Трёхфазная система электроснабжения. Мощность переменного трехфазного тока
Трёхфазный переменный ток. Получение трёхфазного тока
Поиск Лекций
Работающие в настоящее время электростанции производят трёхфазный ток. Главное его преимущество заключается в
лёгкости получения вращающегося магнитного поля. Вращающееся поле используется в самом простом и надёжном двигателе в мире – асинхронном (его также называют индукционным двигателем). Трёхфазный ток легко производить и экономично передавать.
Трёхфазной системой переменного тока называется совокупность трёх однофазных токов одинаковой частоты и амплитуды, сдвинутых друг относительно друга по фазе на 1/3 периода (или 120 градусов).
29. СОЕДИНЕНИЕ ЗВЕЗДОЙ
Если фазные обмотки генератора или потребителя соединить так, чтобы концы обмоток были соединены в одну общую точку, а начала обмоток присоединены к линейным проводам, то такое соединение называется соединением звездой и обозначается условным знаком Y. На рис. 173 обмотки генератора и потребителя соединены звездой. Точки, в которых соединены концы фазных обмоток генератора или потребителя, называются соответственно нулевыми точками генератора (0) и потребителя (0'). Обе точки 0 и 0' соединены проводом, который называется нулевым, или нейтральным, проводом. Остальные
три провода трехфазной системы, идущие от генератора к потребителю, называются линейными проводами. Таким образом, генератор соединен с потребителем четырьмя проводами. Поэтому эта система называется четырех проводной системой трехфазного тока.
Сравнивая несвязанную (см. рис. 172) и четырехпроходную (см. рис. 173) системы трехфазного тока, видим, что в первом случае роль обратного провода выполняют три провода системы, а во втором — один нулевой провод. По нулевому проводу протекает ток, равный геометрической сумме трех токов:
Напряжения, измеренные между началами фаз генератора (или потребителя) и нулевой точкой (или нулевым проводом), называются фазными напряжениями и обозначаются Uа,Uв, Uс, или в общем виде Uф. Часто задаются величины э. д. с. фазных обмоток генератора. Они обозначаются ЕА, Ев, Ее, или Еф. Если пренебречь сопротивлениями обмоток генератора, то можно записать:
Напряжения, измеренные между началами двух фаз: А и В, В и С, С и А — генератора или потребителя, называются линейными напряжениями и обозначаются Uab, Uвс, Uса, или в общем виде Uл. Стрелки, поставленные на рис. 173, показывают выбранное положительное направление тока, которое в линейных проводах принято от генератора к потребителю, а в нулевом проводе — от потребителя к генератору.
Если присоединить зажимы вольтметра к точкам А и В, то он покажет линейное напряжение Uав. Так как положительные направления фазных напряжений Ua, Uв и Uс выбраны от начал фазных обмоток к их концам, то вектор линейного напряжения UАВ будет равен геометрической разности векторов фазных напряжений UA и UB:
Аналогично можно записать:
Иначе можно сказать, что мгновенное значение линейного напряжения равно разности мгновенных значений соответствующих фазных напряжений.
Рис.124.
На первом рисунке показан принцип получения однофазного тока и его форма. Здесь рамка вращается в поле постоянного магнита и в ней индуцируется синусоидальная ЭДС. Если мы возьмём 3 рамки, расположенных под углом 120˚ друг к другу, то в результате получим три ЭДС, которые сдвинуты относительно друг друга по фазе на 120˚. При этом предполагаем, что вращение происходит с постоянной скоростью. Если считать, что ЭДС первой фазной обмотки e1 начинается в начале периода, т.е. t = 0, то:
e1 = Em1∙sinωt, e2 = Em2∙sin(ωt – 120˚),
e3 = Em3∙sin(ωt + 120˚).
На современных генераторах обычно сделано наоборот: фазные обмотки размещены в неподвижной части генератора – статоре, а магнитное поле создаётся вращающимся с одной скоростью ротором, который представляет собой электромагнит (рис.125). Векторная диаграмма и график трёхфазного тока представлены на рис.126.
30. СОЕДИНЕНИЕ ТРЕУГОЛЬНИКОМ
Кроме соединения звездой, генераторы, трансформаторы, двигатели и другие потребители трехфазного тока могут включаться треугольником.
На рис. 179 представлена несвязанная трехфазная система. Объединяя попарно провода несвязанной шестипроводной системы и соединяя фазы так, как указано на чертеже, переходим к трехфазной трехпроводной системе, соединенной треугольником.
