Доброго времени суток, уважаемые гости и читатели сайта «Заметки электрика». Сегодня мы рассмотрим основные характеристики и параметры трансформаторов тока. Эти параметры будут необходимы нам для правильного выбора трансформаторов тока. Итак, поехали. 1. Номинальное напряжение трансформатора тока Первым основным параметром трансформатора тока, конечно же, является его номинальное напряжение. Под номинальным напряжением понимается действующая величина напряжения, при которой может работать ТТ. Это напряжение можно найти в паспорте на конкретный трансформатор тока. Существует стандартный ряд номинальных значений напряжения у трансформаторов тока: Ниже смотрите примеры трансформаторов тока с номинальным напряжением 660 (В) и 10 (кВ). Разница на лицо. 2. Номинальный ток первичной цепи трансформатора тока Номинальный ток первичной цепи, или можно сказать, номинальный первичный ток — это ток, протекающий по первичной обмотке трансформатора тока, при котором предусмотрена его длительная работа. Значение первичного номинального тока также указывается в паспорте на конкретный трансформатор тока. Обозначается этот параметр индексом — I1н Существует стандартный ряд номинальных значений первичных токов у выпускаемых трансформаторов тока: Прошу обратить внимание на то, что ТТ со значением номинального первичного тока 15, 30, 75, 150, 300, 600, 750, 1200, 1500, 3000 и 6000 (А) в обязательном порядке должны выдерживать наибольший рабочий первичный ток, равный соответственно, 16, 32, 80, 160, 320, 630, 800, 1250, 1600, 3200 и 6300 (А). В остальных случаях наибольший первичный ток не должен быть больше номинального значения первичного тока. Ниже на фото показан трансформатор тока с номинальным первичным током равным 300 (А). 3. Номинальный ток вторичной цепи трансформатора тока Еще одним параметром трансформатора тока является номинальный ток вторичной цепи, или номинальный вторичный ток — это ток, протекающий по вторичной обмотке трансформатора тока. Значение номинального вторичного тока, тоже отображается в паспорте на трансформатор тока и оно всегда равно 1 (А) или 5 (А). Обозначается этот параметр индексом — I2н Сам лично ни разу не встречал трансформаторы тока со вторичным током 1 (А). Также по индивидуальному заказу можно заказать ТТ с номинальным вторичным током равным 2 (А) или 2,5 (А). 4. Вторичная нагрузка трансформатора тока Под вторичной нагрузкой трансформатора тока понимается полное сопротивление его внешней вторичной цепи (амперметры, обмотки счетчиков электрической энергии, токовые реле релейной защиты, различные токовые преобразователи). Это значение измеряется в омах (Ом). Обозначается индексом — Z2н Также вторичную нагрузку трансформатора тока можно выразить через полную мощность, измеряемую в вольт-амперах (В*А) при определенном коэффициенте мощности и номинальном вторичном токе. Если сказать точно по определению, то вторичная нагрузка трансформатора тока — это вторичная нагрузка с коэффициентом мощности (cos=0,8), при которой сохраняется установленный класс точности трансформатора тока или предельная кратность первичного тока относительно его номинального значения. Вот так сложно написал, но просто вчитайтесь в текст внимательнее и все поймете. Обозначается индексом — S2н.ном И здесь тоже существует ряд стандартных значений номинальной вторичной нагрузки трансформаторов тока, выраженных через вольт-амперы при cos=0,8: Чтобы выразить эти значения в омах, то воспользуйтесь следующей формулой: К этому вопросу мы еще с Вами вернемся. В следующих статьях я покажу Вам как самостоятельно можно рассчитать вторичную нагрузку трансформатора тока наглядным примером из своего дипломного проекта. Чтобы ничего не пропустить, подписывайтесь на новые статьи с моего сайта. Форму подписки Вы можете найти после статьи, либо в правой колонке сайта. 5. Коэффициент трансформации трансформатора тока Еще одним из основных параметров трансформатора тока является коэффициент трансформации. Коэффициент трансформации трансформатора тока — это отношение величины первичного тока к величине вторичного тока. При расчетах коэффициент трансформации разделяют на: В принципе их названия говорят сами за себя. Действительный коэффициент трансформации — это отношение действительного первичного тока к действительному вторичному току. А номинальный коэффициент — это отношение номинального первичного тока к номинальному вторичному току. Вот примеры коэффициентов трансформации трансформаторов тока: 6. Электродинамическая стойкость Здесь сразу нужно внести ясность, что такое ток электродинамической стойкости — это максимальное значение амплитуды тока короткого замыкания за все время его протекания, которую трансформатор тока выдерживает без каких-либо повреждений, препятствующих дальнейшей его исправной работе. Своими словами, это способность трансформатора тока противостоять механическим и разрушающим воздействиям тока короткого замыкания. Ток электродинамической стойкости обозначается индексом — Iд. Есть такое понятие, как кратность электродинамической стойкости. Обозначается индексом Кд и является отношением тока электродинамической стойкости Iд к амплитуде номинального первичного тока I1н. Требования электродинамической стойкости не распространяются на шинные, встроенные и разъемные трансформаторы тока. Читайте статью про классификацию трансформаторов тока. По другим типам трансформаторов тока данные о токе электродинамической стойкости можно найти все в том же паспорте. 