интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

§ 52. Распределение напряжения в цепи. Напряжение в цепи


Напряжение электрической цепи

Прежде чем рассматривать напряжение электрической цепи, следует определить понятие электрического тока. Электроток представляет собой заряженные частицы, находящиеся в упорядоченном движении в каком-либо проводнике. Для его возникновения, заранее создается электрическое поле, которое действует на заряженные частицы и приводит их в движение.

Возникновение зарядов происходит в том случае, когда различные вещества тесно контактируют между собой. В отдельных видах веществ, заряды свободно перемещаются среди их различных частей, в других веществах этого не происходит. В таких случаях проводящие вещества называются проводниками, а непроводящие – изоляторами или диэлектриками. Хотя, с точки зрения физики, разделение всех веществ на проводящие и непроводящие очень условно и относительно. Любые вещества способны проводить электричество, только одни в большей, а другие – в меньшей степени.

Виды электрических зарядов

Электрические заряды по своему характеру делятся на положительные и отрицательные. Ток в теле, которое наэлектризовано, существует в течение очень недолгого времени, поскольку заряд постепенно заканчивается сам по себе. Для того, чтобы ток мог существовать в проводнике продолжительное время, необходимо обеспечить постоянную поддержку в нем электрического поля. Электрополе может быть создано только каким-либо источником электрического тока. Простейший пример того, как возникает электроток – соединение одного конца провода с предварительно наэлектризованным телом, а другого конца – с землей. Изобретенная батарея явилась первым стабильным источником электротока.

Основными величинами являются сила тока, напряжение и сопротивление. Эти величины тесно связаны между собой и наиболее точно и полно характеризуют процессы, происходящие в электрической цепи.

Что такое напряжение

Напряжение электрической цепи – одна из основных характеристик электротока. Как уже было отмечено, током называется упорядоченное движение электронов, т.е. заряженных частиц. Поле, создающее это движение, выполняет определенные действия. Эти действия характеризуются, как его работа. Чем больший заряд перемещается в цепи за одну секунду, тем большая работа выполняется электрическим полем. Один из факторов, влияющий на работу тока и есть напряжение.

Таким образом, напряжение представляет собой отношение работы к заряду, проходящему через определенный участок цепи. Единица измерения работы тока – джоуль (Дж), а единица измерения заряда – кулон (Кл). Исходя из этого, единица напряжения получается, как 1 Дж/Кл или, по-другому – один вольт (В).

Для возникновения напряжения необходим источник тока. Когда цепь разомкнута, напряжение есть лишь на клеммах источника. При включении источника в цепь, на ее отдельных участках также появляется напряжение, а, соответственно, и ток. Напряжение измеряется с помощью вольтметра, включающегося параллельно в электрическую цепь.

Как рассчитать цепи

electric-220.ru

Напряжение на участке цепи

Под напряжением на некотором участке электрической цепи понимают разность потенциалов между крайними точками этого участка.

На рис. 1-13 изображен участок цепи, на котором есть резистор сопротивлением и нет ЭДС. Крайние точки этого участка обозначены буквами a и b. Пусть ток течет от точки a к точке b.

Рис. 1-13. Участок электрической цепи

На участке без ЭДС ток течет от более высокого потенциала к более низкому. Следовательно, потенциал точки a выше потенциала точки b на величину, равную произведению тока на сопротивление :

.

В соответствии с определением, напряжение между точками a и b

. (1-8)

Другими словами, напряжение на резисторе равно произведению тока, протекающего по резистору, на величину сопротивления этого резистора.

В электротехнике разность потенциалов на концах резистора принято называть либо «напряжением на резисторе», либо «падением напряжения». В литературе встречаются оба этих определения.

Рассмотрим теперь вопрос о напряжении на участке цепи, содержащем не только резистор, но и источник ЭДС.

На рис. 1-14 а и б показаны участки некоторых цепей, по которым протекает ток .. Найдем напряжение между точками a и c для этих участков.

а) б)

Рис. 1-14. Участки электрической цепи

По определению

. (1-9)

Выразим потенциал точки a через потенциал точки c. При перемещении от точки c к точке b (рис. 1-14,а) идем встречно ЭДС , поэтому потенциал точки b оказывается меньше, чем потенциал точки c на величину ЭДС , т.е.

. (1-10)

На рис. 1-14,б при перемещении от точки c к точке b идем согласно ЭДС и потому потенциал точки b оказывается больше, чем потенциал точки c на величину ЭДС , т.е.

. (1-11)

Ранее говорилось, что на участке цепи без ЭДС ток течет от более высокого потенциала к более низкому. Поэтому в обеих схемах рис. 1-14 потенциал точки a выше, чем потенциал точки b на величину падения напряжения на резисторе сопротивлением :

. (1-12)

Таким образом, для рис. 1-14,а имеем

, или

. (1-13)

И для рис. 1-14, б имеем

, или

. (1-14)

Положительное направление напряжения указывают на схемах стрелкой. Стрелка должна быть направлена от первой буквы индекса ко второй. Так, положительное направление напряжения изобразится стрелкой, направленной от a к c.