Как видно из рис. 180, соединение треугольником выполняется таким образом, чтобы конец фазы А был соединен с началом фазы В, конец фазы В соединен с началом фазы С и конец фазы С соединен с началом фазы А. К местам соединения фаз присоединяют линейные провода.
Если обмотки генератора соединены треугольником, то, как видно на рис. 180, линейное напряжение создает каждая фазная обмотка. У потребителя, соединенного треугольником, линейное
напряжение подключается к зажимам фазного сопротивления. Следовательно, при соединении треугольником фазное напряжение равно линейному:
Определим зависимость между фазными и линейными токами при соединении треугольником, если нагрузка фаз будет одинакова по величине и характеру.
Составляем уравнения токов по первому закону Кирхгофа для трех узловых точек А1, В1 и С1 потребителя:
откуда
Отсюда видно, что линейные токи равны геометрической разности фазных токов. При симметричной нагрузке фазные токи одинаковы по величине и сдвинуты один относительно другого на 120°. Производя вычитание векторов фазных токов согласно полученным уравнениям, получаем линейные токи (рис. 181). Зависимость между фазными и линейными токами при соединении в треугольник показана на рис. 182:
Так как
то
Следовательно, при симметричной нагрузке, соединенной треугольником, линейный ток в аз больше фазного тока.
На рис. 183 дана векторная диаграмма токов и напряжений при равномерной активно-индуктивной нагрузке, соединенной треугольником. Построение диаграммы производится следующим образом. В выбранном масштабе строим равносторонний треугольник линейных напряжений сети Uав, Ubc и Uас, которые равны фазным напряжениям потребителя. В сторону отставания под углами jAB, jBC, jCA к линейным напряжениям UAB, Uвс и Uса строим в масштабе векторы фазных токов IAB, IBC и ICA.Затем, как было указано раньше, определяем линейные токи IA, IB и IC.
У двигателей и у других потребителей трехфазного тока в большинстве случаев наружу выводят все шесть концов трех обмоток, которые по желанию можно соединять либо звездой, либо треугольником. Обычно к трехфазной машине крепится доска из изоляционного материала (клеммная доска), на которую и выводят все шесть концов.
На рис. 184 показана схема присоединения концов обмоток трехфазной машины к зажимам клеммной доски. Медные перемычки позволяют легко менять схему включения обмоток.
Если у нас есть двигатель, на паспорте которого написано 127/220 в, значит этот двигатель можно использовать на два напряжения: 127 и 220 в.
Если линейное напряжение сети равно 127 в, то обмотки двигателя необходимо включить треугольником (рис. 184, б). Тогда на обмотку каждой фазы двигателя будет подано напряжение 127 в. При напряжении 220 в обмотки двигателя нужно включить звездой (рис. 184, а), тогда обмотка каждой фазы также будет под напряжением 127 в.
31. МОЩНОСТЬ ТРЕХФАЗНОГО ТОКА
Мощность, потребляемая нагрузкой от сети трехфазного тока, равна сумме мощностей, потребляемых отдельными фазами, т. е.
При равномерной нагрузке мощность, потребляемая каждой фазой,
где Uф — фазное напряжение,
Iф — фазный ток,
cos j — коэффициент мощности нагрузки.
Мощность, потребляемая всеми тремя фазами,
При соединении приемников энергии звездой соотношение между линейными и фазными значениями напряжений и токов:
Следовательно, мощность, потребляемая нагрузкой от трехфазной
При соединении приемников энергии треугольником соотношение между линейными и фазными значениями напряжений и токов:
Следовательно, мощность, потребляемая нагрузкой,
Таким образом, при равномерной нагрузке мощность, потребляемая от трехфазной сети, независимо от схемы включения нагрузки, выражается следующей формулой:
32. Трансформа́тор (от лат. transformo — преобразовывать) — это статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток на каком-либо магнитопроводе и предназначенное для преобразования посредствомэлектромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений) переменного тока без изменения частоты системы (напряжения) переменного тока (ГОСТ 16110-82).
Трансформатор осуществляет преобразование напряжения переменного тока и/или гальваническую развязку в самых различных областях применения — электроэнергетике, электронике и радиотехнике.
Конструктивно трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток (катушек), охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) изферромагнитного магнито-мягкого материала.
абота трансформатора основана на двух базовых принципах:
1. Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм)
2. Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция)
На одну из обмоток, называемую первичной обмоткой, подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку.
В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать.
poisk-ru.ru
Как измерить мощность в цепи трехфазного переменного тока
Мощность в цепи трехфазного тока может быть измерена при помощи 1-го, 2-ух и 3-х ваттметров.Способ 1-го прибора используют в трехфазной симметричной системе. Активная мощность всей системы равна тройной мощности употребления по одной из фаз.
