интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Подключение и пусковые токи асинхронного двигателя. Как узнать пусковой ток двигателя зная мощность и напряжение


Как рассчитать пусковой ток двигателя

Пусковые токи асинхронных электродвигателей

Подписка на рассылку

Ток, который нужен для запуска электродвигателя, называется пусковым. Как правило, пусковые токи электродвигателей в несколько раз большие, чем токи, необходимые для работы в нормально-устойчивом режиме.

Рисунок 1. Асинхронный электродвигатель Большой пусковой ток асинхронного электродвигателя необходим для того, чтобы раскрутить ротор с места, для чего требуется приложить гораздо больше энергии, чем для дальнейшего поддержания постоянного числа его оборотов. Стоит отметить, что, несмотря на совсем другой принцип действия, однофазные двигатели постоянного тока также характеризуются большими значениями пусковых токов.

Высокие пусковые токи электродвигателей — нежелательное явление, поскольку они могут приводить к кратковременной нехватке энергии для другого подключенного к сети оборудования (падению напряжения). Поэтому при подключении и наладке двигателей переменного тока (наиболее распространенных в промышленности) всегда стоит задача минимизировать значения пусковых токов, а также повысить плавность пуска двигателя за счет применения специального дополнительного оборудования. Такие мероприятия также позволяют снизить уровень затрат на пуск электродвигателя (применять провода меньшего сечения, стабилизаторы и дизельные электростанции меньшей мощности, проч.).

Одной из наиболее эффективных категорий устройств, облегчающих тяжелые условия пуска, являются софтстартеры и частотные преобразователи. Особенно ценным считается их свойство поддерживать пусковой ток двигателей переменного тока в течение продолжительного периода — более минуты. Также пусковой ток асинхронного электродвигателя можно уменьшить за счет внедрения внешнего сопротивления в обмотку ротора.

Расчет пускового тока асинхронного электродвигателя

Рисунок 2. Асинхронный электродвигатель с частотным преобразователем Расчет пускового тока электродвигателя может потребоваться для того, чтобы подобрать подходящие автоматические выключатели, способные защитить линию включения данного электродвигателя, а также для того, чтобы подобрать подходящее по параметрам дополнительное оборудование (генераторы, проч.).

Расчет пускового тока электродвигателя осуществляется в несколько этапов:

Определение номинального тока трехфазного электродвигателя переменного тока согласно формуле: Iн=1000Pн/(Uн*cosφ*√ηн). Рн здесь — номинальная мощность двигателя, Uн выступает номинальным напряжением, а ηн — номинальным коэффициентом полезного действия. Cosφ — это номинальный коэффициент мощности электромотора. Все эти данные можно найти в технической документации по двигателю.

Расчет величины пускового тока по формуле Iпуск=Iн*Кпуск. Здесь Iн — номинальная величина тока, а Кпуск выступает кратностью постоянного тока к номинальному значению, которая также должна указываться в технической документации к электродвигателю.

Точно зная пусковые токи электродвигателей, можно правильно подобрать автоматические выключатели, которые будут защищать линию включения.

Какой ток потребляет двигатель из сети при пуске и работе

В паспорте электрического двигателя указан ток при номинальной нагрузке на валу. Если, например, указано 13,8/8 А, то это означает, что при включении двигателя в сеть 220 В и при номинальной нагрузке ток, потребляемый из сети, будет равен 13,8 А. При включении в сеть 380 В из сети будет потребляться ток 8 А, то есть справедливо равенство мощностей: √ 3 х 380 х 8 = √ 3 х 220 х 13,8.

Зная номинальную мощность двигателя (из паспорта) можно определить его номинальный ток. При включении двигателя в трехфазную сеть 380 В номинальный ток можно посчитать по следующей формуле:

I н = P н/ ( √3 U н х η х с osφ).

где P н — номинальная мощность двигателя в кВт, U н — напряжение в сети, в кВ (0,38 кВ). Коэффициент полезного действия ( η) и коэффициент мощности (с osφ) — паспортные значения двигателя, которые написаны на щитке в виде металлической таблички. См. также — Какие паспортные данные указываются на щитке асинхронного двигателя.

Как рассчитать пусковой ток двигателя

Рис. 1. Паспорт электрического двигателя. Номинальная мощность 1,5 кВ, номинальный ток при напряжении 380 В — 3,4 А.

Если не известны к.п.д. и коэффициент мощности двигателя, например, при отсутствии на двигателе паспорта-таблички, то номинальный его ток с небольшой погрешностью можно определить по соотношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им ток будет примерно равен 20 А.

Для указанного на рисунке двигателя это соотношение тоже выполняется (3,4 А ≈ 2 х 1,5). Более точные значения токов при использовании данного соотношения получаются при мощностях двигателей от 3 кВт.

При холостом ходе электродвигателя из сети потребляется незначительный ток (ток холостого хода). При увеличении нагрузки увеличивается и потребляемый ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к тому, что увеличенный ток вызывает перегрей обмоток двигателя, и возникает опасность обугливания изоляции (сгорания электродвигателя).

