интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Определение а–параметров с помощью режимов короткого замыкания и холостого хода. Напряжение холостого хода формула


15. Уравнение первичного напряжения трансформатора. Формула.

Уравнение напряжения первичной обмотки:

,

где U1   – комплекс напряжения на первичной обмотке;

Е1   – комплекс ЭДС первичной обмотки;

I1    – комплекс тока первичной обмотки;

r1    – резистивное сопротивление первичной обмотки;

X1   – индуктивное сопротивление рассеивания первичной обмотки.

16. Уравнение напряжения вторичной обмотки:

,

где U2   – комплекс напряжения на вторичной обмотке;

Е2   – комплекс ЭДС вторичной обмотки;

I2    – комплекс тока вторичной обмотки;

r2    – резистивное сопротивление вторичной обмотки;

X2   – индуктивное сопротивление рассеивания вторичной обмотки.

17. Уравнение токов трансформатора. Формула.

Уравнение токов:

,

где Ix  – ток холостого хода трансформатора.

18. Чем отличается приведенный трансформатор от реального? Приведенный трансформатор отличается следующим: 1) число витков вторичной обмотки его равно числу витков первичной обмотки реального трансформатора; 2) активные, реактивные и полная мощности, а также потери вторичных обмоток приведенного и реального трансформаторов соответственно равны. 3) коэффициентом трансформации

k=El/E2=wl/w2=1

Так как число витков приведенной вторичной обмотки равно числу витков первичной, то индуктируемые потоком взаимоиндукции электродвижущие силы обеих обмоток равны, т. е.

Необходимо, чтобы приведенная обмотка была эквивалентна действительной вторичной обмотке. Поэтому потери должны сохраниться:

В приведенной обмотке должны сохраниться те же соотношения между активными и индуктивными падениями напряжений, которые существуют в действительной обмотке. Отсюда получим выражение для индуктивного сопротивления приведенной обмотки

19 Угол сдвига фаз между эдс и магнитным потоком. Число.

сдвиг фаз между E и Ф м = равен 90°

20. Что определяет намагничивающий ток?

величина намагничивающего тока и его форма в значительной степени определяются магнитными свойствами магнитопровода трансформатора, которые зависят от величины индукции в стали. При увеличении насыщения магнитопровода намагничивающий ток резко возрастает.

Намагничивающий ток-является главной составляющей тока Х.Х. Этот ток является Реактивным Iр .

21. Угол сдвига фаз между намагничивающим током и магнитным потоком. Число.

 Намагничивающий ток , т.е. реактивная составляющая  Iр, совпадает по фазе с магнитным потоком в сердечнике

сдвиг фаз между  составляющими . активной Iа и Iр равен 90°.

22. Форма намагничивающего тока трансформатора в режиме насыщения. График.

Если магнитопровод трансформатора не насыщен, то намагничивающий ток −синусоидальный,если магнитопровод насыщен, то ток несинусоидальный. Но в любом случае намагничивающий ток совпадает по фазе с магнитным потоком . Внасыщенном трансформаторе токопределяется по кривойнамагничивания представленной на рис.2.3 в первом квадранте.

23. Чем определяется активная составляющая тока холостого хода?

Активная составляющая тока холостого хода идет на покрытие потерь мощности

(14.4)

Активная составляющая тока холостого хода I0а = I0cosφ0 зависит от потерь холостого хода . ПрактическиI0 Ic. Активная составляющая Icа, как указывалось, определяется потерями.

Таким образом, активная составляющая тока холостого хода

,         

где , и ток холостого хода

.         

24. Чем отличаются постоянные потери в трансформаторе от переменных?

В работающем трансформаторевсегда имеются как магнитные, так и электрические потери. Магнитные потери в трансформаторе слагаются из потерь на вихревые токи и гистерезис:

Величина этих потерь зависит от напряжения U1 и магнитной индукции В. Можно считать, что при U1 = const, рон= В2. Они не зависят от нагрузки, то есть являются постоянными.

Электрические потери в обмотках, наоборот, переменные, то есть:

где ркн — соответствует потерям при коротком замыкании трансформатора.

25. Что делают, чтобы уменьшить потери на вихревые токи?

Для уменьшения потерь на вихревые токи

  1. магнитопроводы трансформаторов и других электромагнитных устройств изготавливают не из сплошных масс, а из отдельных пластин, изолированных друг от друга.

  2. магнитопроводы составляют из листов высоколегированной стали, удельное электрическое сопротивление которой значительно больше, чем обычной стали.

Таким образом, потери на вихревые токи зависят от материала магнитопровода, толщины стальных пластин и изоляции между ними. Кроме того, потери на вихревые токи пропорциональны квадратам частоты и магнитной индукции.

studfiles.net

Режим холостого хода

Режим холостого хода возникает в процессе эксплуатации трансформатора при отключении приемника.

Ток первичной обмотки трансформатора при отключенном потребителе электроэнергии является его током холостого хода (). Пренебрегая влиянием насыщения, несинусоидальный ток можно заменить эквивалентным синусоидальным:

i0=Im0 sin (ft+).

