Закон ома схема для участка цепи: формула. Зависимость силы тока от напряжения

Содержание

PhysBook:Электронный учебник физики — PhysBook

Содержание


  • 1 Учебники

  • 2 Механика


    • 2.1 Кинематика

    • 2.2 Динамика

    • 2.3 Законы сохранения

    • 2.4 Статика

    • 2.5 Механические колебания и волны

  • 3 Термодинамика и МКТ


    • 3.1 МКТ

    • 3. 2 Термодинамика

  • 4 Электродинамика


    • 4.1 Электростатика

    • 4.2 Электрический ток

    • 4.3 Магнетизм

    • 4.4 Электромагнитные колебания и волны

  • 5 Оптика. СТО


    • 5.1 Геометрическая оптика

    • 5.2 Волновая оптика

    • 5. 3 Фотометрия

    • 5.4 Квантовая оптика

    • 5.5 Излучение и спектры

    • 5.6 СТО

  • 6 Атомная и ядерная


    • 6.1 Атомная физика. Квантовая теория

    • 6.2 Ядерная физика

  • 7 Общие темы

  • 8 Новые страницы

Здесь размещена информация по школьной физике:

  1. материалы из учебников, лекций, рефератов, журналов;
  2. разработки уроков, тем;
  3. flash-анимации, фотографии, рисунки различных физических процессов;
  4. ссылки на другие сайты

и многое другое.

Каждый зарегистрированный пользователь сайта имеет возможность выкладывать свои материалы (см. справку), обсуждать уже созданные.

Учебники

Формулы по физике – 7 класс – 8 класс – 9 класс – 10 класс – 11 класс –

Механика

Кинематика

Основные понятия кинематики – Прямолинейное движение – Криволинейное движение – Движение в пространстве

Динамика

Законы Ньютона – Силы в механике – Движение под действием нескольких сил

Законы сохранения

Закон сохранения импульса – Закон сохранения энергии

Статика

Статика твердых тел – Динамика твердых тел – Гидростатика – Гидродинамика

Механические колебания и волны

Механические колебания – Механические волны


Термодинамика и МКТ

МКТ

Основы МКТ – Газовые законы – МКТ идеального газа

Термодинамика

Первый закон термодинамики – Второй закон термодинамики – Жидкость-газ – Поверхностное натяжение – Твердые тела – Тепловое расширение


Электродинамика

Электростатика

Электрическое поле и его параметры – Электроемкость

Электрический ток

Постоянный электрический ток – Электрический ток в металлах – Электрический ток в жидкостях – Электрический ток в газах – Электрический ток в вакууме – Электрический ток в полупроводниках

Магнетизм

Магнитное поле – Электромагнитная индукция

Электромагнитные колебания и волны

Электромагнитные колебания – Производство и передача электроэнергии – Электромагнитные волны


Оптика.

СТО

Геометрическая оптика

Прямолинейное распространение света. Отражение света – Преломление света – Линзы

Волновая оптика

Свет как электромагнитная волна – Интерференция света – Дифракция света

Фотометрия

Фотометрия

Квантовая оптика

Квантовая оптика

Излучение и спектры

Излучение и спектры

СТО

СТО


Атомная и ядерная

Атомная физика. Квантовая теория

Строение атома – Квантовая теория – Излучение атома

Ядерная физика

Атомное ядро – Радиоактивность – Ядерные реакции – Элементарные частицы


Общие темы

Измерения – Методы решения – Развитие науки- Статья- Как писать введение в реферате- Подготовка к ЕГЭ — Репетитор по физике

Новые страницы

Запрос не дал результатов.

Закон Ома для участка цепи | Физика. Закон, формула, лекция, шпаргалка, шпора, доклад, ГДЗ, решебник, конспект, кратко


Загрузка…

Закон Ома для однородного участка элект­рической цепи кажется до­вольно простым: сила тока в однородном участке цепи прямо пропорциональна на­пряжению на концах этого участка и об­ратно пропорциональна его сопротивлению:

I = U / R,

где I —сила тока в участке цепи; U — на­пряжение на этом участке; R — сопротив­ление участка.