В момент пуска из сети электрическим двигателем потребляется так называемый пусковой ток. который может быть в 3 — 8 раз больше номинального. Характер изменения тока представлен на графике (рис. 2, а).

Как рассчитать пусковой ток двигателя

Рис. 2. Характер изменения тока, потребляемого двигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)

Точное значение пускового тока для каждого конкретного двигателя можно определить зная значение кратности пускового тока — I пуск/ I ном. Кратность пускового тока — одна из технических характеристик двигателя, которую можно найти в каталогах. Пусковой ток определяется по следующей формуле: I пуск = I н х ( I пуск/ I ном). Например, при номинальном токе двигателя 20 А и кратности пускового тока — 6, пусковой ток равен 20 х 6 = 120 А.

Знание реальной величины пускового тока нужно для выбора плавких предохранителей, проверке срабатывания электромагнитных расцепителей во время пуска двигателя при выборе автоматических выключателей и для определения величины снижения напряжения в сети при пуске.

Процесс выбора плавких предохранителей подробно рассмотрен в этой статье: Выбор предохранителей для защиты асинхронных электродвигателей

Большой пусковой ток, на который сеть обычно не рассчитана, вызывает значительные снижения напряжения в сети (рис. 2, б).

Если принять сопротивление проводов, идущих от источника до двигателя, равным 0,5 Ом, номинальный ток I н=15 А, а пусковой ток равным пятикратному от номинального, то потери напряжения в проводах в момент пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.

На зажимах двигателя, а также и на зажимах рядом работающих электродвигателей будет 220 — 75 = 145 В. Такое снижение напряжения может вызвать торможение работающих двигателей, что повлечет за собой еще большее увеличение тока в сети и перегорание предохранителей.

В электрических лампах в моменты пуска двигателей уменьшается накал (лампы «мигают»). Поэтому при пуске электродвигателей стремятся уменьшить пусковые токи.

Для уменьшения пускового тока может использоваться схема пуска двигателя с переключением обмоток статора со звезды на треугольник. При этом фазное напряжение уменьшится в √ З раз и соответственно ограничивается пусковой ток. После достижения ротором некоторой скорости обмотки статора переключаются в схему треугольника и напряжение ни них становится равным номинальному. Переключение обычно производится автоматически с использованием реле времени или тока.

Как рассчитать пусковой ток двигателя

Рис. 3. Схема пуска электрического двигателя с переключением обмоток статора со звезды на треугольник

Важно понимать, что не далеко каждый двигатель можно подключать по этой схеме. Наиболее распространенные асинхронные двигатели с рабочим напряжение 380/200 В, в том числе и двигатель, показанный на рисунке 1 при включении по данной схеме выйдут из строя. Подробнее об этом читайте здесь: Выбор схемы соединения фаз электродвигателя

В настоящее время, для уменьшения пускового тока электрических двигателей активно используют специальные микропроцессорные устройства плавного пуска (софт-стартеры). Подробнее о назначении такого типа устройств читайте в статье Для чего нужен плавный пуск асинхронного двигателя.

Статьи и схемы

Полезное для электрика

Пусковой ток двигателя определяется как

где — кратность пускового тока по отношению к номинальному.

Сечение проводов и кабелей до 1 кВ выбираем исходя из условий:

1) по условию нагрева от протекаемого тока

где — поправочный коэффициент на условия прокладки;

2) по условию соответствия аппарату МТЗ (максимальной токовой защиты), установленного в начале линии

где — номинальный ток защитного аппарата, А; — кратность длительного допустимого тока провода по отношению к току срабатывания защиты.

При определении количества проводов, прокладываемых в одной трубе, или жил многожильного проводника, нулевой рабочий проводник, а также заземляющие и нулевые защитные проводники в расчёт не принимаем. Для цеховых электрических сетей принимаем провода и кабели с алюминиевыми жилами, тогда по механической прочности минимальные сечения алюминиевых жил проводов и кабелей внутри помещений не менее 4мм 2 при прокладке на изоляторах, 2,5мм 2 ¾ при других способах прокладки. Проводники с медными жилами применяем во взрывоопасных помещениях классов В1 и В1а, а также в силовых цепях крановых установок. Сечение нулевого и заземляющего провода принимаем равным или большим половины фазного сечения, но не меньше чем того требует механическая прочность.

Приведем пример выбора электродвигателей, пусковых и защитных аппаратов электропривода горизонтально-расточного станка, состоящего из трех двигателей.

1) АИР132М4¾ P=11,0 кВт, h=87,5 %, cosj=0,87, Кп =7,5;

2) АИР112М4¾ Р=5,5 кВт, h=87,5 %, cosj=0,88, Кп =7;

3) АИР80В4¾ Р=1,5 кВт, h=78 %, cosj=0,83, Кп =5,5;

Номинальные токи двигателей по условию (2.10):

Для них по (2.1) выбираем магнитные пускатели:

Согласно (2.2) выберем тепловое реле для первого двигателя

Выбираем тепловое реле типа РТЛ-206104 со средним значением тока теплового реле Iср.т.р. = 27,5 А и номинальным током теплового реле Iном..р. = 80 А.