Входящий в уравнение угол магнитных потерь (угол сдвига по фазе между током и магнитным потоком трансформатора) обусловлен потерями мощности в магнитопроводе трансформатора. Значение углаобычно невелико и для современных электротехнических сталей составляет 4 ‑ 6.

напряжение, подводимое в режиме холостого хода к трансформатору, в соответствии со вторым законом Кирхгофа для первичной обмотки может быть представлено как сумма:.

Исходя из этого уравнения электрического равновесия, можно построить векторную диаграмму трансформатора для режима холостого хода (рис. 2).

при исследовании трансформатора появляется необходимость проведенияопыта холостого хода. Этот опыт проводится с целью определения коэффициента трансформацииn, магнитного потокаФm, коэффициента мощности cosφ0, а также потерь мощностиPМв сердечнике магнитопровода трансформатора.

При опыте холостого хода к первичной обмотке трансформатора подводится напряжение, равное его номинальному значению U1НОМ. Вторичная обмотка трансформатора при этом разомкнута, так как в цепи ее отсутствует нагрузка. В результате этого ток во вторичной обмотке оказывается равным нулю (I2= 0). По цепи первичной обмотки трансформатора в этих условиях протекает ток холостого ходаI0, значение которого обычно невелико и составляет порядка 410 % от номинального значения тока в первичной обмоткеI1НОМ. С увеличением номинальной мощности трансформатора относительное значение тока холостого хода снижается.

Воспользовавшись вторым законом Кирхгофа для первичной и вторичной цепи трансформатора в режиме холостого хода, можно получить следующие уравнения электрического равновесия:

;

Рис. 2

.

Пренебрегая влиянием падения напряжения на первичной обмотке трансформатора I0Z1, равного произведению тока холостого хода на сопротивление первичной обмоткиZ1=, ввиду его небольшого значения по сравнению сЕ1, коэффициент трансформации приближенно можно определить по показаниям приборов при опыте холостого хода как отношение первичного напряжения ко вторичному:

n = E1/E2  U1/U2.

Активная мощность, потребляемая трансформатором в режиме холостого хода Px.x, затрачивается на потери мощности в магнитопроводе и электрические потери мощности в первичной обмотке:Px.x =Pм +Pэ1.

Так как активное сопротивление первичной обмотки R1, так же как и ток холостого ходаI0 трансформатора, обычно незначительны, электрические потери в этой обмотке оказываются небольшими и ими можно пренебречь. В результате этого можно принять, что мощность, потребляемая трансформатором в опыте холостого хода и измеряемая ваттметром, расходуется на потери в магнитопроводе, обусловленные гистерезисом и вихревыми токами:Px.x= Pм.

Режим нагрузки трансформатора

режим нагрузки является рабочим для трансформаторов 1, 2 и 4 типов (см. классификацию) и осуществляется при подключении ко вторичной его обмотке потребителя электрической энергии. В этом случае цепь вторичной обмотки трансформатора замкнута и под действиемe2 по цепи течет переменный токi2.

Действующее значение тока во вторичной обмотке нагруженного трансформатора согласно закону Ома определяется выражением

,

где ZПР=— полное сопротивление приемника,RПР— активное сопротивление;XПРреактивное сопротивление приемника.

Так как сопротивление первичной обмотки трансформатора мало, то можно приближенно считать, что U1E1. Из этого следует, что при неизменном напряжении питающей сети (U1= const) в режиме нагрузки трансформатора ЭДСЕ1можно считать неизменной (Е1= const). Так как ЭДС наводится результирующим магнитным потоком, то, следовательно, этот поток должен также оставаться практически постоянным при различной (до номинальной) нагрузке трансформатора, т.е.Ф= const. Изменение нагрузки, подключенной к вторичной обмотке, сопровождающееся изменением токаI2, вызывает соответствующее изменение токаI1. Трансформатор как бы автоматически изменяет мощность трансформируемой электроэнергии при изменении мощности присоединенной к нему нагрузки. Это очень важное свойство трансформатора называетсясвойством саморегуляции.

При изменениях величины и характера нагрузки трансформатора изменяется также и напряжение на вторичной обмотке.

При расчете электрических цепей с трансформаторами задача расчета усложняется из-за магнитной связи между первичной и вторичной обмотками трансформатора. Эту задачу можно упростить, если заменить магнитную связь электрической. В этом случае исследование режимов работы упрощается и сводится к расчетам относительно простой электрической цепи. Электрическая схема в которой магнитная связь между обмотками трансформатора заменена электрической, называется схемой замещения.

Составим структуру этой схемы. Для этого предварительно сделаем некоторые преобразования. Объединим две обмотки трансформатора в одну, сделав равными ЭДС этих обмоток (Е1=Е2'). Равенство будет выполнено, если новое число витков вторичной обмоткиw2'сделать равным числу витков первичной обмоткиw1, т.е.w2 ' =w1. Очевидно, что при таком преобразовании изменяются все величины, характеризующие вторичную цепь, и их необходимо пересчитатьна новое число витков. Пересчет величин вторичной цепи на новое число витков называется приведением вторичной цепи к числу витков первичной цепи, а трансформатор в этом случае называется приведенным.