7. Термическая стойкость Что такое ток термической стойкости? А это максимальное действующее значение тока короткого замыкания за промежуток времени t, которое трансформатор тока выдерживает без нагрева токоведущих частей до превышающих допустимых температур и без повреждений, препятствующих дальнейшей его исправной работе. Так вот температура токоведущих частей трансформатора тока, выполненных из меди не должна быть больше 250 градусов, из алюминия — 200. Ток термической стойкости обозначается индексом — ItТ. Своими словами, это способность трансформатора тока противостоять тепловым воздействиям тока короткого замыкания за определенный промежуток времени. Существует такое понятие, как кратность тока термической стойкости. Обозначается индексом Кт и является отношением тока термической стойкости ItТ к действующему значению номинального первичного тока I1н. Все данные о токе термической стойкости Вы можете найти в паспорте на трансформатор тока. Ниже я представляю Вашему вниманию скан-копию этикетки на трансформатор тока типа ТШП-0,66-5-0,5-300/5 У3, где указаны все его вышеперечисленные основные параметры и характеристики. P.S. На этом я завершаю свою статью про основные характеристики и параметры трансформаторов тока. В следующих статьях я расскажу Вам про обозначение выводных концов, принцип работы трансформатора тока, режимы работы, класс точности и другие интересные темы. Если статья была Вам полезна, то поделитесь ей со своими друзьями: zametkielectrika.ru Учет электроэнергии с потребляемым током более 100А выполняется счетчиками трансформаторного включения, которые подключаются к измеряемой нагрузке через измерительные трансформаторы. Рассмотрим основные характеристики трансформаторов тока. 1 Номинальное напряжение трансформатора тока. В нашем случае измерительный трансформатор должен быть на 0,66кВ. 2 Класс точности. Класс точности измерительных трансформаторов тока определяется назначением электросчетчика. Для коммерческого учета класс точности должен быть 0,5S, для технического учета допускается – 1,0. 3 Номинальный ток вторичной обмотки. Обычно 5А. 4 Номинальный ток первичной обмотки. Вот этот параметр для проектировщиков наиболее важен. Сейчас рассмотрим требования по выбору номинального тока первичной обмотки измерительного трансформатора. Номинальный ток первичной обмотки определяет коэффициент трансформации. Коэффициент трансформации измерительного трансформатора – отношение номинального тока первичной обмотки к номинальному току вторичной обмотки. Коэффициент трансформации следует выбирать по расчетной нагрузке с учетом работы в аварийном режиме. Согласно ПУЭ допускается применение трансформаторов тока с завышенным коэффициентом трансформации: 1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %. В литературе можно встретить еще требования по выбору трансформаторов тока. Так завышенным по коэффициенту трансформации нужно считать тот трансформатор тока, у которого при 25%-ной расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке будет менее 10% номинального тока счетчика. А сейчас вспомним математику и рассмотрим на примере данные требования. Пусть электроустановка потребляет ток 140А (минимальная нагрузка 14А). Выберем измерительный трансформатор тока для счетчика. Выполним проверку измерительного трансформатора Т-066 200/5. Коэффициент трансформации у него 40. 140/40=3,5А – ток вторичной обмотки при номинальном токе. 5*40/100=2А – минимальный ток вторичной обмотки при номинальной нагрузке. Как видим 3,5А>2А – требование выполнено. 14/40=0,35А – ток вторичной обмотки при минимальном токе. 5*5/100=0,25А – минимальный ток вторичной обмотки при минимальной нагрузке. Как видим 0,35А>0,25А – требование выполнено. 140*25/100 – 35А ток при 25%-ной нагрузке. 35/40=0,875 – ток во вторичной нагрузке при 25%-ной нагрузке. 5*10/100=0,5А – минимальный ток вторичной обмотки при 25%-ной нагрузке. Как видим 0,875А>0,5А – требование выполнено. Вывод: измерительный трансформатор Т-066 200/5 для нагрузки 140А выбран правильно. По трансформаторам тока есть еще ГОСТ 7746—2001 (Трансформаторы тока. Общие технические условия), где можно найти классификацию, основные параметры и технические требования. При выборе трансформаторов тока можно руководствоваться данными таблицы: Выбор трансформаторов тока по нагрузке Обращаю ваше внимание, там есть опечатки 220blog.ru КАК РАСЧИТАТЬ И ИЗГОТОВИТЬ ТРАНСФОРМАТОР ТОКА Виктор Хрипченко пос. Октябрьский Белгородской обл. Занимаясь расчетами мощного источника питания, я столкнулся с проблемой - мне понадобился трансформатор тока, который бы точно измерял ток. Литературы по этой теме не много. А в Интернете только просьбы - где найти такой расчет. Прочитал статью [1 ]; зная, что ошибки могут присутствовать, я детально разобрался с данной темой. Ошибки, конечно, присутствовали: нет согласующего резистора Rc (см. рис. 2) для согласования на выходе вторичной обмотки трансформатора (он и не был рассчитан) по току. Вторичная цепь трансформатора тока рассчитана как обычно у трансформатора напряжения (задался нужным напряжением на вторичной обмотке и произвел расчет). Немного теории Итак, прежде всего немного теории [4]. Трансформатор тока работает как источник тока с заданным первичным током, представляющим