Для второго электродвигателя

Выбираем тепловое реле типа РТЛ-101604 со средним значением тока теплового реле Iср.т.р. = 12 А и номинальным током теплового реле Iном..р. = 25 А.

Для третьего электродвигателя

Выбираем тепловое реле типа РТЛ-101604 со средним значением тока теплового реле Iср.т.р. =5 А и номинальным током теплового реле Iном..р. = 25 А.

Чтобы определить расчетный ток станка в целом, используем метод определения электрических нагрузок с помощью коэффициента расчетной нагрузки, который будет подробнее изложен далее.

Установленная мощность станка:

По таблице 2.1 для данного станка и .

Эффективное число электроприемников

принимаем при этом по таблицам [метод к курсовому проектированию] .

Тогда расчетная мощность станка

Так как . то принимаем за расчетный ток 21,954 А. Пиковый ток станка определяем по формуле (3.2.5)

По условию (3.2.6) выбираем автоматический выключатель в цепи питания:

· первого электродвигателя станка ВА51Г-25 с . По (3.9)

По (3.2.8) ток срабатывания расцепителя . что удовлетворяет условию (3.2.7): ;

· второго двигателя ВА51Г-25 с . . . . ;

· третьего двигателя ВА51Г-25 с . . . . .

По условию (3.2.3) и (3.2.4) выбираем предохранитель типа ПН2-100/100 для защиты станка: и .

Сечение провода, идущего от рассматриваемого станка к распределительному шкафу, выбираем по условиям (3.2.12) и (3.2.13): и . В итоге выбираем по литературе [4] провод АПВ 5(1´8) с .

Для электропривода с одним двигателем расчёт аналогичен трехдвигательному электроприводу, исключение лишь составляет расчётный ток, который принимаем равным номинальному току двигателя. Все расчеты сводятся в таблицы 3.2.3, 3.2.4, 3.2.5 и 3.2.6.

Таблица 3.2.3- Выбор магнитных пускателей и тепловых реле

Источники: http://cable.ru/articles/id-1117.php, http://electricalschool.info/main/osnovy/1441-kakojj-tok-potrebljaet-dvigatel-iz-seti.html, http://studopedia.ru/6_135703_puskovoy-tok-dvigatelya-opredelyaetsya-kak.html

electricremont.ru

Ток электродвигателя, какую силу тока потребляет двигатель при пуске и работе.

 

 

 

Тема: способы нахождения и вычисления электрических токов движка.

 

Производители на самом корпусе электрических двигателей ставят металлическую табличку, на которой написаны основные характеристики данного электродвигателя.

 

 

На этой табличке указан и ток, который потребляет данная электрическая машина при своей номинальной работе (средне допустимой, с нормальной нагрузкой на валу двигателя). Данная надпись может иметь два значения, например 5,9/3,4А, что означает – при подключении двигателя в режиме «треугольник» номинальные ток будет равен 5,9 ампер, а при подключении в режиме «звезда» он будет 3,4 ампера. На этой же табличке можно увидеть и символы, указывающие данные режимы работы.

 

Если по каким-то причинам на корпусе электродвигателя нет надписи, какую номинальную силу тока он потребляет, то ток можно вычислить по следующей формуле (если конечно известны все остальные, имеющиеся в этой формуле, величины!):

 

 

При отсутствии металлической таблички с основными характеристиками на корпусе электрического двигателя можно пойти более простым путем, чтобы узнать приближенную силу тока, потребляемой движком. Если известна номинальная мощность двигателя, то применим следующее условие – «киловатт электрической мощности равен двум амперам тока» (это условие подходит для электродвигателей с мощностью от 3-х киловатт и более, то есть будет максимально приближенным). Например, у нас есть асинхронный электрический двигатель мощностью 5 кВт (5000 ватт). Следовательно, приближенное значение потребляемого тока будет около 10 ампер. Может возникнуть небольшая непонятка. Если воспользоваться простой формулой вычисления тока, зная мощность и напряжение: 5000 ватт / 380 вольт = 13,15 ампер. Но ведь у электродвигателей есть свой коэффициент полезного действия, который вовсе не равен 100%  и косинус фи, который также меньше единицы. Вот мы и получаем, что реальная сила тока будет ближе к значению 10 ампер, а не 13,15 ампер.