Приведенными значениями напряжений, ЭДС, тока и сопротивлений являются: U2' =U2 n;E2' =E2 n;I2' =I2/n;R2' =R2 n2;X2' =X2 n2, Z'ПР=ZПР n2.

Для приведенного трансформатора уравнения, описывающие рабочий процесс в нем, приобретают вид:

;

;

.

ЭДС ииндуцируются в обмотках магнитным потоком, который в свою очередь создается током. Откуда следует, что между ЭДС и токомсуществует определенная связь. С учетом этого можно записать, что, где сопротивлениеХ0– индуктивное сопротивление, обусловленное основным потоком;R0 - активное сопротивление, посредством которого учитываются магнитные потери в трансформаторе РМ=R0I20.

Теперь с учетом вышеизложенного полные уравнения электрического состояния первичной и вторичной обмоток приведенного трансформатора приобретут вид:

;

.

На основании этих уравнений и того, что , можно составить схему замещения трансформатора и построить векторную диаграмму. Схема замещения и векторная диаграмма представлены соответственно на рис. 3,аи 3,б.

studfiles.net

2.4 Измерение тока и потерь ХХ

2.4 Измерение тока и потерь холостого хода

2.4.1. Традиционное устройство для измерения тока и потерь холостого хода при малом однофазном возбуждении

Для условий эксплуатации опыт холостого хода (XX) при малом однофазном возбуждении обмоток является основным способом измерения тока и потерь холостого хода. Эти испытания производятся для трансформаторов мощностью 10000 кВ·A и более [30]. Измерение тока и потерь ХХ трансформаторов при вводе их в эксплуатацию и в процессе эксплуатации производится с целью выявления возможных витковых замыканий в обмотках, замыканий в элементах магнитопровода и замыканий магнитопровода на бак трансформатора.

На практике в полевых условиях на объектах энергетики персонал высоковольтной лаборатории для измерения тока и потерь холостого хода силового трансформатора при малом однофазном возбуждении использует устройство, содержащее источник регулируемого переменного напряжения, с помощью которого поочередно возбуждаются фазы низковольтной обмотки силового трансформатора ab, bс, ас при подключенных к ней с помощью соединительных проводов амперметра, ваттметра, вольтметра и частотомера, в то время как обмотки высокого и среднего напряжения трансформатора остаются свободными [22, 250, 252].

Снятие показаний приборов следует проводить одновременно. Опыты холостого хода рекомендуется проводить при малом напряжении 380/220 В.

Испытательное напряжение подаётся на обмотку ВН, а другие обмотки остаются свободными. Предпочтительно обмотки возбуждать линейным напряжением 380 В, так как фазное напряжение сети может иметь значительное отклонение от синусо­идальной формы кривой, что приведет к искажению результатов измерений.

Перед проведением опыта XX трансформатора, находящегося в эксплуатации, необходимо размагнитить его магнитопровод от остаточного намагничивания, возникающего вследствие внезапного сброса питающего напряжения (отключение трансформатора от сети) и обрыва тока при его переходе не через нуль.

Снятие остаточного намагничивания производится пропусканием постоянного тока противоположных полярностей по одной из обмоток каждого стержня магнитопровода трансформатора.

Схема размагничивания обмоток силового трансформатора представлена на Рис. 2.29.

Процесс размагничивания осуществляется в несколько циклов. В первом цикле ток размагничивания должен быть не менее удвоенного тока XX трансформатора при номинальном напряжении. В каждом последующем цикле ток размагничивания должен быть примерно на 30% меньше тока предыдущего цикла. В последнем цикле ток размагничивания не должен быть больше тока XX трансформатора при напряжении 380 В.

Рис. 2.29. Схема размагничивания обмоток трансформатора.

К1, К2 — ключи, R1, R2— реостаты

Согласно [30] измерение тока и потерь холостого хода в процессе эксплуатации производится по решению технического руководителя предприятия, исходя из результатов хроматографического анализа растворённых в масле газов. Отличие измеренных значений от исходных данных не должно превышать 30%.

Испытание трёхфазных трансформаторов производится путём пофазного измерения тока и потерь XX [22, 262]. Это позволяет измеренные значения потерь каждой фазы сопоставлять не только с заводскими данными, но и между собой, что даёт возможность выявить фазу обмотки, в которой имеется дефект (Рис. 2.30).

При пофазном возбуждении трёхфазных трансформаторов производятся три опыта.

В измеренные значения потерь XX вносятся поправки, учитывающие потери в схеме Pcx. Для определения мощности, потребляемой схемой, производится измерение потерь Рсх при отсоединённом от измерительной схемы трансформаторе.

Потери,,,трансформатора рассчитываются по формуле

(2.10)

При отсутствии дефекта в трёхфазном трансформаторе потериипри допустимом отклонении ±5% практически равны. Потерина 25...50% (в зависимости от конструкции и числа стержней магнитопровода трансформатора) больше потерь и[250,252].