После известных опытов Эрстеда, Ам­пера, Фарадея возник вопрос: как зависит ток от рода и характеристик источника то­ка, от природы и характеристик провод­ника, в котором существует ток. Попытки установить такую зависимость удались лишь в 1826—1827 гг. немецкому физику, учи­телю математики и физики Георгу Симону Ому (1787—1854). Он разработал установку, в которой в значительной степени можно было устранить внешние влияния на ис­точник тока, исследуемые проводники и т. п. Следует также иметь в виду: для многих ве­ществ, которые проводят электрический ток, закон Ома вообще не выполняется (полу­проводники, электролиты). Металлические же проводники при нагревании увеличи­вают свое сопротивление.

Ом (Ohm) Георг Симон (1787—1854) — немецкий физик, учитель математики и физики, член-корреспондент Берлин­ской АН (1839). С 1833 г. профессор и с 1839 г. ректор Нюрнбергской высшей по­литехнической школы, в 1849—1852 гг. — профессор Мюнхенского университе­та. Открыл законы, названные его име­нем, для однородного участка цепи и для полной цепи, ввел понятие элект­родвижущей силы, падения напряже­ния, электрической проводимости. В 1830 г. произвел первые измерения электродвижущей силы источника тока.


Загрузка…



В формулу закона Ома для однородного участка цепи входит напряжение U, которое измеряется работой, выполняемой при пе­ренесении заряда в одну единицу в данном участке цепи:

U = A / q,

где A — работа в джоулях (Дж), заряд q — в кулонах (Кл), а на­пряжение U — в вольтах (В).

Из формулы для закона Ома можно лег­ко определить значение сопротивления для участка цепи:

R = U / I.

Если напряжение определено в вольтах, а сила тока — в амперах, то значение со­противления получается в омах (Ом):

Ом = В/А.

На практике часто используются меньшие или большие единицы для измерения сопро­тивления: миллиом (1мОм = 10 Ом), килоом (1кОм = 103 Ом), мегаом (1МОм = 106 Ом) и т. п. Материал с сайта http://worldofschool.ru

Закон Ома для однородного участка цепи можно выразить через плотность тока и на­пряженность электрического поля в нем. В самом деле, с одной стороны, I = jS, а с дру­гой — I = (φ1 — φ2) / R = —Δφ / R. Если имеем однородный проводник, то и напряженность элект­рического поля в нем будет одинаковой и равной E = —Δφ / l. Вместо R подставляем его значение ρ • l / S и получаем:

j = —Δφ / ρl = (-1 / ρ) • (Δφ / l) = (1 / ρ) • E = σE.

Учитывая, что плотность тока и напряженность поля величины векторные, имеем закон Ома в наиболее общем виде:

j̅ = σ͞E.

Это — одно из важнейших уравнений электродинамики, оно справедливо в любой точке электрического поля.



На этой странице материал по темам:

  • Физика закон ома формула

  • Шпаргалка «закон ома для однородного участка линейной цепи»

  • Закон ома кратко шпаргалка

  • Закон ома для динамиков

  • Закон ома для участка цепи конспект кратко


Вопросы по этому материалу:

  • Какие электрические величины и как объединяет между собой за­кон Ома для однородного участка цепи?

  • Что такое электрическое напряжение?

  • Как определяется сопротивление проводников?

  • Как формулируется закон Ома для каждой точки проводника с током, который объединяет такие электрические величины: плотность тока, удельные сопротивление или электропроводимость вещества проводника и напряженность электрического поля в данной точке проводника?


Материал с сайта http://WorldOfSchool. ru

Закон Ома

Закон Ома гласит, что

«ток через проводник между двумя точками прямо пропорционален разности потенциалов или напряжению между двумя точками, и обратно пропорционален сопротивлению между ними».

Закон Ом может быть выражен как

I = U / R (1)

, где

I = ток (Ampere, A)

U = электрический потенциал (Volts, V)

R = сопротивление (Ом, Ом )

Пример – закон Ома Ток в эльктрической схеме можно рассчитать как

I = (12 вольт) / (18 Ом)

= 0,67 Ампер

  • Загрузка ОГМ.

    Эквивалентные выражения закона Ома

    Закон Ом (1) также может быть выражен как

    U = R I (2)

    или

    R = U / I (3)

    и Печать Схема закона Ома!

    Пример — сопротивление электрической цепи

    Ток 1 ампер протекает через электрическую цепь 230 В . На приведенной выше диаграмме это указывает на сопротивление

    R ≈ 220 Ом

    Это можно альтернативно рассчитывать с помощью закона OHM

    R = (230 В) / (1 A)

    = 230 ω

    Пример — Ох. Законодательные и многофункли

    Токи, напряжения и сопротивления в электрических цепях часто могут быть очень маленькими или очень большими, поэтому часто используются кратные и дольные числа.