 

 

Практическим вариантом узнать значение силы тока, который потребляется электродвигателем при его номинальной работе, будет использование обычного амперметра, или токоизмерительных клещей. При уверенности в том, что наш электродвигатель точно рассчитан на то напряжение, что мы собираемся на него подать, мы даем питание на него. Далее, все просто, берем токоизмерительные клещи и измеряем силу тока на проводах, что питают наш электродвигатель. Причем еще стоит обратить внимание на то, что у трехфазного электродвигателя рабочие токи должны быть одинаковыми на всех трех фазах. Если Вы вдруг обнаружили факт неодинаковости, то причиной может быть, как перекос фаз электрического питания, так и неисправности самого электродвигателя, который может в скором времени вовсе выйти из строя из-за ненормального режима своей работы. В любом случае желательно выяснить причину неодинаковости значений силы тока на проводах.

 

Помимо номинального тока, который потребляется электродвигателем при нормальной своей работе, существует еще так называемый пусковой ток. Его величина может быть превышать номинальный ток аж в 3-8 раз. То есть, когда мы подаем питание на электрический двигатель, который до этого находился в состоянии покоя, в начальный момент по его обмоткам начинает протекать увеличенный ток по причине нескомпенсированности сил электромагнитных полей внутри двигателя. Чем быстрее электродвигатель начинает вращаться, тем меньше тока он начинает потреблять. То есть, пусковым током считается то значение электрического тока, которое существует с момента включения электродвигателя и до выхода его на свои номинальные обороты (время разгона двигателя от нуля до нормального значения).

 

Минимальный ток, что будет течь через обмотки электрического двигателя, будет тогда, когда движок работает на холостом ходу (то есть, к его валу не подсоединено ни одной механической нагрузки). Следовательно, чем сильнее мы нагрузим вал двигателя, тем большую силу тока начнет он потреблять. Номинальной нагрузкой считается та, на которую изначально данный электродвигатель был рассчитан при своем изготовлении, и при которой эта электрическая машина может работать продолжительное время без вреда для себя. Имеется также понятие о максимальной нагрузке, при которой сила тока, что потребляется двигателем, находится на предельно допустимом значении. При максимальных токах электродвигатели могут работать лишь незначительный промежуток времени, поскольку длительная работа может негативно влиять на сам движок (перегрев), сокращая его общий срок службы.

 

Пусковые токи у разных электродвигателей разные, их можно посмотреть в справочных таблицах, где прописаны характеристики каждого конкретного движка. Для чего нужно знать значение пусковых токов? Для того, чтобы правильно подобрать устройства защиты для электрических цепей, которые непосредственно относятся к схеме этого электрического двигателя. Например, зная конкретную величину пускового тока мы правильно можем подобрать тепловую защиту под него, автоматически выключатель, что отвечает за включение и выключение данного двигателя и т.д. Это избавит нас от таких проблем как постоянное срабатывание токовой защиты (если устройство рассчитано на меньший ток, чем нужно) или не срабатывание тогда, когда это нужно (если ток срабатывания устройства гораздо больше нужного).

 

Большие пусковые токи – это негативное явление, которое на короткий промежуток времени создает просадку питающей сети. В этой электросети возникает кратковременное падение напряжения. Как можно уменьшить пусковые токи электродвигателя? Первый вариант (классический), это запускать электродвигатель по схеме «звезда», а спустя некоторое время переключаться на схему «треугольник». В этом случае при включении начальный, пусковой ток будет относительно небольшой, а при переключении режима в «треугольник» движок выйдет на свои номинальные обороты.

 

Иными вариантами снижения пусковых токов электродвигателя являются использование различных устройств плавного пуска, которые за счет электронных схем контролируют начальный режим разгона электрической машины. Допустим при использовании преобразователей частоты можно легко задать нужные параметры для старта и последующий работы электрического двигателя.

 

P.S. Правильные режим работы любого электродвигателя способствует увеличению общего срока службы данного электротехнического устройства, а также щадящей работе тех электрических цепей, что относятся к питанию данного устройства (включая и саму питающую сеть).

electrohobby.ru

Подключение асинхронного двигателя, пусковой ток асинхронного электродвигателя

 

Приветствую вас, дорогие читатели. Прежде, чем разбираться с методиками подключения и характеристиками токов моторов асинхронного типа, не лишним будет вспомнить о том, что это такое.

Движком асинхронного типа зовут машину особого вида, которая преобразует энергию электричества в механическую. Главным рабочим принципом такого устройства считают вот какие свойства. Проходя по статорным обмоткам, переменный ток, состоящий из трех фаз, создает условия для появления вращающегося магнитного поля. Это поле и заставляет ротор вращаться.

Естественно, что при подключении двигателя надо учитывать все эти факторы, ведь вращение ротора будет производиться в ту сторону, в которую вращается магнитное поле. Частота вращения ротора, однако, ниже частоты вращения возбуждающего поля. По конструкции эти машины бывают самыми различными (то есть предназначенными для работы в разных условиях).

Как рабочие, так и пусковые характеристики таких устройств на много превосходят такие же показатели моторов однофазного типа.

Любой из таких моторов имеет две основные части – подвижную (роторную) и неподвижную (статорную). На обеих частях имеются обмотки. Разница между ними может быть лишь в типе обмотки ротора: она может иметь роторные кольца, либо быть короткозамкнутой. Подключение движков, имеющих короткозамкнутый ротор и мощность до двух сотен киловатт, производится напрямую к сети. Моторы же большей мощности необходимо подключать, сперва, к пониженному напряжению и лишь потом переключать на номинал (с целью снижения в несколько раз пускового тока).

Подключение асинхронного двигателя

Статорная обмотка практически любого такого устройства имеет шесть выводов (из них три – начала и три – концы). В зависимости от того, какова питающая сеть мотора, эти выводы соединяют либо в «звезду», либо в «треугольник». С этой целью корпус каждого мотора имеет коробку, в которой выведены начальные и конечные провода обмоток (они обозначаются, соответственно, С1, С2, С3 и С4, С5, С6).

Подключение звездой

Так называют метод соединения обмоток, при котором все три обмотки имеют одну общую точку (нейтраль). Линейное напряжение такого соединения выше фазного в 1,73 раза. Положительным качеством этого вида соединений считают малые токи пуска, хотя мощностные потери при этом довольно значительны.

Метод соединения в треугольник отличается тем, что при этом методе соединение выполняется таким образом, что конец одной обмотки становится началом следующей.

Подключение треугольником

При этом, соединении фазное и линейное напряжения одинаковы, следовательно, при линейном напряжении в 220 вольт, правильным соединением обмоток будет именно треугольник. Положительной стороной этого соединения является большая мощность, тогда как отрицательной – большие токи пуска.

Для выполнения реверса (смены направления вращения) трехфазного движка асинхронного типа, достаточно поменять местами выводы двух его фаз. На производстве это делается при помощи пары магнитных пускателей с зависимым включением.

Значительные величины токов пуска у асинхронных моторов являются весьма нежелательным явлением, потому как они могут привести к эффекту нехватки напряжения для других видов оборудования, подключенного к той же сети. Это стало причиной того, что подключая и налаживая двигатели этого типа, появляется задача минимизации токов пуска и повышения плавности запуска моторов методом использования специализированного оборудования. Наиболее эффективым типом таких приспособлений считаются софтстартеры и частотные преобразователи. Одним из наиболее ценных их качеств считают то, что они способны поддержать ток запуска мотора довольно долгое время (обычно больше минуты).

Помимо стандартного способа включения моторов асинхронного типа, существуют и методы включения их в питающую сеть, имеющую лишь одну фазу.

Конденсаторный пуск асинхронного двигателя

Для этого, в основном, применяют конденсаторный способ включения. Конденсатор может устанавливаться как один, так и пара (один пусковой, а второй рабочий). Пара кондеров ставится тогда, когда есть надобность в процессе пуска-работы менять емкость, что делают при помощи подключения-отключения одного из кондеров (пускового). Для этого, как правило, применяются емкости бумажного исполнения, поскольку они не имеют полярности, а при работе на переменном токе это очень важно.

Для расчета рабочего конденсатора существует следующая формула:

Ср=4800(i/u).

Пусковой конденсатор должен иметь емкость в пару-тройку раз большую емкости рабочего и рабочее напряжение в полтора раза превышающее напряжение питания.

Пусковой и рабочий конденсаторы соединяют параллельно, причем так, что параллельно пусковому, включено шунтирующее сопротивление и одним концом пусковой кондер включается через ключ. При  пуске двигателя ключ замыкают, поднимая ток запуска, затем, размыкают.

Однако, не нужно забывать, что к однофазной сети можно подключить далеко не каждый движок. Кроме того, мощность мотора в таком подключении будет составлять лишь 0.5-0.6 мощности трехфазного включения.

Пусковые токи асинхронного двигателя

Теперь приведу таблицу допустимых значений токов холостого хода трехфазных моторов:

Мощность электромотора, кВт Ток холостого хода, в процентах от номинального,
при скорости вращения, об./мин.
3000 1500 1000 750 600 500
0.12 – 0.55

0.75 – 1.5

1.5 – 5.5

5.5 — 11

15 – 22.5

22.5 — 55

55 — 110

60

50

45

40

30

20

20

75

70

65

60

55

50

40

85

75

70

65

60

55

45

90

80

75

70

65

60

50

95

85

80

75

70

65

55

90

85

80

75

70

60

Прежде, чем производить замеры тока на двигателях, их необходимо обкатать (опробовать на холостом ходу 30-60 минут — движки мощностью меньше 100 кВт и от 2 часов движки, чья мощность выше 100 кВт). Данная таблица носит справочный характер, следовательно, реальные данные могут расходиться с этими процентов на 10-20.

Токи пуска двигателя можно вычислить, применив следующую пару формул:

Iн=1000Рн/(Uн*cosф*√nн),

где Рн — номинал мощности мотора, Uн — номинал его напряжения, nн — номинал его КПД.