Недостатки устройства:

  • наличие регулируемого автотрансформатора, вольтметра, амперметра, ваттметра, частотомера, множества соединительных проводов;

  • процесс измерения не автоматизирован; необходимость сборки отдельной схемы для измерения тока и потерь холостого хода каждой фазы.

Для этой цели каждый раз оператор должен подниматься на силовой трансформатор для отсоединения и присоединения соединительных проводов устройства с аппаратными зажимами

б)

в)

Рис. 2.30. Схемы измерений тока и потерь холостого хода трёхфазного трёхобмоточного трансформатора при напряжении 380 В:

а)измерение I: закорочена фаза а, возбуждены фазы b и с;

б)измерение II: закорочена фаза b, возбуждены фазы a и c;

в)измерение III: закорочена фаза с, возбуждены фазы a и b.

РА — регулировочный автотрансформатор; А — амперметр, V— вольтметр;

W— ваттметр; H— частотомер

  • выводов обмотки НН с применением защитных средств и приспособлений, т. е. затрачивается значительное время для подготовки измерений и снижается безопасность выполнения работ;

  • устройство не вычисляет процентное отклонение потерь холостого хода по фазам обмотки силового трансформатора. При этом на погрешность измерения влияют составляющие кратных частот основной гармоники;

  • учёт ошибки измерения потери холостого хода в измерительных приборах и проводах возможен лишь с помощью оператора, который вычисляет их вручную;

  • для одновременной фиксации значений напряжений на всех приборах необходимо иметь несколько операторов;

  • невозможность передачи данных измерений в персональный компьютер, чтобы использовать многофункциональность последнего, например протоколировать результаты измерения в электронном виде и на бумажном носителе.

2.4.2. Автоматизированное устройство для определения тока и потери холостого хода при малом однофазном возбуждении

На рис. 2.31 приведена структурная электрическая схема автоматизированного устройства для определения тока и потерь холостого хода при малом однофазном возбуждении, совмещённая со схемой электрических соединений [244].

Устройство содержит источник регулируемого переменного напряжения ИРПН с управляющим входом, цифровой регистратор ЦР, имеющий по одному каналу напряжения и тока, и управляющий выход, коммутирующий орган КО, имеющий два входа (1 и 2) и три выхода (3,4,5), а также управляющий вход (F), соединительный трёхпроводной кабель (ТК), исследуемый трансформатор (С7).

На рис. 2.32 приведены элементы блоков первой части упрощённой структурной схемы (рис. 2.3) цифрового регистратора.

Устройство работает следующим образом.

Оператор собирает электрическую схему, приведённую на Рис. 2.31, включает в сеть источник регулируемого переменного напряжения ИРПН и ЦР.

После этого ЦР через свой управляющий выход D подаёт сигнал на управляющий вход F коммутирующего органа КО. Коммутирующий орган подключает свои входы 1 и 2 соответственно к выходам 3 и 4 с помощью переключателей П1 и П2. Выходы 3 и 4 коммутирующего органа в свою очередь соединены соответственно с зажимами фазы а и b обмотки НН силового трансформатора посред­ством трёхпроводного соединительного кабеля СТК. Одновременно включается контакт К1 коммутирующего органа.

Таким образом, подготавливается схема для измерения напряжения Uab, тока Iab, разности между током и напряжением, частоты сети и потерь холостого хода Pab цифровым регистратором фазы ab трансформатора (Рис. 2.31).

После этого напряжение ИРПН автоматически плавно нарастает до определённого значения. Сигналы с блока датчиков тока и напряжения БДТ и Н (Рис. 2.32) ЦР поступают в АЦП, где преобразовываются из аналоговых величин в цифровые. Затем вычислительный блок ВБ выполняет преобразование Фурье над входными сигналами (т. е. фильтрует составляющие гармоник кратных частот основной гармоники и определяет действующее значение и разность фаз этих сигналов на первой гармонике).

Далее вычисляются потери холостого хода фазы ab путём умножения действующего значения синусоидального напряжения на ток и косинус угла между ними. После завершения вычислений полученные значения частоты, тока, напряжения и потерь холостого хода выдаются на ЖКД и одновременно записываются в блок энергонезависимой памяти БЭП (Рис. 2.3).

Далее ЦР с помощью управляющего выхода D подаёт на ИРПН сигнал на отключение, и напряжение последнего плавно спадает до нуля. Контакт К1 и переключатели П1 и П2 коммутирующего органа переключаются в исходные положения. После этого готовится схема для измерения напряжения, тока и потерь холостого хода следующей фазы bс: ЦР выдаёт сигнал, по которому КО подключает свои входы 1, 2 с помощью переключателей П1 и П2 к выходам 4, 5, и одновремен­но включается контакт Кг коммутирующего органа.