ток защищаемого участка цепи. Величина этого тока практически не зависит от нагрузки вторичной цепи трансформатора тока, поскольку его сопротивление с нагрузкой, приведенное к числу витков первичной обмотки, ничтожно мало по сравнению с сопротивлениями элементов электрической схемы. Это обстоятельство делает работу трансформатора тока отличной от работы силовых трансформаторов и трансформаторов напряжения. На рис. 1 показана маркировка концов первичной и вторичной обмоток трансформатора тока, навитых на маг-нитопровод в одном и том же направлении (I1 - ток первичной обмотки, I2 -ток вторичной обмотки). Ток вторичной обмотки I2 пренебрегая малым током намагничивания, всегда направлен так, чтобы размагничивать магнитопровод. Стрелками показано направление токов. Поэтому если принять верхний конец первичной обмотки за начало то началом вторичной обмотки н также является ее верхний конец. Принятому правилу маркировки соответствует такое же направление токов, учитывая знак. И самое главное правило: условие равенства магнитных потоков. Алгебраическая сумма произведений I1 x W1 - I2 x W2 = 0 (пренебрегая малым током намагничивания), где W1 - количество витков первичной обмотки трансформатора тока, W2 - количество витков вторичной обмотки трансформатора тока. Пример. Пусть вы, задавшись током первичной обмотки в 16 А, произвели расчет и в первичной обмотке 5 витков - рассчитано. Вы задаетесь током вторичной обмотки, например, 0,1 А и согласно вышеупомянутой формулы I1 x W1 = I2 x W2 рассчитаем количество витков вторичной обмотки трансформатора. W2 = I1 x W1 / I2 Далее произведя вычисления L2 -индуктивности вторичной обмотки, ее сопротивление XL1, мы вычислим U2 и потом Rc. Но это чуть позже. То есть вы видите, что задавшись током во вторичной обмотке трансформатора I2, вы только тогда вычисляете количество витков. Ток вторичной обмотки трансформатора тока I2 можно задать любой - отсюда будет вычисляться Rc. И еще -I2 должен быть больше тех нагрузок, которые вы будете подключать Трансформатор тока должен работать только на согласованную по току нагрузку (речь идет о Rc). Если пользователю требуется трансформатор тока для применения в схемах защиты, то такими тонкостями как направление намоток, точность резистивной нагрузки Rc можно пренебречь, но это уже будет не трансформатор тока, а датчик тока с большой погрешностью. И эту погрешность можно будет устранить, только создав нагрузку на устройстве (я и имею в виду источник питания, где пользователь собирается ставить защиту, применяя трансформатор тока), и схемой защиты установить порог ее срабатывания по току. Если пользователю требуется схема измерения тока, то как раз эти тонкости должны быть обязательно соблюдены. На рис. 2 (точки - начало намоток) показан резистор Rc, который является неотьемлимой частью трансформатора тока для согласования токов первичной и вторичной обмотки. То есть Rc задает ток во вторичной обмотке. В качестве Rc не обязательно применять резистор, можно поставить амперметр, реле, но при этом должно соблюдаться обязательное условие - внутреннее сопротивление нагрузки должно быть равным рассчитанному Rc. Если нагрузка не согласованная по току - это будет генератор повышенного напряжения. Поясняю, почему так. Как уже было ранее сказано, ток вторичной обмотки трансформатора направлен в противоположную сторону от направления тока первичной обмотки. И вторичная обмотка трансформатора работает как размагничивающая. Если нагрузка во вторичной обмотке трансформатора не согласованная по току или будет отсутствовать, первичная обмотка будет работать как намагничивающая. Индукция резко возрастает, вызывая сильный нагрев магнито-провода за счет повышенных потерь в стали. Индуктируемая в обмотке ЭДС будет определяться скоростью изменениями потока во времени, имеющей наибольшее значение при прохождении трапецеидального (за счет насыщения магнитопровода) потока через нулевые значения. Индуктивность обмоток резко уменьшается, что вызывает еще больший нагрев трансформатора и в конечном итоге - выход его из строя. Типы магнитных сердечников приведены на рис. 3 [3]. Витой или ленточный магнитопровод - одно и то же понятие, также как и выражение кольцевой или тороидальный магнитопровод: в литературе встречаются и то, и другое. Это может быть ферритовый сердечник или Ш-образное трансформаторное железо, или ленточные сердечники. Ферритовые сердечники обычно применяется при повышенных частотах - 400 Гц и выше из-за того, что они работают в слабых и средних магнитных полях (Вт = 0,3 Тл максимум). И так как у ферритов, как правило, высокое значение магнитной проницаемости µ и узкая петля гистерезиса, то они быстро заходят в область насыщения. Выходное напряжение, при f = 50 Гц, на вторичной обмотке составляет единицы вольт либо меньше. На ферритовых сердечниках наносится, как правило, маркировка об их магнитных свойствах (пример М2000 означает магнитную проницаемость сердечника µ, равную 2000 единиц). На ленточных магнитопроводах или из Ш-образных пластин такой маркировки нет, и поэтому приходится определять их магнитные свойства экспериментально, и они работают в средних и сильных магнитных полях [4] (в зависимости от применяемой марки электротехнической стали - 1,5.. .2 Тл и более) и применяются на частотах 50 Гц.. .400 Гц. Кольцевые или тороидальные витые (ленточные) магнитопроводы