Iп=Iн*Кп,

где Iн — номинал тока, а Кп — кратность постоянного тока к номиналу (обычно указана в паспорте мотора).

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

podvi.ru

Как посчитать пусковой ток электродвигателя

Величина пускового тока, необходимого для приведения двигателя в действие, существенно (иногда в 8-10 раз) превышает показатели тока, который подается для работы в нормальном режиме. Результатом резкого роста потребления энергии становится падение напряжения в питающих электросетях, что может повлечь за собой:

  • проблемы с другими подключенными к сети приборами;
  • более скорый износ узлов самого двигателя (этому способствует рывок при запуске).

Свести отрицательное воздействие к минимуму возможно, используя дополнительные устройства. Параметры вспомогательного оборудования определяют, исходя из значения пускового тока для данной модели двигателя.

Как посчитать пусковой ток электродвигателя

Разобраться, как посчитать пусковой ток электродвигателя, можно самостоятельно, ознакомившись с технической документацией к агрегату и формулами для расчета. Сначала вам потребуется определить величину номинального тока (IH, зависит от типа двигателя). Для этого предусмотрены следующие формулы (все необходимые данные есть в техпаспорте к оборудованию):

  • 1000PH/(ηHUH) для двигателей постоянного тока;
  • 1000PH/(UHcosφH√ηH) для устройств переменного тока.

Далее проводится собственно расчет значения пускового тока (IП) по формуле Кп (кратность постоянного тока к номинальному показателю, указана в техдокументации)*IH.

Способы уменьшения пускового тока

Проблема снижения пускового тока и более плавной подачи напряжения решается с помощью специального оборудования:

  • софтстартеров и устройств плавного пуска;
  • автоматических выключателей соответствующего типа отключения (B, D или C).

Грамотный подход к расчету значения пускового тока для электрического двигателя позволит вам получить точные результаты и подобрать наиболее эффективные средства защиты линии включения.

www.szemo.ru

Пусковые токи асинхронных электродвигателей | Полезные статьи

Ток, который нужен для запуска электродвигателя, называется пусковым. Как правило, пусковые токи электродвигателей в несколько раз большие, чем токи, необходимые для работы в нормально-устойчивом режиме.

Рисунок 1. Асинхронный электродвигатель Большой пусковой ток асинхронного электродвигателя необходим для того, чтобы раскрутить ротор с места, для чего требуется приложить гораздо больше энергии, чем для дальнейшего поддержания постоянного числа его оборотов. Стоит отметить, что, несмотря на совсем другой принцип действия, однофазные двигатели постоянного тока также характеризуются большими значениями пусковых токов.

Высокие пусковые токи электродвигателей — нежелательное явление, поскольку они могут приводить к кратковременной нехватке энергии для другого подключенного к сети оборудования (падению напряжения). Поэтому при подключении и наладке двигателей переменного тока (наиболее распространенных в промышленности) всегда стоит задача минимизировать значения пусковых токов, а также повысить плавность пуска двигателя за счет применения специального дополнительного оборудования. Такие мероприятия также позволяют снизить уровень затрат на пуск электродвигателя (применять провода меньшего сечения, стабилизаторы и дизельные электростанции меньшей мощности, проч.).

Одной из наиболее эффективных категорий устройств, облегчающих тяжелые условия пуска, являются софтстартеры и частотные преобразователи. Особенно ценным считается их свойство поддерживать пусковой ток двигателей переменного тока в течение продолжительного периода — более минуты. Также пусковой ток асинхронного электродвигателя можно уменьшить за счет внедрения внешнего сопротивления в обмотку ротора.

 

Расчет пускового тока асинхронного электродвигателя

Рисунок 2. Асинхронный электродвигатель с частотным преобразователем Расчет пускового тока электродвигателя может потребоваться для того, чтобы подобрать подходящие автоматические выключатели, способные защитить линию включения данного электродвигателя, а также для того, чтобы подобрать подходящее по параметрам дополнительное оборудование (генераторы, проч.).

Расчет пускового тока электродвигателя осуществляется в несколько этапов:

Определение номинального тока трехфазного электродвигателя переменного тока согласно формуле: Iн=1000Pн/(Uн*cosφ*√ηн). Рн здесь — номинальная мощность двигателя, Uн выступает номинальным напряжением, а ηн — номинальным коэффициентом полезного действия. Cosφ — это номинальный коэффициент мощности электромотора. Все эти данные можно найти в технической документации по двигателю.

Расчет величины пускового тока по формуле Iпуск=Iн*Кпуск. Здесь Iн — номинальная величина тока, а Кпуск выступает кратностью постоянного тока к номинальному значению, которая также должна указываться в технической документации к электродвигателю.

Точно зная пусковые токи электродвигателей, можно правильно подобрать автоматические выключатели, которые будут защищать линию включения.