Рис. 2.31. Структурная электрическая схема устройства измерения тока и потерь холостого хода. ИРПН — источник регулируемого переменного напряжения; ЦР — цифровой регистратор; КО — коммутирующий орган; СТК— соединительный 3-проводной кабель;

СТ— испытуемый силовой трансформатор

Рис. 2.32. Элементы блоков первой часта упрощённой структурной схемы цифрового регистратора для измерения тока и потерь холостого хода. БДТ и Н— блок датчиков тока и напряжения

ЦР обрабатывает входные сигналы аналогично ранее изложенному порядку, после чего он с помощью управляющего выхода D подаёт на ИРПН сигнал на отключение, и напряжение последнего плавно спадает до нуля. Одновременно контакт К2 и переключатели П1 и П2 переключаются в исходные положения.

После этого готовится схема для измерения следующей фазы ас: ЦР выдаёт сигнал, по которому КО подключает входы 1, 2 к выходам 3, 5 при помощи переключателей П1 и П2, и одновременно включается контакт К3. Далее процесс повторяется.

После записи измеренных значений частоты сети, тока, напряжения и мощности потерь холостого хода фазы ас в блок энергонезависимой памяти БЭП и индикаций этих параметров на ЖКД вычислительный блок вычисляет процентное отклонение потерь холостого хода (V) измеренных фаз по формулам

,

,

,

где Δ1, Δ2, Δ3 записываются в БЭП и выдаются на ЖКД, а контакт К3 и переключатели П1, П2 переключаются в исходные положения. Таким образом, производится автоматическое измерение частоты сети, а также тока, напряжения, потерь холостого хода и процентное отклонение потерь холостого хода по фазам обмотки НН силового трансформатора.

Кроме того, во всех трёх случаях в измеренные значения потерь холостого хода вносятся поправки, учитывающие потери в схеме Рсх. Для этого предварительно измеряются сопротивление соединительных проводов, переходное сопротивление контактов и переключателей КО, сопротивление СТК и входное сопротивление ЦР, суммарное значение которых заносится в БЭП. В последующем эта поправка вычислительным блоком учитывается автоматически, что также повышает точность измерения.

Применение СТК с цветовой маркировкой позволяет упростить процесс сборки схемы, что также является важным фактором при производстве работ в полевых условиях. Кроме того, использование кабеля позволяет размещать рабочее место на уровне земли, что исключает работы на высоте, тем самым повышается безопасность производства работ [244]. Устройство с успехом можно применить и для определения тока и потерь холостого хода однофазных трансформаторов и автотрансформаторов.

studfiles.net

Измерение тока и потерь холостого хода / Справка / Energoboard

В соответствии с требованиями ПУЭ производится одно из измерений: а) при номинальном напряжении. Измеряется ток холостого хода. Значение тока не нормируется;

 

б) при малом напряжении. Измерение производится с приведением потерь к номинальному напряжению или без приведения (метод сравнения). Опытом холостого хода трансформатора называется включение одной из его обмоток (обычно низкого напряжения) под номинальное напряжение. Потребляемый при этом ток называют током холостого хода Iхх (обычно выражают в % от Iном).

Таблица 2.10. Векторные диаграммы и расчетные формулы для определения группы соединения силовых трансформаторов

Группа соединения Угловое смещение ЭДС, 0 Возможное соединение обмоток и векторная диаграмма линейных ЭДС Ub-B(Ux-X) Ub-C Uc-B
Номер формулы
0 0

ΥΥ; ΔΔ; ΔΖ

1 2 2
1 30

ΥΔ; ΥΔ; ΔΖ

3 3 4
11 330

ΥΔ; ΔΥ; ΥΖ

3 4 3

Примечание: Формулы табл. 2.10

где U2 > и Кл соответственно линейное напряжение на зажимах обмотки низшего напряжения и линейный коэффициент трансформации.

Потребляемую при этом активную мощность называют потерями холостого хода Рхх (кВт). Эта мощность расходуется, в основном, на перемагничивание электротехнической стали (потери на гистерезисе) и на вихревые токи. Ток и потери холостого хода являются паспортными данными силовых трансформаторов.

Потери холостого хода трансформаторов Рхх, измеренные при нормальной частоте и весьма малом возбуждении (порядка нескольких процентов от номинального напряжения трансформатора), можно пересчитать к потерям холостого хода при номинальном напряжении по формуле

 

где Р'хх= Ризм – Рпр потери, измеренные при подводимом при измерении напряжении (возбуждении) U; Рпр и Ризм - соответственно мощность, потребляемая приборами и суммарные потери в трансформаторе и приборах. n - показатель степени, равный для горячекатаной стали 1,8; для холоднокатаной стали - 1,9.

Заводы-изготовители производят измерения потерь холостого хода при номинальном напряжении и при малом (обычно 380 В) напряжении.

Измерение потерь холостого хода может быть произведено также при напряжении, равном 5 - 10% номинального. Отличие полученных значений потерь от заводских данных должно быть не более 10% для однофазных и не более 5% для трехфазных.

Измерение потерь холостого хода производится при напряжении и по схемам, указанным в протоколе испытания завода-изготовителя.

Если завод-изготовитель производил измерения потерь холостого хода только при номинальном напряжении трансформатора, то следует измерение потерь холостого хода произвести при напряжении 380 В и выполнить пересчет их к номинальному напряжению по формуле, указанной выше.

В дальнейшем измерение потерь холостого хода следует производить при напряжениях 380 В. У исправных трехфазных трехстержневых трансформаторов соотношение потерь, как правило, не отличается от соотношений, полученных на заводе-изготовителе, более, чем на 5%.

Для трансформаторов, имеющих переключающее устройство с токоограничивающим реактором, дополнительно производится опыт холостого хода на промежуточном положении "Мост".

Измерение потерь холостого хода при напряжении 380 В следует производить до измерения сопротивления обмоток постоянному току и прогрева трансформатора постоянным током.

При измерении потерь и тока холостого хода следует применять измерительные приборы класса точности 0,5. Для измерений могут использоваться переносные измерительные комплекты типа К-50 (К-51).

При измерении потерь и тока холостого хода при номинальном напряжении обмоток выше 0,4 кВ рекомендуется применять измерительные трансформаторы класса точности 0,2.

Потери холостого хода трехфазных трехстержневых трансформаторов измеряют при трехфазном или однофазном возбуждении.

При трехфазном возбуждении измерения производят двумя однофазными ваттметрами или одним трехфазным ваттметром (см. рис. 2.9).

Измеренные потери определяются как алгебраическая сумма потерь, измеренных каждым ваттметром. Потери в трансформаторе определяют как разность измеренных суммарных потерь и потерь в приборах (см. рис. 2.10), поскольку потери в приборах могут быть соизмеримы с потерями холостого хода.

 

 

 

Ток холостого хода трансформатора определяют как среднеарифметическое значение токов трех фаз.

При измерении потерь холостого хода при однофазном возбуждении напряжением 380 В проводят три опыта с приведением трехфазного трансформатора к однофазному путем поочередного замыкания накоротко одной из его фаз и возбуждении двух других фаз.

Первый опыт - замыкают накоротко обмотку фазы А, возбуждают фазы В и С трансформатора и измеряют потери. Второй опыт - замыкают накоротко обмотку фазы В, возбуждают фазы А и С трансформатора и измеряют потери.

 

Соединение первичной обмотки в треугольник

Соединение первичной обмотки в звезду с выведенной нулевой точкой

Третий опыт - замыкают накоротко обмотку фазы С, возбуждают фазы А и В трансформатора и измеряют потери.

 

 

Группа соединения Y/Δ

 

Обмотки любой фазы замыкают накоротко на соответствующих выводах одной из обмоток трансформатора. Схемы однофазного возбуждения трехфазного трансформатора для измерения потерь при малом напряжении для различных групп соединений приведены на рис. 2.11.

Потери в трансформаторе при напряжении U'

 

где U' - приложенное напряжение при замерах потерь холостого хода; P'0АВ, Р'0ВС, Р'0АС - потери, определенные при указанных выше опытах (за вычетом потерь в приборах) при одинаковом значении подводимого напряжения.

Приведенные к номинальному напряжению потери трансформатора измеренные при некотором малом напряжении U' определяются

где n — зависит от сорта трансформаторной стали: для горячекатаной 1,8; для холоднокатаной 1,9.

При отсутствии дефектов и одинаковых значениях подведенного напряжения, приближенные соотношения между значениями фазовых потерь будут следующими:

  • при соединении возбуждаемой обмотки в звезду (с доступной нейтралью) или треугольник потери, измеренные при подведении питания к выводам обмоток фазы "А" и "С" практически одинаковы и, как правило, не менее, чем на 25% больше потерь, измеренных при подведении питания к выводам обмотки средней фазы "В";
  • при соединении возбуждаемой обмотки в звезду без доступной нейтрали потери, измеренные при подведении питания к выводам "АВ" и "ВС", практически одинаковы, а потери, измеренные при подведении питания к выводам "АС" на 25% больше потерь, измеренных при подведении питания к выводам "АВ" и "ВС".

Необходимо иметь ввиду, что если измеряют потери у нескольких одинаковых трансформаторов (одинаковая трансформаторная сталь и одинаковая величина подводимого напряжения), то у сравниваемых трансформаторов одинаковым значениям потерь холостого хода при номинальном напряжении (указанным заводом-изготовителем), должны соответствовать приблизительно одинаковые значения потерь при малом напряжении. Кроме того, у одинаковых трансформаторов соотношения фазовых потерь должны быть приблизительно равными.

 

energoboard.ru

Определение а–параметров с помощью режимов короткого замыкания и холостого хода

Режимам холостого хода (ХХ) и короткого замыкания (КЗ) при прямом и обратном питании четырехполюсника соответствуют схемы рис. 3.4 (а, б – режимы ХХ и КЗ при прямом питании; в, г – при обратном питании).

Прямое питание

Режим холостого хода.Принимая во внимание, что,, формула (3.9) принимает вид

Со стороны выводов 1–1в режиме холостого хода входное сопротивление четырехполюсника

. (3.12)

Режим короткого замыкания. Учитывая, что в этом случае(рис. 3.4, б), соотношение (3.9) будет иметь вид

Входное сопротивление четырехполюсника со стороны выводов 1–1

. (3.13)

Обратное питание

Учитывая, что при обратном питании А11иА22меняются местами, можно получить еще два уравнения (рис. 3.4, в, г).

Входное сопротивление со стороны выводов 2–2в режиме холостого хода

. (3.14)

Входное сопротивление четырехполюсника со стороны выводов 2–2в режиме короткого замыкания

. (3.15)

Сопротивления ,,,называютпараметрами короткого замыкания и холостого хода. ВыразимА–параметры через эти сопротивления. С этой целью из (3.14) вычтем (3.13)

.

После деления

,

получим

. (3.16)

Учитывая (3.14), (3.12), (3.13), получим

. (3.17)

Уравнение – проверочное.

  1. Нагрузочный режим четырехполюсника как результат наложения режимов холостого хода и короткого замыкания

Пусть к выводам 2–2четырехполюсника подключено сопротивление нагрузки. При этом,и,связаны соотношениями (3.9). Отсоединим сопротивление(режим холостого хода). Отрегулируем входное напряжениетак, чтобы напряжение на выходных разомкнутых зажимахстало равным напряжениюв нагрузочном режиме:

Замкнем выводы 2–2(, режим короткого замыкания). Отрегулируем входное напряжениетак, чтобы ток на выходных зажимахстал равным токув нагрузочном режиме. Тогда

При сложении получим

.

Полученные соотношения показывают, что рабочий режим четырехполюсника (нагрузка подключена к выводам 2–2) можно воспроизвести путем наложения режимов холостого хода и короткого замыкания, т.е. можно смоделировать нагрузочный режим, в некоторых случаях требующий источников большой мощности, наложением крайних нагрузочных режимов (холостого хода и короткого замыкания), когда такие источники не нужны (нагрузка не потребляет мощности!).

    1. Эквивалентные схемы замещения четырехполюсника

Любой четырехполюсник можно свести к сопротивлениям или проводимостям, соединенным по Т– или П–образной схеме (рис. 3.5). Эквивалентной схемой замещения реального четырехполюсника называется простейший трехэлементный четырехполюсник (Т– или П–образный), имеющий такие жеилиA–параметры, как и заданный четырехполюсник.

Три сопротивления Т– или П–схем должны быть рассчитаны с учетом того, что схема замещения должна обладать такими же А-параметрами, какими обладает заменяемый ей четырехполюсник.

Выразим иТ–образной схемы через,, используя уравнения, составленные по законам Кирхгофа:

(3.18)

Подставляя в выражение для определенияи группируя однородные члены, получим

.

С другой стороны для данной схемы справедлива общая запись уравнений четырехполюсника в А–параметрах:

.

Приравняв коэффициенты при и, получимА–параметры как функции параметров Т-образной схемы замещения:

(3.19)

Проведя аналогичные действия, можно получить подобные соотношения для П–образной схемы четырехполюсника:

(3.20)

Два четырехполюсника эквивалентны, если у них равны А–параметры. Это следует из уравнений (3.9). Следовательно, если известныА–параметры какого-то четырехполюсника, то его можно заменить на эквивалентную ему Т– или П–образную схемы замещения, если определить параметры этих схем замещения в выражениях (3.19) и (3.20). При этом для Т–образной схемы замещения

. (3.21)

Параметры элементов П–образной схемы замещения

.

studfiles.net

Ток холостого хода трансформатора

Когда вторичная обмотка разомкнута и значение ее тока равно нулю, то работа начинает проходить в предельном режиме, который получил определение ток холостого хода трансформатора. С помощью этой категории, вполне возможно определение коэффициента трансформации, силы тока, а также потерь и сопротивления при холостом ходу. Для того, чтобы измерить значение холостого хода в однофазном трансформаторе, его первичная обмотка включается в сеть с переменным током и определенным номинальным напряжением.

Измерение холостого хода

Под воздействием номинального напряжения, по обмотке начинает протекать ток, который равен току при холостом ходе. С практической точки зрения, его значение составляет приблизительно от 5-ти до 10-ти процентов от номинального. Для трансформаторов с небольшой мощностью его значение будет уже порядка 30% от номинала.

Ток холостого хода, приложенный к первичной обмотке, измеряется с помощью амперметра, вольтметра и ваттметра, включенных в цепь вместе с потребляемой мощностью. Замыкание вторичной обмотки трансформатора производится на вольтметр, с сопротивлением такой величины, что ток, проходящий через вторичную обмотку, имеет, практически, нулевое значение.

Величина тока холостого хода, протекающего в первичной обмотке, по сравнению с номинальным током очень мала, в сравнении с напряжением, которое приложено. Таким образом, это напряжение уравновешено электродвижущей силой первичной обмотки и обе этих величины имеют примерно одинаковое значение. Из этого следует, что значение хода ЭДС в первичной обмотке определяется показаниями вольтметра, включен в ее цепь.

Для того, чтобы более точно измерить ток холостого хода трансформатора, необходимо использовать в качестве первичной и вторичной обмотки соответствующие обмотки низкого и высокого напряжения. Это объясняется разницей номинальных токов между обмотками. При этом, измерение тока может быть измерено более точно и качественно.