При соединении нагрузки звездой с доступной нулевой точкой либо если при соединении нагрузки треугольником имеется возможность включить обмотку ваттметра поочередно с нагрузкой, можно использовать схемы включения, показанные на рис.1.
Рис. 1 Схемы измерения мощности трехфазного переменного тока при соединении нагрузока — по схеме звезды с доступной нулевой точкой;б — по схеме треугольника при помощи 1-го ваттметра
Если нагрузка соединена звездой с труднодоступной нулевой точкой либо треугольником, то можно применить схему с искусственной нулевой точкой (рис.2). В данном случае сопротивления должны быть равны Rвт+ Rа = Rb =Rc.
Рис 2. Схема измерения мощности трехфазного переменного тока одним ваттметром с искусственной нулевой точкой
Для измерения реактивной мощности токовые концы ваттметра включают в рассечку хоть какой фазы, а концы обмотки напряжения — на две другие фазы (рис.3). Полная реактивная мощность определяется умножением показания ваттметра накорень из 3-х. (Даже при малозначительной асимметрии фаз применение данного способа дает значительную погрешность).
Рис. 3. Схема измерения реактивной мощности трехфазного переменного тока одним ваттметром
Способом 2-ух устройств можно воспользоваться при симметричной и несимметричной нагрузке фаз. Три равноценных варианта включения ваттметров для измерения активной мощности показаны на рис.4. Активная мощность определяется как сумма показаний ваттметров.
При измерении реактивной мощности можно использовать схему рис.5, а с искусственной нулевой точкой. Для сотворения нулевой точки нужно выполнить условие равенства сопротивлений обмоток напряжений ваттметров и резистора R. Реактивная мощность рассчитывается по формуле
где Р1 и Р2 — показания ваттметров.
По этой же формуле можно вычислить реактивную мощность при равномерной загрузке фаз и соединении ваттметров по схеме рис.4. Достоинство этого метода в том, что по одной и той же схеме можно найти активную и реактивную мощности. При равномерной загрузке фаз реактивная мощность может быть измерена по схеме рис.5, б.
Способ 3-х устройств используется при хоть какой нагрузке фаз. Активная мощность может быть замерена по схеме рис.6. Мощность всей цепи определяется суммированием показаний всех ваттметров.
Рис. 4. Схемы измерения активной мощности трехфазного переменного тока 2-мя ваттметрамиа — токовые обмотки включены в фазы А и С;б — в фазы А и В;в — в фазы В и С
Реактивная мощность для трех- и четырехпроводной сети измеряется по схеме рис.7 и рассчитывается по формуле
где РA, РB, РC — показания ваттметров, включенных в фазы А, В, С.
Рис. 5. Схемы измерения реактивной мощности трехфазного переменного тока 2-мя ваттметрами
Рис. 6. Схемы измерения активной мощности трехфазного переменного тока 3-мя ваттметрамиа — при наличии нулевого провода;б — с искусственной нулевой точкой
На практике обычно используют одно-, двух- и трехэлементные трехфазные ваттметры соответственно способу измерения.
Чтоб расширить предел измерения, можно применить все обозначенные схемы при подключении ваттметров через измерительные трансформаторы тока и напряжения. На рис.8 в качестве примера показана схема измерения мощности по способу 2-ух устройств при включении их через измерительные трансформаторы тока и напряжения.
Рис. 7. Схемы измерения реактивной мощности 3-мя ваттметрами
Рис. 8. Схемы включения ваттметров через измерительные трансформаторы.
elektrica.info
Трёхфазная система электроснабжения - это... Что такое Трёхфазная система электроснабжения?
Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°).
Многопроводная (шестипроводная) трёхфазная система переменного тока изобретена Николой Теслой. Значительный вклад в развитие трёхфазных систем внёс М. О. Доливо-Добровольский, который впервые предложил трёх- и четырёхпроводную системы передачи переменного тока, выявил ряд преимуществ малопроводных трёхфазных систем по отношению к другим системам и провёл ряд экспериментов с асинхронным электродвигателем.
Описание
Каждая из действующих ЭДС находится в своей фазе периодического процесса, поэтому часто называется просто «фазой». Также «фазами» называют проводники — носители этих ЭДС. В трёхфазных системах угол сдвига равен 120 градусам. Фазные проводники обозначаются в РФ латинскими буквами L с цифровым индексом 1…3, либо A, B и C[1].