 

cable.ru

Что такое пусковой ток

Содержание:
  1. Пусковые токи электродвигателей
  2. Пусковой ток аккумуляторной батареи
  3. Видео

При работе с различными электротехническими устройствами довольно часто возникает вопрос, что такое пусковой ток. В самом простом варианте ответа это будет такой ток, который потребен при запуске электродвигателя или другого устройства. Его значение может в несколько раз превышать номинальное, требующееся в нормальном устойчивом режиме работы. Таким образом, для того чтобы раскрутить ротор, электродвигатель должен приложить гораздо больше энергии по сравнению с работой при постоянном числе оборотов. Снизить пусковые токи можно с помощью специальных систем гашения и устройств плавного пуска.

Пусковые токи электродвигателей

В каждом приборе, устройстве или механизме возникают процессы, называемые пусковыми. Это особенно заметно при начале движения, когда необходимо тронуться с места. В этот момент для первоначального толчка требуется значительно больше усилий, чем при дальнейшей работе данного механизма.

Точно такие же явления затрагивают и электрические устройства – электродвигатели, электромагниты, лампы и другие. Наличие пусковых процессов в каждом из них зависят от того, в каком состоянии находятся рабочие элементы. Например, нить накаливания обычной лампочки в холодном состоянии обладает сопротивлением, значительно меньшим, чем при нагревании в рабочем режиме до 10000С. То есть, у лампы, мощностью 100 Вт сопротивление нити во время работы составит около 490 Ом, а в выключенном состоянии этот показатель снижается до 50 Ом. Поэтому при высоком пусковом токе лампочки иногда перегорают. От всеобщего перегорания их спасает сопротивление, возрастающее при нагревании. Постепенно оно достигает постоянного значения и способствует ограничению рабочего тока до нужной величины.

Влияние пусковых токов в полной мере затрагивает все виды электродвигателей, широко применяющихся во многих областях. Для того чтобы правильно эксплуатировать электроприводы нужно знать их пусковые характеристики. Существует два основных параметра, оказывающих влияние на пусковой ток. Скольжение является связующим звеном между частотой вращения ротора и скоростью вращения электромагнитного поля. Снижение скольжения происходит от 1 до минимума по мере набора скорости. Пусковой момент является вторым параметром, определяющим степень механической нагрузки на валу. Эта нагрузка имеет максимальное значение в момент пуска и становится номинальной после того, как произошел полный разгон механизма.

Следует учитывать особенности асинхронных электродвигателей, которые при пуске становятся эквивалентны трансформатору с короткозамкнутой вторичной обмоткой. Она обладает совсем небольшим сопротивлением, поэтому величина пускового тока при скачке может достичь многократного превышения по сравнению с номиналом. В процессе дальнейшей подачи тока в обмотки, сердечник ротора начинает по нарастающей насыщаться магнитным полем. Возникает ЭДС самоиндукции, под действием которой начинает расти индуктивное сопротивление цепи. С началом вращения ротора происходит снижение коэффициента скольжения, то есть наступает фаза разгона двигателя. При росте сопротивления пусковой ток снижается до нормативных показателей.

В процессе эксплуатации может возникнуть проблема, связанная с увеличенными пусковыми токами. Причиной их возникновения, чаще всего, становится перегрев электродвигателей, перегруженные электрические сети в момент пуска, а также ударные механические нагрузки в подключенных устройствах и механизмах, таких как редукторы и другие. Для решения этой проблемы предусмотрены специальные приборы, представленные частотными преобразователями и устройствами плавного пуска. Они выбираются с учетом особенностей эксплуатации того или иного электродвигателя. Например, устройства плавного пуска используются в основном для агрегатов, соединенных с вентиляторами. С их помощью достигается ограничение пускового тока до двух номиналов. Это вполне нормальный показатель, поскольку во время обычного пуска ток превышает номинальное значение в 5-10 раз. Ограничение достигается за счет измененного напряжения в обмотках.

Обычные двигатели переменного тока получили широкое распространение в промышленном производстве, благодаря очень простой конструкции и низкой стоимости. Их серьезным недостатком считается тяжелый запуск, который существенно облегчается частотными преобразователями. Наиболее ценным качеством этих устройств является способность к поддержке пускового тока в течение одной минуты и более. Самые современные приборы позволяют не только регулировать пуск, но и оптимизировать его по заранее установленным эксплуатационным характеристикам.

Пусковой ток аккумуляторной батареи

Аккумулятор не зря считается одним из важных элементов автомобиля. Его основная функция заключается в подаче напряжения на имеющееся электрооборудование. В основном это стартер, автомагнитола, освещение и другие устройства. Для того чтобы успешно решать эту задачу, в аккумуляторе должно происходить не только накопление, но и сохранение заряда в течение длительного времени.

Одним из основных параметров батареи является пусковой ток. Данная величина соответствует параметрам тока, который протекает в стартере в момент его пуска. Пусковой ток непосредственно связан с режимом работы автомобиля. Если транспортное средство эксплуатируется очень часто, особенно в холодных условиях, в этом случае батарея должна иметь большой пусковой ток. Его номинальный параметр обычно находится в соответствии с мощностью источника питания, выдаваемой в течение 30 секунд при температуре минус 180С. Он появляется в тот момент, когда ключ поворачивается в замке зажигания и начинает работать стартер. Измерение токового значения производится в амперах.

Пусковые токи могут быть совершенно разными у аккумуляторов, одинаковых по своему внешнему виду и основным характеристикам. На этот фактор существенное влияние оказывают физические свойства материалов для изготовления и конструктивные особенности каждого изделия. Например, возрастание тока может наблюдаться, если свинцовые пластины становятся пористыми, повышается их количество, используется ортофосфорная кислота. Завышенная величина тока не оказывает негативного влияния на оборудование, она лишь способствует повышению надежности пуска.

electric-220.ru

Пусковой ток

При включении в работу любого устройства, механизма или прибора, в течение некоторого времени в них происходят процессы, которые называются нестационарными или пусковыми. Наиболее всем известные примеры из жизни – трогание с места, допустим, груженой тележки, поезда, вполне наглядно показывает, что первоначальный силовой толчок обычно требуется сильнее, чем усилия в дальнейшем.

Такие же явления происходят и в электрических устройствах: лампах, электродвигателях, электромагнитах и т.д. Пусковые процессы в этих устройствах зависят от состояния рабочих элементов: нити накаливания лампы, состояния намагниченности сердечника катушки электромагнита, степени ионизации межэлектродного промежутка в газоразрядных лампах и т.д. Для примера рассмотрим нить накаливания осветительной лампы. Хорошо известно, что в холодном состоянии она имеет значительно меньшее сопротивление, чем при еенагреве до 1000 град. в рабочем режиме. Попробуйте рассчитать сопротивлениенити накаливания для 100-ваттной лампочки – это примерно 490 Ом, а измеренное омметром в нерабочем состоянии это значение меньше 50 Ом. А вот теперь самое интересное – посчитайте пусковой ток, и вы поймете, почему горят лампочки при включении.

Оказывается, что при включении ток доходит до 4-5 А, а это составляет потребляемую мощность более 1 кВт. Так почему же 100-ваттные лампочки не горят «поголовно»? Да только потому, что, нагреваясь, нить лампочки оказываетрастущее сопротивление, которое в установившемся режиме становится постоянным, большим начального значения и ограничивает рабочий ток на уровне около 0,5 А.

Электродвигатели имеют  широчайшее применение в технике, поэтому знание особенностей их пусковых характеристик имеет большое значение для правильной эксплуатации элетроприводов. Скольжение и момент на валу – основные, влияющие на пусковой ток, параметры. Первый связывает скорость вращения электромагнитного поля с частотой вращения ротора и уменьшается с набором скорости от 1 до минимального значения, а второй определяет механическую нагрузку на валу, максимальную в начале пуска и номинальную после полного разгона. Асинхронный электродвигатель в момент пуска эквивалентен трансформатору с закороченной вторичной обмоткой. Из-за ее малогосопротивления пусковой ток двигателя скачкообразно достигает десятикратного превышения от его номинального значения.

Подача тока в обмотки приводит к росту насыщения  сердечника ротора магнитным полем, возникновению э.д.с. самоиндукции, что приводит к росту индуктивногосопротивления цепи. Ротор начинает вращаться, и коэффициент скольжения снижается, т.е. двигатель разгоняется. При этом пусковой ток с ростом сопротивления снижается до установившегося значения.

Проблемы, вызываемые протеканием увеличенных пусковых токов, возникаютиз-за перегрева электродвигателей, перегрузки электрических сетей в моментпуска, возникновения ударных механических нагрузок в подключенных механизмах, например, редукторы. Существует два класса устройств, решающих эти вопросы в современной технике – устройства плавного пуска и частотные преобразователи.

Их выбор – это инженерная задача с анализом многих эксплуатационныххарактеристик. Нагрузка в реальных условиях применения электродвигателей делится на две группы: насосно-вентиляторная и общепромышленная. Устройства плавного пуска применяют преимущественно для нагрузок вентиляторной группы. Такие регуляторы ограничивают пусковой ток на уровне не выше 2 номинальных значений, вместо 5-10 кратного при обычном пуске, путем изменения напряжения обмоток.

Наиболее широкое распространение в промышленности получили электродвигатели переменного тока. Однако их простота конструкции и дешевизна имеет обратную сторону – тяжелые условия пуска, которые облегчаются с помощью частотных преобразователей. Особенно ценно свойство частотныхпреобразователей поддерживать пусковой ток асинхронного двигателя в течениедлительного времени – минута и более. Лучшие образцы современных преобразователей представляют собой интеллектуальные устройства, выполняющие не просто регулирование процесса пуска, но и оптимизацию пуска по любому заданному эксплуатационному критерию: величина и постоянство пускового тока, скольжения, момента на валу, оптимального коэффициента мощности и т.д.

fb.ru


Каталог товаров
    .