Из самого определения напряжения следует также, что . Поэтому . Другими словами, изменение чередования индексов равносильно изменению знака этого напряжения. Из изложенного ясно, что напряжение может быть и положительной, и отрицательной величиной.

    1. Закон ома для участка цепи, не содержащего эдс

Закон Ома устанавливает связь между током и напряжением на некотором участке цепи. Так, применительно к участку цепи, изображенному на рис. 1-13 имеем

или

. (1-15)

studfiles.net

Распределение напряжения в цепи

«Потери» в проводах. Всякая цепь состоит обычно из каких-либо приборов (например, лампочек накаливания, нагревательных приборов, электролитических ванн и т. д.) и подводящих проводов. Эти приборы и провода обладают сопротивлением. Поэтому между концами любого участка цепи, который представляют эти приборы или провода, имеется напряжение.

Если в цепи идет ток  и сопротивления последовательно соединенных участков цепи равны , то между концами каждого участка имеются соответственно напряжения , определяемые по формуле (46.2):

, , , ….

Сумма этих напряжений представляет собой полное напряжение , приложенное к концам всей цепи:

.

Таким образом, распределение напряжения между отдельными последовательно соединенными участками цепи зависит только от соотношения сопротивлений этих участков:

.

Пусть, например, генератор электростанции создает, на вводах, т. е. на концах проводов, введенных в квартиру, напряжение  (обычно  В). От вводов провода ведут к лампочке. Пусть сопротивление проводов равно , сопротивление лампочки равно , а сила тока, накаливающего лампочку, равна . В таком случае напряжение, приходящееся на лампочку, , а напряжение, приходящееся на подводящие провода, . Так как напряжение , то . Другими словами, чем больше напряжение , приходящееся на провода, тем меньшее напряжение остается на долю лампочки. Поэтому напряжение на проводах называется потерянным. Оно тем больше, чем больше сопротивление проводов и чем больше ток, идущий по линии.

 Чтобы напряжение, потерянное в линии, не превышало допустимого предела, скажем , сопротивление линии не должно превышать величины , где  – допустимая потеря, а  – сила тока. Чем больше ток в линии, тем меньше должно быть ее сопротивление, а значит, тем толще должны быть провода. Этим объясняется, что для проводки сетей различного назначения применяются различные проводники: для электрических звонков и телефонов (слабые токи) вполне пригодны тонкие провода, имеющие диаметр несколько десятых долей миллиметра, а для промышленных сетей, питающих крупные электромоторы (сильные токи), необходимы медные шины и кабели с сечением, равным нескольким квадратным сантиметрам. Особенно велики могут быть потери в очень длинных линиях, например в линиях электропередачи от гидростанций к отдельным районам.

52.1. Для нормального свечения автомобильной лампочки напряжение на концах ее нити должно равняться 12 В. Сколько таких лампочек нужно взять и как их нужно соединить для питания от источника тока, имеющего напряжение 120 В? Начертите схему соединения лампочек.

52.2. В осветительную сеть с напряжением 220 В включены лампочка, имеющая сопротивление 400 Ом, и амперметр, измеряющий ток, текущий через лампочку. Чему равно напряжение на концах нити лампочки? Сопротивление амперметра и соединительных проводов равно 5 Ом.

52.3. В осветительную сеть с напряжением 220 В включены электрическая печка и лампочка накаливания, соединенные последовательно. Сопротивление печки равно 20 Ом, сопротивление лампочки равно 240 Ом. Какое напряжение будет на печке и какое на лампочке? Начертите схему включения.

52.4. Для освещения новогодних елок в продаже имеются гирлянды из нескольких последовательно соединенных маленьких лампочек, каждая из которых рассчитана на напряжение 6 или 8 В. Сколько 6-вольтовых и 8-вольтовых лампочек нужно взять для гирлянды, рассчитанной на напряжение 220 В? Если одна из лампочек гирлянды перегорит, будут ли гореть остальные? Что нужно сделать в этом случае, чтобы исправить гирлянду? Почему в инструкции к пользованию гирляндами сказано, что этим способом нельзя починить гирлянду, если перегорело больше трех-четырех лампочек.

52.5. Реостат со скользящим контактом иногда употребляют как потенциометр (делитель напряжения). Концы обмотки (рис. 88) присоединяют к источнику напряжения, а в рабочей цепи пользуются напряжением между зажимами 8 и 5. Объясните смысл такого включения прибора. Найдите напряжение между этими зажимами при напряжении в сети 220 В, если движок расположен: а) посредине обмотки; б) ближе к зажиму 8 на расстоянии от него, равном 0,1 длины реостата; в) ближе к зажиму 9, на расстоянии от него, равном 0,2 длины реостата. Обмотка навита равномерно.

52.6. Длина медных проводов линии электропередачи, соединяющей электростанцию с квартирой, равна 2 км, а их сечение равно 15 мм2. Чему равно напряжение на лампочках в этой квартире после включения электрического утюга, потребляющего ток 3 А, если до его включения оно было равно 220 В?

52.7. Длина медных проводов линии электропередачи равна 1 км, а их сечение равно 10 мм2. Найдите напряжение, теряемое в линии, если ток в ней равен 5 А.