Холостой ход и коэффициент трансформации

При равенстве токов, коэффициент трансформации зависит от числа витков обмоток или электродвижущей силы. Следовательно, в режиме холостого хода, значение коэффициента трансформации будет определяться как отношение показаний вольтметров, которые включены в первичную и вторичную обмотку.

В трехфазном трансформаторе существуют различные коэффициенты трансформации. Фазный коэффициент определяется числом витков в обмотках и соотношению между фазными напряжениями. Значение линейного коэффициента зависит от соотношения линейных напряжений обмоток.

electric-220.ru

Определение номинальных значений параметров холостого хода. Определение изменения напряжения трансформатора по данным опыта короткого замыкания

Опыт холостого хода

Таблица 1     Опытные данные.

===

===

KI

В

деления

А/дел

В/дел

Вт/дел

1

268

85

63

88

87

-65

5

0,05

2

50

2

260

74

55

78

75

-55

5

0,05

2

50

3

250

63

47

66

60

-44

5

0,05

2

50

4

240

54

40

56

51

-36

5

0,05

2

50

5

230

45

33

45

40

-28

5

0,05

2

50

6

220

38

29

39

35

-23

5

0,05

2

50

7

210

32

24

32

28

-18

5

0,05

2

50

8

180

17

12

17

15

-8

5

0,05

2

50

9

160

43

28

45

36

-9

1

0,005

2

10

10

140

31

20

30

24

-3

1

0,005

2

10

Таблица  2    Расчётные данные:

В

А

Вт

Ом

1

268

268

3,93

220

0,120

39,34

39,05

4,74

1

1

2

260

260

3,45

200

0,129

43,51

43,15

5,60

1

1

3

250

250

2,93

160

0,126

49,21

48,81

6,20

1

1

4

240

240

2,50

150

0,144

55,43

54,85

8,00

1

1

5

230

230

2,05

120

0,147

64,78

64,07

9,52

1

1

6

220

220

1,77

115

0,161

71,90

70,84

12,28

1

1

7

210

210

1,47

100

0,187

82,67

81,20

15,50

1

1

8

180

180

0,77

75

0,314

135,55

128,71

42,53

1

1

9

160

160

1,93

54

0,101

47,78

47,54

4,82

1

1

10

140

140

1,35

42

0,128

59,87

59,38

7,68

1

1

f = 50 Гц                    U1H = 220 B                           I0H = 9%

Рабочие формулы:

Для трёхфазного трансформатора при соединении первичных обмоток звездой:

Примеры расчётов (точка 1):

Определение номинальных значений параметров холостого хода по графику №1

 

Опыт короткого замыкания

Таблица  3    Опытные  данные:

деление

А

В

В

деления

Вт

А/дел

В/дел

Вт/дел

1

79

79

90

16,5

73

14,6

52

  21

292

0,05

0,2

4

2

74

78

85

15,8

72

14,4

50

19

276

0,05

0,2

4

3

70

73

73

14,4

66

13,2

44

16

240

0,05

0,2

4

4

60

65

69

12,9

60

12,0

 34

13

188

0,05

0,2

4

5

53

58

61

11,5

53

10,6

27

10

148

0,05

0,2

4

6

45

48

51

9,6

45

9,0

20

6

104

0,05

0,2

4

7

37

41

42

8,0

38

7,6

14

5

76

0,05

0,2

4

Таблица  4   Расчётные данные:

А

В

Вт

Вт

1

16,5

14,6

292

0,700

0,511

0,358

0,365

2

15,8

14,4

276

0,700

0,526

0,369

0,376

3

14,4

13,2

240

0,729

0,529

0,386

0,362

4

12,9

12,0

188

0,701

0,537

0,377

0,383

5

11,5

10,6

148

0,701

0,532

0,373

0,380

6

9,6

9,0

104

0,695

0,541

0,376

0,389

7

8,0

7,6

76

0,722

0,548

0,396

0,380

Рабочие формулы формулы:

Пример расчётов (точка 1):

Определение номинальных значений параметров холостого хода по графику №2  при  :

По значениям   найдём выраженные в процентах напряжения короткого замыкание и его активную и индуктивную составляющую и

Приведём активную составляющую напряжения короткого замыкания к расчётной температуре

Тогда, напряжение коротко замыкания:

Приведём к расчётной температуре потери короткого замыкания:

 

Определение изменения напряжения трансформатора по данным опыта короткого замыкания

При номинальной нагрузке изменение напряжения может быть вычислено по формуле:

 , где

Вычислим процентное изменение напряжения для  прии ;

1.

2.

Определение коэффициента полезного действия по данным, полученным из опыта холостого хода и короткого замыкания.

Вычисление КПД будет произведено для коэффициента нагрузки  и .

Расчётная формула для определения КПД:

Формула для определения максимального КПД:

Пример расчёта:

Определим максимальный КПД при

0,25

92,09

0,5

94,33

0,75

94,42

1

93.94

Построим  зависимость  (№4)

График №4

vunivere.ru


Каталог товаров
    .