работают и на частоте 5 кГц (а из пермаллоя даже до 25 кГц). При расчете S - площади сечения ленточного тороидального магнитопровода, рекомендуется результат умножить на коэффициент к = 0,7...0,75 для большей точности. Это объясняется конструктивной особенностью ленточных магнитопроводов. Что такое ленточный разрезной магнитопровод (рис. 3)? Стальную лента, толщиной 0,08 мм или толще, наматывают на оправку, а затем отжигают на воздухе при температуре 400.. .500 °С для улучшения их магнитных свойств. Потом эти формы разрезаются, шлифуются края, и собирается магнитопровод. Кольцевые (неразрезные) витые магнитопроводы из тонких ленточных материалов (пермаллоев толщиной 0,01.. .0,05 мм) во время навивки покрывают электроизолирующим материалом, а затем отжигают в вакууме при 1000.. .1100 °С. Для определения магнитных свойств таких магнитопроводов надо намотать 20...30 витков провода (чем больше витков, тем точнее будет значение магнитной проницаемости сердечника) на сердечник магнитопровода и измерить L-индуктивность этой обмотки (мкГн). Вычислить S - площадь сечения сердечника трансформатора (мм2), lm-среднюю длину магнитной силовой линии (мм). И по формуле рассчитать jll - магнитную проницаемость сердечника [5]: (1) µ = (800 x L x lm) / (N2 x S) - для ленточного и Ш-образного сердечника. (2) µ = 2500*L(D + d) / W2 x C(D - d) - для кольцевого (тороидильного) сердечника. При расчете трансформатора на более высокие токи применяется провод большого диаметра в первичной обмотке, и здесь вам понадобится витой стержневой магнитопровод (П-образный), витой кольцевой сердечник или ферритовый тороид. Если кто держал в руках трансформатор тока промышленного изготовления на большие токи, то видел, что первичной обмотки, навитой на магнитопровод, нет, а имеется широкая алюминиевая шина, проходящая сквозь магнитопровод. Я напомнил об этом затем, что расчет трансформатора тока можно производить, либо задавшись Вт - магнитной индукцией в сердечнике, при этом первичная обмотка будет состоять из нескольких витков и придется мучиться, наматывая эти витки на сердечник трансформатора. Либо надо рассчитать магнитную индукцию Вт поля, создаваемую проводником с током, в сердечнике. А теперь приступим к расчету трансформатора тока, применяя законы [6]. Вы задаетесь током первичной обмотки трансформатора тока, то есть тем током, который вы будете контролировать в цепи. Пусть будет I1 = 20 А, частота, на которой будет работать трансформатор тока, f = 50 Гц. Возьмем ленточный кольцевой сердечник OJ125/40-10 или (40x25x10 мм), схематично представленный на рис. 4. Размеры: D = 40 мм, d = 25 мм, С = 10 мм. Далее идет два расчета с подробными пояснениями как именно расчитывается трансформатор тока, но слишком большое количество формул затрудняет выложить расчеты на странице сайта. По этой причине полная версия статьи о том как расчитать трансформатор тока была конвертирована в PDF и ее можно скачать воспользовавшись ССЫЛКОЙ. soundbarrel.ru Бывают такие ситуации когда нужно контролировать большие токи в цепях переменного напряжения, например как контролировать ток в цепи сварочного аппарата, где ток достигает 150-250А. Для такого контроля отлично подходит трансформатор тока. Этот трансформатор нечем не отличается от обычного трансформатора, по сути это обычный трансформатор с известным отношением витков первичной и вторичной обмотки.На схеме представлен пример трансформатора тока с током первичной цепи 6А, на выходе этого трансформатора напряжение 6В Принцип работы такого трансформатора прост и рассчитывается все довольно просто1. Берется за основу абсолютно любой каркас трансформатора. Для простоты возьму колечко любого размера и намотаю на него 100 витков, это количество витков может быть абсолютно любое, но для простоты расчета пусть будет 100. Эта обмотка вторичка, с которой будет сниматься измеряемое напряжение. Первичная обмотка должна быть один виток, а точнее кабель пропущенный через кольцо. Теперь известно что отношение между первичной и вторичкой 1:100. 2. Теперь через первичную обмотку в один виток пропущу ток в 6А, зная отношение в витках можно узнать ток в вторичной обмотке трансформатора 6А/100=0,06А. Когда ток вторички известен вспомню закон Ома R=V/I, исходя из него узнаю на сколько Ом нужно нагрузить вторичку, чтобы при токе в 0,06А напряжение на выходе было 6В. R=V/I, R=6В/0,06А=100 Ом, то есть если вторичку нагрузить на 100 Ом, напряжение на вторичке будет 6В при токе в первичке 6АПри максимальном токе на резисторе R2 будет рассеиваться некоторая мощность, поэтому нужно еще рассчитать рассеиваемую мощность на резисторе P=U*I, P=6В*0,06А=0,36Вт минимальный резистор рассеиваемой мощностью о,5Вт Вот таким простым способом можно измерять любые токи, главное правильно рассчитать трансформатор и балластный резисторС ув. Эдуард rustaste.ru
Электрическая мощность трансформатора определяют максимальную нагрузку, которую можно к нему подключить. Например, если мощность разделительного трансформатора составляет 250 Ватт, то к нему можно подключить паяльник на 250 Ватт, либо паяльник мощностью 100 Ватт и 3 лампочки на 40 Ватт.
При этом к такому трансформатору нельзя подключать потребители выше 250 Ватт, например, шлифовальную машинку мощностью 1200 Ватт. Трансформатор попросту сгорит, да и для питания такого устройства выходной мощности будет недостаточно.