52.8. Почему при включении в квартире каких-нибудь приборов, потребляющих большой ток (например утюга), горящие лампочки внезапно уменьшают свою яркость? Обратите внимание, что особенно велико уменьшение яркости в первый момент; затем яркость несколько возрастает, хотя и остается меньше, чем до включения утюга. Объясните явление.

52.9. Уменьшение яркости горящей лампочки можно наблюдать, если включить где-нибудь в квартире очень сильную лампочку, потребляющую ток, равный нескольким амперам. И в этом случае наблюдается особо резкое уменьшение яркости в первый момент. Если взять в качестве второй лампочки старинную лампочку с угольным волоском вместо металлического, то особо резкого спада яркости в первый момент при этом не наблюдается. Почему?

sfiz.ru

Способы регулирование напряжения в цепях постоянного тока

Довольно большое количество промышленных электроприводов и технологических процессов для своего питания используют постоянный ток. Причем в таких случаях довольно часто необходимо изменять значение этого напряжения. Такие виды транспорта как метрополитен, троллейбусы, электрокары и другие виды транспорта получают питающее напряжения из сетей постоянного тока с неизменным напряжением. Но ведь многие из них нуждаются в изменении значения напряжения, подводимого к якорю электродвигателя. Классическими средствами получения необходимых значений являются резистивное регулирование и система генератор-двигатель, или система Леонардо. Но эти системы являются устаревшими, и встретить их можно довольно редко (особенно систему генератор-двигатель). Более современными и активно внедряемыми сейчас являются системы тиристорный преобразователь-двигатель, импульсный преобразователь двигатель. Рассмотрим каждую систему более подробно.

Резисторное регулирование

Для регулирования пускового тока и напряжения, подводимого к электродвигателю, в якорную цепь последовательно якорю (или якорю и обмотке возбуждения в случае двигателя последовательного возбуждения) подключают резисторы:

Резистивно-контакторная схема управления

Таким образом, регулируется ток, подводимый к электрической машине. Контакторы К1, К2, К3 шунтируют резисторы при необходимости изменения какого-либо параметра или координаты электропривода. Этот способ довольно еще широко распространен, особенно в тяговых электроприводах, хотя ему сопутствуют большие потери в резисторах и, как следствие, довольно низкий КПД.

Система генератор-двигатель

В такой системе необходимый уровень напряжения формируется путем изменения потока возбуждения генератора:

Система генератор-двигатель с приводным двигателем постоянного тока

Наличие в такой системе трех электромашин, больших массогабаритных показателей и длительного времени ремонта при поломках, а также дорогостоящего обслуживания и большую инерционность такой установки сделали КПД такой машины очень низким. Сейчас систем генератор-двигатель практически не осталось, все они активно заменяются на системы тиристорный преобразователь – двигатель ТП-Д, который обладает рядом преимуществ.

Тиристорный преобразователь – двигатель

Получила свое массовое развитие в 60-х годах, когда начали появляться тиристоры. Именно на их базе были созданы первые статичные маломощные тиристорные преобразователи. Такие устройства подключались напрямую к сетям переменного тока:

Структурная схема тиристорного электпропривода постоянного тока

Регулирование напряжения происходит путем изменения угла открывания тиристора. Регулирование через тиристорный преобразователь имеет ряд преимуществ перед установкой генератор-двигатель, такие как высокое быстродействие и КПД, плавное регулирование напряжения постоянного и много других.

Преобразователь с промежуточным звеном постоянного напряжения

Здесь все немного сложнее. Чтоб получить постоянное напряжение необходимой величины применяют еще вспомогательные устройства, а именно инвертор, трансформатор, выпрямитель:

инвертор в цепи постоянного тока

Здесь постоянный ток преобразуют в переменный с помощью инвертора тока, потом с помощью трансформатора понижают или повышают (в зависимости от надобности), а потом снова выпрямляют. Значительно удорожает установку наличие трансформатора и инвертора, укрупняет систему, чем снижает КПД. Но есть и плюс – гальваническая развязка между сетью и нагрузкой из – за наличия трансформатора. На практике такие устройства встречаются крайне редко.

Импульсные преобразователи постоянного напряжения

Это пожалуй самые современные устройства регулирования в цепях постоянного тока. Его можно сравнить с трансформатором, поскольку поведение импульсного преобразователя подобно трансформатору с плавно меняющимся количеством витков:

Импульсные преобразователи цепи постоянного тока

Такие системы активно заменяют электроприводы с резистивным регулированием, путем подключения их к якорю машины последовательно, вместо резистивно-контакторной группы. Их довольно часто применяю в электрокарах, а также довольно большую популярность они обрели в подземном транспорте (метрополитен). Такие преобразователи выделяют минимум тепла, что не нагревает тоннелей и могут реализовывать режим рекуперативного торможения, что является большим плюсом для электроприводов с частым пуском и торможением.

Большим плюсом таких устройств есть то, что они могут осуществить рекуперацию энергии в сеть, плавно регулируют скорость нарастания тока, обладают высоким КПД и быстродействием.

 

elenergi.ru


Каталог товаров
    .