    Напряжение, необходимое для подачи на резистор 3,3 кОм для создания тока 20 мА можно рассчитать как

    U = (3,3 кОм) (1000 Ом/кОм) (20 мА) (10 -3 А/мА)

    Скачайте и распечатайте номограмму электрического сопротивления в зависимости от вольта и ампера!

    Значения по умолчанию в приведенной выше номограмме указывают 230 вольт , сопротивление 24 Ом и ток 10 ампер .

    Мощность

    Электрическая мощность может быть выражена как

    P = U I

    = R I 2

    = U 2 / R (4)

    , где

    . )

    Пример — потребляемая мощность

    Мощность, потребляемая в электрической цепи 12 В выше, может быть рассчитана как

    P = (12 вольт) 2 / (18 Ом)

    2

       =  8 Вт

    Пример. Мощность и электрическое сопротивление

    Электрическая лампочка 100 Вт подключена к источнику питания 230 В . Протекающий ток можно рассчитать, преобразовав (4) в

    I = P / U

    = (100 Вт) / (230 В)

    03 = 0,404 ампер. рассчитано путем преобразования (4) в

    R = U 2 / P

    = (230 В) 2 / (100 Вт)

    = 529 ω

    ЭЛЕКТИРОВАНСКИ , напряжение и ампер.

      Скачайте и распечатайте номограмму зависимости электрической мощности от вольта и ампера!

    Значения по умолчанию в приведенной выше номограмме: 240 вольт , сопротивление 10 ампер и мощность 2,4 кВт для постоянного или однофазного переменного тока — 4 кВт и для трехфазного переменного тока.

    Сопротивление и простые схемы – Физика Колледжа Дугласа 1104 Специальный учебник – Зима и лето 2020 г.

    Глава 15 Электрический ток, сопротивление и закон Ома

    Резюме

    • Объясните происхождение закона Ома.
    • Расчет напряжения, тока или сопротивления по закону Ома.
    • Объясните, что такое омический материал.
    • Опишите простую схему.

    Что управляет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, настенные розетки и т. д., которые необходимы для поддержания тока. Все такие устройства создают разность потенциалов и в широком смысле называются источниками напряжения. Когда источник напряжения подключен к проводнику, он применяет разность потенциалов [латекс]\boldsymbol{V}[/латекс], которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на заряды, вызывая ток.

    Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению [латекс]\boldsymbol{V}[/латекс]. Немецкий физик Георг Симон Ом (1787–1854) первым экспериментально продемонстрировал, что сила тока в металлической проволоке равна прямо пропорционально приложенному напряжению :

    [латекс]\boldsymbol{I \propto V}.[/латекс]

    Это важное соотношение известно как закон Ома. Его можно рассматривать как причинно-следственную связь, где напряжение является причиной, а ток — следствием. Это эмпирический закон, аналогичный закону трения — экспериментально наблюдаемому явлению. Такая линейная зависимость не всегда имеет место.

    Если напряжение управляет током, что этому препятствует? Электрическое свойство, препятствующее току (грубо похожее на трение и сопротивление воздуха), называется сопротивлением RR размером 12{R} {}. Столкновения движущихся зарядов с атомами и молекулами в веществе передают энергию веществу и ограничивают ток. Сопротивление определяется как обратно пропорциональное току, или

    [латекс]\boldsymbol{I \propto}[/латекс] [латекс]\boldsymbol{\frac{1}{R}}. [/латекс]

    Так, например, ток уменьшается вдвое, если сопротивление удваивается. Сочетание отношений тока к напряжению и тока к сопротивлению дает

    [латекс]\boldsymbol{I =}[/латекс] [латекс]\boldsymbol{\frac{V}{R}}.[/латекс]

    Это соотношение также называют законом Ома. Закон Ома в этой форме действительно определяет сопротивление для определенных материалов. Закон Ома (как и закон Гука) не является универсальным. Многие вещества, для которых выполняется закон Ома, называются омическими. К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах. Омические материалы обладают сопротивлением [латекс]\boldsymbol{R}[/латекс], которое не зависит от напряжения [латекс]\boldsymbol{V}[/латекс] и тока [латекс]\boldsymbol{I}[/латекс]. Объект, который имеет простое сопротивление, называется резистор , даже если его сопротивление мало. Единицей сопротивления является ом, который обозначается символом [латекс]\Омега[/латекс] (греческая омега в верхнем регистре). Перестановка [латекс]\boldsymbol{I = V/R}[/латекс] дает [латекс]\boldsymbol{R = V/I}[/латекс], поэтому единицами сопротивления являются 1 Ом = 1 вольт на ампер:

    [латекс]\boldsymbol{1 \;\Omega = 1}[/латекс] [латекс]\boldsymbol{\frac{V}{A}}[/латекс]

    На рис. 1 показана схема простой цепи. Простая схема имеет один источник напряжения и один резистор. Можно предположить, что провода, соединяющие источник напряжения с резистором, имеют незначительное сопротивление, или их сопротивление можно включить в [латекс]\boldsymbol{R}[/латекс].

    Рисунок 1. Простая электрическая цепь, в которой замкнутый путь для протекания тока обеспечивается проводниками (обычно металлическими проводами), соединяющими нагрузку с клеммами батареи, представленными красными параллельными линиями. Зигзагообразный символ представляет одиночный резистор и включает любое сопротивление в соединениях с источником напряжения.

    Пример 1: расчет сопротивления: автомобильная фара

    Чему равно сопротивление автомобильной фары, через которую протекает ток 2,50 А при подаче на нее напряжения 12,0 В?

    Стратегия

    Мы можем преобразовать закон Ома, как указано в [latex]\boldsymbol{I=V/R}[/latex], и использовать его для нахождения сопротивления. {-5} \;\Омега}[/латекс], а сверхпроводники вообще не имеют сопротивления (они не омический). Сопротивление связано с формой объекта и материалом, из которого он состоит, как будет показано в главе 20.3 Сопротивление и удельное сопротивление.

    Дополнительные сведения можно получить, решив [латекс]\жирный символ{I = V/R}[/латекс], что даст

    [латекс]\boldsymbol{V = IR}.[/латекс]

    Это выражение для [latex]\boldsymbol{V}[/latex] можно интерпретировать как падение напряжения на резисторе, вызванное протеканием тока [latex]\boldsymbol{I}[/latex]. Для обозначения этого напряжения часто используется фраза [латекс]\boldsymbol{IR}[/латекс]  drop . Например, фара в примере 1 имеет падение [латекс]\жирный символ{ИК}[/латекс] 12,0 В. Если измерить напряжение в различных точках цепи, будет видно, что оно увеличивается в источнике напряжения и уменьшается у резистора. Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывающему ток — поток заряда. Резистор подобен трубе, которая снижает давление и ограничивает поток из-за своего сопротивления. Сохранение энергии имеет здесь важные последствия. Источник напряжения поставляет энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, в тепловую энергию). В простой схеме (с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, поскольку [latex]\boldsymbol{PE = q \Delta V}[/latex] и тот же [ латекс]\boldsymbol{q}[/latex] проходит через каждый. Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразуемая резистором, равны. (См. рис. 2.)

    Рисунок 2. Падение напряжения на резисторе в простой цепи равно выходному напряжению батареи.

    Соединения: сохранение энергии

    В простой электрической цепи единственный резистор преобразует энергию, поступающую от источника, в другую форму. О сохранении энергии здесь свидетельствует тот факт, что вся энергия, подаваемая источником, преобразуется в другую форму одним только резистором. Мы обнаружим, что закон сохранения энергии имеет и другие важные применения в цепях и является мощным инструментом анализа цепей.

    PhET Исследования: Закон Ома

    Посмотрите, как формула закона Ома соотносится с простой цепью. Отрегулируйте напряжение и сопротивление и посмотрите, как изменится ток в соответствии с законом Ома. Размеры символов в уравнении изменяются в соответствии с принципиальной схемой.

    Рис. 3. Закон Ома

    • Простая цепь — это цепь, в которой есть один источник напряжения и одно сопротивление.
    • Одно из утверждений закона Ома дает взаимосвязь между током [латекс]\boldsymbol{I}[/латекс], напряжением [латекс]\жирныйсимвол{V}[/латекс] и сопротивлением [латекс]\жирныйсимвол{R}[/ латекс] в простой схеме должен быть [латекс]\boldsymbol{I = \frac{V}{R}}[/латекс].
    • Сопротивление выражается в омах ([латекс]\boldsymbol{\Omega}[/латекс]), связанных с вольтами и амперами как [латекс]\жирныйсимвол{1 \;\Omega = 1 \;\textbf{V} / \ textbf{A}}[/латекс].