Кроме электрической мощности, существует еще и габаритная. Она характеризует сердечник трансформатора:
На практике габаритная мощность сердечника помогает выбрать подходящее устройство среди множества моделей, представленного на полках магазинов. Электрическая мощность, в свою очередь, устанавливает, какую нагрузку нельзя подключать к его выходу.
При расчете мощности и конструировании трансформатора должно выполняться условие: электрическая мощность трансформатора не должна превышать габаритную. В свою очередь электрическая мощность представляет собой половину суммы мощностей первичной и вторичной обмотки.
Первичная обмотка – это обмотка, через которую подается ток от источника энергии. Через вторичную обмотку энергия подается к приемнику энергии. Энергия между обмотками передается посредством магнитного потока.
Мощность обмотки трансформатора представляет собой произведение напряжения на обмотке и силы тока. Напряжение источника энергии нам известно, осталось определить максимальный ток, который способна выдержать обмотка. Для этого вводится понятие плотности тока в проводе. Она рассчитывается как отношение тока, проходящего через провод к его поперечному сечению. Для обмоток с медным проводом оптимальная плотность находится в диапазоне от 2,5 при габаритной мощности больше 200 Ватт до 5 при мощности меньше 10 Ватт. Увеличение плотности приведет к перегреву обмотки и выходу трансформатора из строя.
Зная диаметр провода обмотки можно определить плотность. Для этого понадобится таблица «Медный обмоточные провода», которую можно найти в Интернете. Далее, чтобы узнать максимально допустимый ток обмотки, нужно плотность умножить на сечение.
Теперь имеются все данные для расчета мощности первичной обмотки, а, соответственно, и электрической мощности трансформатора.
www.trustindustry.ru Измерительные трансформаторы тока 6-10 кВ используются в реклоузерах (ПСС), пунктах коммерческого учета (ПКУ), камерах КСО - везде, где требуется учет электроэнергии или контроль тока для защиты линии от перегрузки. Одним из основных параметров трансформатора тока (ТТ) является коэффициент трансформации, который чаще всего имеет обозначение 10/5, 30/5, 150/5 или аналогичное. Попробуем разобраться, что это означает, и как правильно выбрать коэффициент трансформации трансформатора тока. Важно! Трансформатор тока по природе является повышающим, поэтому его вторичная обмотка должна быть всегда замкнута накоротко через амперметр или просто перемычкой. Иначе он сгорит или ударит кого-нибудь током. Электрики, знакомые с электрооборудованием ~220 В могут заметить, что квартирные счетчики электроэнергии подключаются непосредственно к линии без использования трансформаторов тока. Однако уже в трехфазных сетях трансформаторное подключение встречается чаще, чем прямое включение. В цепях же ПКУ и распределительных устройств 6-10 кВ все измерительные устройства подключаются через трансформаторы тока. Трансформатор тока предназначен для уменьшения величины измеряемого тока и приведения его к стандартному диапазону. Как правило, ток преобразуется к стандартному значенияю 5 А (реже - 1 А или 10 А). Еще одним назначением трансформаторов тока является создание гальванической развязки между измеряемой и измерительной цепями. Максимальный рабочий ток первичной обмотки трансформатора определяется мощностью силового трансформатора на понижающей подстанции. Например, если мощность подстанции 250 кВА, то при номинальном напряжении линии 10 кВ ток не будет превышать 15 А. Значит коэффициент трансформации трансформаторов тока должен быть не менее 3 или, как это часто обозначают, 15/5. Использование трансформаторов тока меньшего номинала может привести к тому, что ток во вторичной обмотке будет значительно превышать заданное значение 5 А, что может привести к существенному снижению точности измерений или даже выходу из строй счетчика электроэнергии. Таким образом, минимальное значение коэффициента трансформации ТТ ограничивается номинальным током линии. А существуют ли ограничения на коэффициент трансформации с другой стороны? Можно ли использовать, например, вместо трансформаторов 15/5 трансформаторы 100/5? Да, такие ограничения существуют. Если использовать трансформаторы тока с непропорционально большим номиналом, то результатом будет слишком малый ток во вторичной обмотке трансформатора, который счетчик электроэнергии не сможет измерять с необходимой точностью. Чтобы не производить каждый раз громоздкие математические вычисления, был выработан ряд правил по выбору коэффициента трансформации ТТ. Эти правила зафиксированы в настольной книге каждого энергетика - в "Правилах устройсва электроустановок" (ПУЭ). Правила устройства электроустановок допускают использование трансформаторов тока с коэффициентом трансформации выше номинального. Однако такие трансформаторы ПУЭ называют "трансформаторами с завышенным коэффициентом трансформации" и ограничивают их использование следующим образом. 1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %. Поскольку упомянутое в ПУЭ понятие минимальной рабочей нагрузки является не очень понятным, то используют и другое правило: Завышенным по коэффициенту трансформации нужно считается трансформатор тока, у которого при 25% расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке менее 10% номинального тока счетчика. Таким образом, максимально возможное значение коэффициента трансформации применяемых трансформаторов тока ограничивается чувствительностью счетчиков электроэнергии. Для расчета номинала трансфоррматора тока необходимо знать диапазон рабочих токов в первичной обмотке трансформатора. Минимальный коэффициент трансформации ТТ рассчитывается, исходя измаксимального рабочего тока в линии. Максимальный рабочий ток можно вычислить, исходя из общей мощности потребителей электроэнергии, находящихся в одной сети. Но производить эти вычисления нет необходимости, так как все расчеты уже были проделаны ранее при проектировании трансформаторной подстанции. Как правило, номинал силового трансформатора выбран таким, чтобы регулярная нагрузка не превышала номинальную мощность трансформатора, а кратковременная пиковая нагрузка превышала мощность трансформатора не более, чем на 40%. Нужно различать полную мощность (измеряется в кВА) и полезную мощность (измеряется в кВт). Полная мощность связана с полезной через коэффициент мощности, характеризующий реактивные потери в сети. Больше информации по теме можно получить на другой странице нашего сайта. Поделив потребляемую мощность на номинальное напряжение сети и уменьшив полученное значение на корень из 3, получим максимальный рабочий ток. Отношение максимального рабочего тока к номинальному току счетчика электроэнергии и даст искомый минимальный коэффициент трансформации. Например, для подстанции мощностью 250 кВА при номинальном напряжении сети 10 кВ максимальный рабочий ток составит около 15 А. Поскольку кратковременный максимальный рабочий ток может достигать 20 А, то минимальный номинал трансформатора тока лучше взять с небольшим запасом - 20/5. Максимальный коэффициент трансфортмации ТТ определим, умножив минимальный коэффициент трансформации на отношение уровеня рабочего тока (в процентах от максимального) к уровеню тока во вторичной обмотке трансформатора (также в процентах от максимального). Например, минимальный коэффициент трансформации - 15/5, расчетный уровень рабочего тока - 25% от максимального, ток во вторичной обмотке трансформатора - 10% от номинального тока счетчика. Тогда искомый минимальный номинал ТТ - 15/5 * 25/10, то есть 7,5 или в традиционной записи 37,5/5. Но, поскольку ТТ с таким номиналом не выпускаются, то нужно взять ближайшее значение - 30/5. Требования, предъявляемые нормативными документами к выбору коэффициента трансформации измерительных трансформаторов тока, оставляют очень мало места для маневра, позволяя выбрать трансформатор только из двух-трех близких номналов tmtrade.ru Трансформатор - это статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты. Трансформатор осуществляет преобразование переменного напряжения и/или гальваническую развязку в самых различных областях применения - электроэнергетике, электронике и радиотехнике. Конструктивно трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток (катушек), охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала. Работа трансформатора основана на двух базовых принципах: На одну из обмоток, называемую первичной обмоткой, подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток намагничивания создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку. В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать. Форма напряжения во вторичной обмотке связана с формой напряжения в первичной обмотке довольно сложным образом. Благодаря этой сложности удалось создать целый ряд специальных трансформаторов, которые могут выполнять роль усилителей тока, умножителей частоты, генераторов сигналов и т.д. Исключение - силовой трансформатор. В случае классического трансформатора переменного тока, предложенного П.Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки. В случае силового трансформатора, работающего в схеме Преобразователя Мотовилова, он преобразует постоянный силовой ток первичной обмотки в постоянный силовой ток вторичной обмотки при прямоугольном переменном напряжении на обеих обмотках. Последнее выпрямляется в постоянное напряжение так, что на входе и выходе схемы Мотовилова действуют постоянные токи при постоянном напряжении. Основными частями конструкции трансформатора являются: В практичной конструкции трансформатора производитель выбирает между тремя различными базовыми концепциями: Любая из этих концепций не влияет на эксплуатационные характеристики или эксплуатационную надежность трансформатора, но имеются существенные различия в процессе их изготовления. Каждый производитель выбирает концепцию, которую он считает наиболее удобной с точки зрения изготовления, и стремится к применению этой концепции на всём объёме производства. В то время как обмотки стержневого типа заключают в себе сердечник, сердечник броневого типа заключает в себе обмотки. Если смотреть на активный компонент (т.e. сердечник с обмотками) стержневого типа, обмотки хорошо видны, но они скрывают за собой стержни магнитной системы сердечника. Видно только верхнее и нижнее ярмо сердечника. В конструкции броневого типа сердечник скрывает в себе основную часть обмоток. Ещё одно отличие состоит в том, что ось обмоток стержневого типа, как правило, имеет вертикальное положение, в то время как в броневой конструкции она может быть горизонтальной или вертикальной. Данный режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт. По первичной обмотке протекает ток холостого хода, главной составляющей которого является реактивный ток намагничивания. С помощью опыта холостого хода можно определить КПД трансформатора, коэффициент трансформации, а также потери в сердечнике (т.н. «потери в стали»). Этот режим характеризуется работой трансформатора с подключенными источником в первичной и нагрузкой во вторичной цепи трансформатора. В вторичной обмотке протекает ток нагрузки, а в первичной - ток, который можно представить как сумму тока нагрузки (пересчитанного из соотношения числа витков обмоток и вторичного тока) и ток холостого хода. Данный режим является основным рабочим для трансформатора. Этот режим получается в результате замыкания вторичной цепи накоротко. Это разновидность режима нагрузки, при котором сопротивление вторичной обмотки является единственной нагрузкой. С помощью опыта короткого замыкания можно определить потери на нагрев обмоток в цепи трансформатора («потери в меди»). Это явление учитывается в схеме замещения реального трансформатора при помощи активного сопротивления. При равенстве вторичного тока нулю (режим холостого хода), ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение источника питания, поэтому ток, протекающий через первичную обмотку, равен переменному току намагничивания, нагрузочные токи отсутствуют. Для трансформатора с сердечником из магнитомягкого материала (ферромагнитного материала, трансформаторной стали) ток холостого хода характеризует величину потерь в сердечнике (на вихревые токи и на гистерезис) и реактивную мощность перемагничивания магнитопровода. Мощность потерь можно вычислить, умножив активную составляющую тока холостого хода на напряжение, подаваемое на трансформатор. Для трансформатора без ферромагнитного сердечника потери на перемагничивание отсутствуют, а ток холостого хода определяется сопротивлением индуктивности первичной обмотки, которое пропорционально частоте переменного тока и величине индуктивности. Напряжение на вторичной обмотке в первом приближении определяется законом Фарадея. В режиме короткого замыкания, на первичную обмотку трансформатора подаётся переменное напряжение небольшой величины, выводы вторичной обмотки соединяют накоротко. Величину напряжения на входе устанавливают такую, чтобы ток короткого замыкания равнялся номинальному (расчётному) току трансформатора. В таких условиях величина напряжения короткого замыкания характеризует потери в обмотках трансформатора, потери на омическом сопротивлении. Мощность потерь можно вычислить, умножив напряжение короткого замыкания на ток короткого замыкания. Данный режим широко используется в измерительных трансформаторах тока. При подключении нагрузки к вторичной обмотке во вторичной цепи возникает ток нагрузки, создающий магнитный поток в магнитопроводе, направленный противоположно магнитному потоку, создаваемому первичной обмоткой. В результате в первичной цепи нарушается равенство ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке до тех пор, пока магнитный поток не достигнет практически прежнего значения. Мгновенный магнитный поток в магнитопроводе трансформатора определяется интегралом по времени от мгновенного значения ЭДС в первичной обмотке и в случае синусоидального напряжения сдвинут по фазе на 90° по отношению к ЭДС. Наведённая во вторичных обмотках ЭДС пропорциональна первой производной от магнитного потока и для любой формы тока совпадает по фазе и форме с ЭДС в первичной обмотке. Силовой трансформатор переменного тока - трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии. Слово «силовой» отражает работу данного вида трансформаторов с большими мощностями. Необходимость применения силовых трансформаторов обусловлена различной величиной рабочих напряжений ЛЭП (35-750 кВ), городских электросетей (как правило 6,10 кВ), напряжения, подаваемого конечным потребителям (0,4 кВ, они же 380/220 В) и напряжения, требуемого для работы электромашин и электроприборов (самые различные от единиц вольт до сотен киловольт). Силовой трансформатор постоянного тока используется для непосредственного преобразования напряжения в цепях постоянного тока. Термин «силовой» показывает отличие таких трансформаторов от измерительных устройств класса «Трансформатор постоянного тока». Автотрансформатор - вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию - это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. Применение автотрансформаторов экономически оправдано вместо обычных трансформаторов для соединения эффективно заземленных сетей с напряжением 110 кВ и выше при коэффициентах трансформации не более 3-4. Существенным достоинством является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге - меньшая стоимость. Трансформатор тока - трансформатор, питающийся от источника тока. Типичное применение - для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации, кроме того, трансформатор тока осуществляет гальваническую развязку (отличие от шунтовых схем измерения тока). Номинальное значение тока вторичной обмотки 1А, 5А. Первичная обмотка трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, равен току первичной обмотки, деленному на коэффициент трансформации. ВНИМАНИЕ! Вторичная обмотка токового трансформатора должна быть надёжно замкнута на низкоомную нагрузку измерительного прибора или накоротко. При случайном или умышленном разрыве цепи возникает скачок напряжения, опасный для изоляции, окружающих электроприборов и жизни техперсонала! Поэтому по правилам технической эксплуатации необходимо неиспользуемые вторичные обмотки закорачивать, а все вторичные обмотки трансформаторов тока подлежат заземлению. Трансформатор напряжения - трансформатор, питающийся от источника напряжения. Типичное применение - преобразование высокого напряжения в низкое в цепях, в измерительных цепях и цепях РЗиА. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения. Импульсный трансформатор - это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса. Основное применение заключается в передаче прямоугольного электрического импульса (максимально крутой фронт и срез, относительно постоянная амплитуда). Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. В большинстве случаев основное требование, предъявляемое к ИТ заключается в неискажённой передаче формы трансформируемых импульсов напряжения; при воздействии на вход ИТ напряжения той или иной формы на выходе желательно получить импульс напряжения той же самой формы, но, быть может, иной амплитуды или другой полярности. Разделительный трансформатор - трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками. Силовые разделительные трансформаторы предназначены для повышения безопасности электросетей, при случайных одновременных прикасаниях к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции. Сигнальные разделительные трансформаторы обеспечивают гальваническую развязку электрических цепей. Согласующий трансформатор - трансформатор, применяемый для согласования сопротивления различных частей (каскадов) электронных схем при минимальном искажении формы сигнала. Одновременно согласующий трансформатор обеспечивает создание гальванической развязки между участками схем. Пик-трансформатор - трансформатор, преобразующий напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью. Сдвоенный дроссель (встречный индуктивный фильтр) - конструктивно является трансформатором с двумя одинаковыми обмотками. Благодаря взаимной индукции катушек он при тех же размерах более эффективен, чем обычный дроссель. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике. Трансфлюксор - разновидность трансформатора, используемая для хранения информации. Основное отличие от обычного трансформатора - это большая величина остаточной намагниченности магнитопровода. Иными словами трансфлюксоры могут выполнять роль элементов памяти. Помимо этого трансфлюксоры часто снабжались дополнительными обмотками, обеспечивающими начальное намагничивание и задающими режимы их работы. Эта особенность позволяла (в сочетании с другими элементами) строить на трансфлюксорах схемы управляемых генераторов, элементов сравнения и искусственных нейронов. Для создания трансформаторов необходимо было изучение свойств материалов: неметаллических, металлических и магнитных, создания их теории. Столетов Александр Григорьевич (профессор Московского университета) сделал первые шаги в этом направлении - обнаружил петлю гистерезиса и доменную структуру ферромагнетика (1880-е). Братья Гопкинсоны разработали теорию электромагнитных цепей. В 1831 году английским физиком Майклом Фарадеем было открыто явление электромагнитной индукции, лежащее в основе действия электрического трансформатора, при проведении им основополагающих исследований в области электричества. Схематичное изображение будущего трансформатора впервые появилось в 1831 году в работах Фарадея и Генри. Однако ни тот, ни другой не отмечали в своём приборе такого свойства трансформатора, как изменение напряжений и токов, то есть трансформирование переменного тока. В 1848 году французский механик Г.Румкорф изобрёл индукционную катушку особой конструкции. Она явилась прообразом трансформатора. 30 ноября 1876 года, дата получения патента Яблочковым Павлом Николаевичем, считается датой рождения первого трансформатора переменного тока. Это был трансформатор с разомкнутым сердечником, представлявшим собой стержень, на который наматывались обмотки. Первые трансформаторы с замкнутыми сердечниками были созданы в Англии в 1884 году братьями Джоном и Эдуардом Гопкинсон. В 1885г. венгерские инженеры фирмы «Ганц и К°» Отто Блати, Карой Циперновский и Микша Дери изобрели трансформатор с замкнутым магнитопроводом, который сыграл важную роль в дальнейшем развитии конструкций трансформаторов. Большую роль для повышения надежности трансформаторов сыграло введение масляного охлаждения (конец 1880-х годов, Д.Свинберн). Свинберн помещал трансформаторы в керамические сосуды, наполненные маслом, что значительно повышало надежность изоляции обмоток. С изобретением трансформатора возник технический интерес к переменному току. Русский электротехник Михаил Осипович Доливо-Добровольский в 1889г. предложил трёхфазную систему переменного тока с тремя проводами (трехфазная система переменного тока с шестью проводами изобретена Николой Тесла), построил первый трёхфазный асинхронный двигатель с короткозамкнутой обмоткой типа «беличья клетка» и трехфазной обмоткой на роторе (трехфазный асинхронный двигатель изобретен Николой Тесла), первый трёхфазный трансформатор с тремя стержнями магнитопровода, расположенными в одной плоскости. На электротехнической выставке во Франкфурте-на-Майне в 1891г. Доливо-Добровольский демонстрировал опытную высоковольтную электропередачу трёхфазного тока протяжённостью 175 км. Трёхфазный генератор имел мощность 230 кВт при напряжении 95 В. 1928 год можно считать началом производства силовых трансформаторов в СССР, когда начал работать Московский трансформаторный завод (впоследствии - Московский электрозавод). В начале 1900-х годов английский исследователь-металлург Роберт Хедфилд провёл серию экспериментов для установления влияния добавок на свойства железа. Лишь через несколько лет ему удалось поставить заказчикам первую тонну трансформаторной стали с добавками кремния. Следующий крупный скачок в технологии производства сердечников был сделан в начале 30-х годов XX в, когда американский металлург Норман П. Гросс установил, что при комбинированном воздействии прокатки и нагревания у кремнистой стали появляются незаурядные магнитные свойства в направлении прокатки: магнитное насыщение увеличивалось на 50%, потери на гистерезис сокращались в 4 раза, а магнитная проницаемость возрастала в 5 раз. www.gigavat.comВыбор трансформаторов тока для электросчетчика 0,4кВ. Мощность обмоток трансформатора тока
Параметры трансформатора тока | Заметки электрика
Основные характеристики и параметры трансформаторов тока
Выбор трансформаторов тока для электросчетчика 0,4кВ
Советую почитать:
КАК РАСЧИТАТЬ И ИЗГОТОВИТЬ ТРАНСФОРМАТОР ТОКА
Расчет трансформатора тока | Все своими руками
Полезные материалы по этой теме:
Warning: Use of undefined constant rand - assumed 'rand' (this will throw an Error in a future version of PHP) in /home/p310473/www/rustaste.ru/wp-content/themes/placid/template-parts/content-single.php on line 32 Мощность трансформатора тока
Выбор трансформаторов тока
Зачем нужны трансформаторы тока
Как выбрать трансформатор тока
Расчет минимального и максимального значения коэффициента трансформации
Электрический трансформатор. Основное оборудование электрических станций и подстанций.
Основное оборудование электрических станций и подстанций
Трансформатор
Базовые принципы действия трансформатора
Основные части конструкции трансформатора
Режимы работы трансформатора
Режим холостого хода
Режим нагрузки
Режим короткого замыкания
Режим холостого хода
Режим короткого замыкания
Режим нагрузки
Виды трансформаторов
Силовой трансформатор
Автотрансформатор
Трансформатор тока
Трансформатор напряжения
Импульсный трансформатор
Разделительный трансформатор
Согласующий трансформатор
Пик-трансформатор
Сдвоенный дроссель
Трансфлюксор
История создания трансформаторов
Поделиться с друзьями: