, называют линии электропередачи (ЛЭП). При  передаче электроэнергии на большие расстояния неизбежны ее потери, связанные с нагреванием проводов. Потери при нагревании электрических проводов прямо пропорционально I2 через проводник (согласно закону Джоуля — Ленца). Чтобы уменьшить потери энергии, необходимо уменьшить силу тока в линии передачи. При данной мощности уменьшение силы тока возможно лишь при увеличении напряжения (P=UI). Для этого между генератором и линией электропередачи включают повышающий трансформатор, а понижающий трансформатор — между  ЛЭП и потребителем электроэнергии.

В бытовых электроприборах (по технике безопасности) используются небольшие напряжения 220 и 380 В. У современных трансформаторов высокий КПД — свыше 99%.

технологическая цепочка передачи электроэнергииТехнологическая цепочка передачи электроэнергии

kaplio.ru

Измерение тока холостого хода трансформатора напряжения

Трансформаторные системы являются важной составляющей энергоснабжения на любом уровне. От их исправности и эффективности зависит количество энергопотерь, стоимость и рентабельность энергоснабжения как отдельных точек, так и крупных муниципальных образований. Для того, чтобы снизить убыточность, необходимо регулярно производить расчеты, измерения и снижение холостого хода устройств.

Содержание:

Режимы работы трансформаторных устройств

На данный момент насчитывается порядка десяти типов различных трансформаторных устройств. Все их объединяет единый принцип изменения переменного напряжения и конструктивная схожесть. Соответственно, каждый из трансформаторов способен работать в трех основных режимах: холостого хода, короткого замыкания и нагрузки.Режим холостого хода позволяет производить рад замеров, данные которых необходимы для комплексного анализа эффективности работы устройств. Первые испытания проводятся для определения и проверки соответствия паспортным значениям технических данных трансформатора в целом и каждого из его узлов в частности перед сдачей прибора в эксплуатацию. Пусконаладочные работы выявляют скрытые неисправности и позволяют исправить их до начала интенсивного использования устройства. Какие-то из них проводятся еще на этапе сборки, а какие-то уже после того, как залито масло.

Этапы пусконаладочных испытаний ↑

Первичные тестирования на работоспособность проводятся сразу по нескольким направлениям. К обязательным относятся:

  • Замеры данных по потерям холостого хода.
  • Замеры омического сопротивления всех имеющихся обмоток.
  • Определение коэффициента трансформации.
  • Тестирование группы соединения обмоток.
  • Проверка изоляции.

В данном случае важную роль играет последовательность произведения всех видов вышеназванных испытаний.

Инженерный центр "ПрофЭнергия" имеет все необходимые инструменты для качественного проведения диагностики трансформаторов, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории "ПрофЭнергия" вы выбираете надежную и качествунную работу своего оборудования!

Если хотите заказать диагностику трансформаторов или задать вопрос, звоните по телефону: +7 (495) 181-50-34.

Измерения тока холостого хода ↑

Измерение тока холостого хода трансформатора напряжения производится только специалистами с уровнем квалификации — не меньше 3 группы безопасности и при наличии соответствующих средств защиты. Поэтому информация о том, как измерить ток холостого хода трансформатора является скорее ознакомительной нежели практикоприменимой для людей, не имеющих соответствующего уровня подготовки. Для измерений используется опыт холостого хода.

Основные рекомендации:

  • Все замеры необходимо производить при напряжении в 220 — 380 В, подавая его только на одну обмотку и оставляя остальные полностью свободными. Контролируйте напряжение с помощью вольтметра.
  • До начала проведения измерений эксплуатируемых трансформаторов обязательно размагнитьте его магнитопровод, так как в нем все еще имеется остаточное намагничивание, возникшее из-за резкого сброса напряжения. Сделать это можно, пропустив постоянный ток с противоположной полярностью по одной обмотке для каждого стержня.
  • Источником постоянного тока могут быть аккумуляторы переносного типа или выпрямительные устройства.
  • Если вы производите замеры для трехфазного трансформатора, делать это следует с пофазно измеряя ток и потери. Так вы сможете не только обозначить отклонения от заводских параметров, но и выявить неисправную фазу.

Всего используют три способа измерить ток холостого хода трансформатора и его потери, поочередно коротко замыкая одну из фаз и возбуждая оставшиеся две.

Уменьшение холостого хода трансформатора ↑

Во многом ответ на вопрос «как уменьшить ток холостого хода трансформатора», следует искать еще на этапе сборки устройства. Довольно большой процент всех дефектов возникает именно по вине сборщиков, допускающих существенные ошибки и не учитывающих специфику и условия использования трансформаторных приборов и систем в реальных эксплуатационных условиях.

Внимание важно на каждом этапе сборки трансформатора, так как потери холостого хода напрямую влияют на КПД.

На самом деле есть несколько распространенных путей снижения потерь, но далеко не все из них эффективны и рентабельны. Например, можно снизить величину магнитного потока за счет увеличения числа витков в обмотке, но это приведет к перерасходу провода и общему удорожанию. В данном случае об экономии речи идти не может.

Можно применить другой тип электротехнической стали с высокими показателями сопротивления, но это также приведет к общему удорожанию самого устройства.Если использовать тонкие пластины, изолированные друг от друга, то число потерь от вихревых токов значительно снизится, так же, как и применение сплошных пластин с косыми стыками.

Что нужно учитывать при сборке трансформатора? ↑

Специалисту прежде всего следует знать, что от его аккуратности и профессионализма зависит столько же, сколько и от качества материалов. На что именно стоит обратить внимание при сборке трансформатора?

Современные трансформаторы используют сталь с низким сопротивлением механическому воздействию. А это значит, что даже резкая штамповка пластины может значительно снизить магнитные свойства материала в зоне среза. Изгибы, вмятины и царапины способны легко нарушить ориентацию кристаллической решетки, увеличив удельные потери. Поэтом, чтобы восстановить магнитные характеристики стали до исходных, все пластины в обязательном порядке проходят высокотемпературный отжиг еще до начала сборки магнитопровода.В дальнейшем специалисту следует быть особенно осторожным во время проведения комплектации магнитопровода,а также расшихтовке. Ведь именно в этот момент вероятность повторного повреждения стали наиболее высока.

Как снизить потери в обмотках? ↑

Большие объемы энергопотерь происходят именно в обмотках и именно от токов нагрузки. Снизить их можно увеличением диаметра обмоточных проводов. Метод этот эффективен, но не рентабелен, увеличив одно, возникнет необходимость увеличить другое, а это неизбежно приведет к росту массы активных материалов и...  потерь холостого хода в трансформаторе.Есть и другой способ — тщательно следить за симметрией обмоток, так как даже незначительное отклонение способно спровоцировать увеличение рассеяния и потери. Мало того, добавочные потери способны привести к перегреву отдельных элементов, что тоже не желательно.Сборщику необходимо пристально следить за тем. Чтобы обмотки не смещались относительно друг друга, каналы между ними были равномерны, а расположение на сердечнике — концентрическим.Таким образом, помимо правильной эксплуатации, регулярных проверок и соблюдения всех рекомендаций, залогом бесперебойной работы трансформатора с минимальными потерями является профессионализм его сборщиков. Уменьшить холостой ход трансформатора довольно сложно в процессе его использования, поэтому к заводским параметрам предъявляются такие высокие требования.

energiatrend.ru


Каталог товаров
    .