Распространённые обозначения фазных проводов:
Россия, EC (выше 1000 В) Россия, ЕС (ниже 1000 В) Германия Дания
А | L1 | L1 | R |
B | L2 | L2 | S |
C | L3 | L3 | T |
Анимированное изображение течения токов по симметричной трёхфазной цепи с соединением типа «звезда» Векторная диаграмма фазных токов. Симметричный режим. Графическое представление зависимости фазных токов от времени Преимущества
Возможная схема разводки трёхфазной сети в многоквартирных жилых домах - Экономичность.
- Экономичность передачи электроэнергии на значительные расстояния.
- Меньшая материалоёмкость 3-фазных трансформаторов.
- Меньшая материалоёмкость силовых кабелей, так как при одинаковой потребляемой мощности снижаются токи в фазах (по сравнению с однофазными цепями).
- Уравновешенность системы. Это свойство является одним из важнейших, так как в неуравновешенной системе возникает неравномерная механическая нагрузка на энергогенерирующую установку, что значительно снижает срок её службы.
- Возможность простого получения кругового вращающегося магнитного поля, необходимого для работы электрического двигателя и ряда других электротехнических устройств. Двигатели 3-фазного тока (асинхронные и синхронные) устроены проще, чем двигатели постоянного тока, одно- или 2-фазные, и имеют высокие показатели экономичности.
- Возможность получения в одной установке двух рабочих напряжений — фазного и линейного, и двух уровней мощности при соединении на «звезду» или «треугольник».
- Возможность резкого уменьшения мерцания и стробоскопического эффекта светильников на люминесцентных лампах путём размещения в одном светильнике трёх ламп (или групп ламп), питающихся от разных фаз.
Благодаря этим преимуществам, трёхфазные системы наиболее распространены в современной электроэнергетике.
Схемы соединений трехфазных цепей
Звезда
Существующие виды защиты от линейного напряжения, которые можно найти в продаже в электротехнических магазинах. Как и требуют современные стандарты, монтаж происходит на DIN-рейку. Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или нейтралью. Концы фаз обмоток приёмника (M) также соединяют в общую точку. Провода, соединяющие начала фаз генератора и приёмника, называются линейными. Провод, соединяющий две нейтрали, называется нейтральным.
Шины для раздачи нулевых проводов и проводов заземления при подключении звездой. Одно из преимуществ подключения звездой — экономия на нулевом проводе, поскольку от генератора до точки разделения нулевых проводов вблизи потребителя, требуется только один провод. Трёхфазная цепь, имеющая нейтральный провод, называется четырёхпроводной. Если нейтрального провода нет — трёхпроводной.
Если сопротивления Za, Zb, Zc приёмника равны между собой, то такую нагрузку называют симметричной.
Соотношение между линейными и фазными токами и напряжениями.
Напряжение между линейным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя линейными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:
Последствия отгорания (обрыва) нулевого провода в трехфазных сетях
При симметричной нагрузке в трёхфазной системе питание потребителя линейным напряжением возможно даже при отсутствии нейтрального провода. Однако, при питании нагрузки фазным напряжением, когда нагрузка на фазы не является строго симметричной, наличие нейтрального провода обязательно. При его обрыве или значительном увеличении сопротивления (плохом контакте) происходит так называемый «перекос фаз», в результате которого подключенная нагрузка, рассчитанная на фазное напряжение, может оказаться под произвольным напряжением в диапазоне от нуля до линейного (конкретное значение зависит от распределения нагрузки по фазам в момент обрыва нулевого провода). Это зачастую является причиной вывода из строя бытовой электроники в квартирных домах. Так как сопротивление потребителя остаётся константой, то, согласно закону Ома, при возрастании напряжения сила тока, проходящего через потребительское устройство, окажется гораздо больше максимально допустимого значения, что и вызовет сгорание и/или выход из строя питаемого электрооборудования. Пониженное напряжение также может послужить причиной выхода из строя техники. Иногда отгорание (обрыв) нулевого провода на подстанции может явиться причиной пожара в квартирах.
Проблема гармоник, кратных третьей
Современная техника всё чаще оснащается импульсными сетевыми источниками питания. Импульсный источник без корректора коэффициента мощности потребляет ток узкими импульсами вблизи пика синусоиды питающего напряжения, в момент заряда конденсатора входного выпрямителя. Большое количество таких источников питания в сети создаёт повышенный ток третьей гармоники питающего напряжения. Токи гармоник, кратных третьей, вместо взаимной компенсации, математически суммируются в нейтральном проводнике (даже при симметричном распределении нагрузки) и могут привести к его перегрузке даже без превышения допустимой мощности потребления по фазам. Такая проблема существует, в частности, в офисных зданиях с большим количеством одновременно работающей оргтехники.Существующие установки компенсации реактивной мощности не способны решить данную проблему, так как снижение коэффициента мощности в сетях с преобладанием импульсных источников питания не связано с внесением реактивной составляющей, а обусловлено нелинейностью потребления тока. Решением проблемы третьей гармоники является применение корректора коэффициента мощности (пассивного или активного) в составе схемы производимых импульсных источников питания.Требования стандарта IEC 1000-3-2 накладывают ограничения на гармонические составляющие тока нагрузки устройств мощностью от 50 Вт. В России количество гармонических составляющих тока нагрузки нормируется стандартами ГОСТ 13109-97, ОСТ 45.188-2001.
Треугольник
Треугольник — такое соединение, когда конец первой фазы соединяется с началом второй фазы, конец второй фазы с началом третьей, а конец третьей фазы соединяется с началом первой.
Соотношение между линейными и фазными токами и напряжениями
Для соединения обмоток треугольником, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:
Распространённые стандарты напряжений
РФ и СНГ Страны ЕС Япония США
Напряжение (фазное/линейное) | 220/380 | 230/400 | 120/208 | (140/240)/(230/400) |
Частота | 50 Гц | 50 Гц | 50/60Гц | 60 Гц |
Маркировка
Проводники, принадлежащие разным фазам, маркируют разными цветами. Разными цветами маркируют также нейтральный и защитный проводники. Это делается для обеспечения надлежащей защиты от поражения электрическим током, а также для удобства обслуживания, монтажа и ремонта электрических установок и электрического оборудования. В разных странах маркировка проводников имеет свои различия. Однако многие страны придерживаются общих принципов цветовой маркировки проводников, изложенных в стандарте Международной Электротехнической Комиссии МЭК 60445:2010.
Фазный проводник 1 Фазный проводник 2 Фазный проводник 3 Нейтральный проводник Защитный проводник США (120/208В)[2] | Чёрный | Красный | Голубой | Белый или серый | Зелёный | США (277/480В) | Оранжевый | Коричневый | Жёлтый | Белый или серый | Зелёный | Канада | Красный | Чёрный | Голубой | Белый | Зелёный | Канада (Изолированные трёхфазные установки) | Оранжевый | Коричневый | Жёлтый | Белый | Зелёный | Великобритания (с апреля 2006) | Красный (Коричневый) | Жёлтый (ранее Белый) (Чёрный) | Голубой (Серый) | Чёрный (Голубой) | Зелёно-жёлтый | Европа (с апреля 2004) | Коричневый | Чёрный | Серый | Голубой | Зелёно-жёлтый | Европа (до апреля 2004, в зависимости от страны) | Коричневый или Чёрный | Чёрный или Коричневый | Чёрный или Коричневый | Голубой | Зелёно-жёлтый | Европа (Обозначение шин) | Жёлтый | Коричневый | Красный | | | Россия (СССР)[3] | Жёлтый | Зелёный | Красный | Голубой | Зелёно-жёлтый (на старых установках - Черный) | Россия (с 1 января 2011 г.)[4] | Коричневый | Чёрный | Серый | Голубой | Зелёно-жёлтый | Австралия и Новая Зеландия | Красный | Жёлтый | Голубой | Чёрный | Зелёно-жёлтый (на старых установках - Зелёный) | Южная Африка | Красный | Жёлтый | Голубой | Чёрный | Зелёно-жёлтый (на старых установках - Зелёный) | Малайзия | Красный | Жёлтый | Голубой | Чёрный | Зелёно-жёлтый (на старых установках - Зелёный) | Индия | Красный | Жёлтый | Голубой | Чёрный | Зелёный | Трёхфазная двухцепная линия электропередачи См. также Примечания - ↑ Действующий в РФ ГОСТ 2.709-89 предписывает обозначение цепей фазных проводников трёхфазного переменного тока: L1, L2, L3, и при этом допускает обозначения A, B, C.
- ↑ С 1975 года Национальный Электрический Кодекс (США) не регламентируют цветовое обозначение фазных проводов. Приведённые в таблице цвета являются общепринятыми в эксплуатации.
- ↑ Согласно ПУЭ при переменном трёхфазном токе: шины фазы А обозначают жёлтым цветом, фазы В — зелёным, фазы С — красным цветами (по алфавитному порядку начальных букв в названии цветов: Ж, З, К).
- ↑ Согласно ГОСТ Р 50462-2009: Базовые принципы и принципы безопасности для интерфейса «человек-машина», выполнение и идентификация. Идентификация проводников посредством цветов и буквенно-цифровых обозначений.
Ссылки |
dic.academic.ru
Поделиться с друзьями: