интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

ЭЛЕКТРОННЫЙ ПУСКОРЕГУЛИРУЮЩИЙ АППАРАТ. Защита эпра схема


Пускорегулирующая аппаратура. Виды и устройство. Работа

Аппараты для регулировки пуска начали появляться давно. За последнее время пускорегулирующая аппаратура была сильно изменена и усовершенствована. Не все понимают, насколько выгодна установка таких аппаратов.

Пускорегулирующая аппаратура на основе электронных элементов (ЭПРА) монтируется в приборы освещения. Светильники с таким аппаратом значительно экономят электричество, а также нет необходимости приобретать новые лампы, так как срок службы ламп значительно повышается.

Лампы с ЭПРА светят приятным качественным светом, который благотворно влияет на человека, по крайней мере, не вредит ему. Частота мерцания света таких ламп составляет около 400 Гц. При этом глаза человека меньше устают, нет головной боли.

Свойства и виды

Чаще всего, пускорегулирующая аппаратура делится на такие виды:

  1. Единый блок аппаратуры.
  2. Отдельные части аппаратуры.

ЭПРА также можно разделить по видам, учитывая тип лампы:

• Газоразрядные.• Галогенные.• Светодиодные.

При рассмотрении свойств функционирования таких аппаратов, их можно разделить на:

• Электронные.• Электромагнитные.

Если рассмотреть пускорегулирующие аппараты по соответствию классов по европейской классификации, то ЭПРА делятся на классы:

• А 1 – регулируемые.• А 2 – нерегулируемые.• А 3 – с большими потерями (нерегулируемые).

При приобретении светильника с регулирующим пусковым аппаратом необходимо следовать новейшим разработкам и рекомендациям специалистов, так как устройства постоянно обновляются, в них внедряются последние современные новшества, о которых вы можете не знать.

Достоинства

Инновационные модели таких аппаратов дают возможность включиться лампе сразу после разогревания ее электродов. Также, при работе лампы пускорегулирующий аппарат поддерживает оптимальное значение напряжения. Следовательно, расход электроэнергии меньше при применении такого устройства.

Электронные аппараты пуска и регулировки вполне заменяют подобными аналогами. Однако, это тяжелые и шумные дроссели. Они уже практически не используются в таких устройствах. О них будет рассказано ниже.

Пускорегулирующая аппаратура имеет свои особенности и преимущества:

  • Снижение мерцания лампы.
  • Нет сильной вспышки лампы по время неисправности стартера, поэтому срок службы лампы повышается.
  • Обеспечивается освещение со стабильным потоком света.
  • Пусковые электронные аппараты оснащаются регулировкой по мощности, помогающие настроить яркость света в различных помещениях.
  • Экономия энергии в сравнении с обычными источниками света.
  • Безопасность с экологической точки зрения, нет необходимости в специальной особой утилизации, так как не имеют в составе ртути, других вредных и ядовитых веществ.
  • Повышенная надежность, устойчивость к вибрации, прочность из-за того, что конструкция не имеет горелки, нити накала, стеклянной колбы.
  • Не реагирует на скачки напряжения.
  • Во момент запуска не создает перегрузку электрической сети.
  • Сниженный ток потребления, для обычных наружных светильников ток составляет 0,5 ампера, в сравнении с источником света на газоразрядной лампе – 2,2 ампера, а ток запуска – 4,5 ампера.
  • Экономия денежных ресурсов.
  • Возможность функционирования светильников при низких температурах.
Принцип действия

Работу можно разделить на следующие этапы:

• Разогрев электродов. Они запускаются очень быстро, в течение нескольких долей секунды, создается плавная подача освещения. Этот фактор дает возможность увеличить срок работы лампы до замены. Также, светильники, оснащенные такой аппаратурой, можно включать при пониженных температурах. Это не снижает их срок службы.• Вторым этапом является розжиг. При этом создается импульс высокой разности потенциалов. Это дает возможность наполнения колбы газом.• Горение – это заключительный этап, поддерживающий постоянное повышенное напряжение, которое нужно для функционирования лампы.

Схема пускорегулирующей аппаратуры

Чаще всего схема состоит из 2-тактного преобразователя напряжения. Конструкция бывает мостовой и полумостовой. Мостовые варианты очень редко применяются.

Сначала диодный мост выпрямляет напряжение, далее оно сглаживается емкостью до постоянного напряжения. Полумостовой инвертор делает напряжение высокочастотным. В схеме применяется трансформатор с сердечником в виде тора с тремя катушками. Основная обмотка подает изменяющееся напряжение резонанса на лампу. Остальные работают в качестве дополнительных обмоток, которые в противофазе открывают ключи на транзисторах.

В результате, перед запуском лампы, наибольший ток разогревает обе нити лампы, а напряжение на емкости включает лампу. Она светит и не изменяет частоту с самого начала. Время запуска лампы составляет не более одной секунды.

ЭПРА со светодиодами

Многие приборы освещения применяются с пускорегулятором. Рассмотрим, какие достоинства применения ЭПРА в модулях светодиодов.

Основным положительным моментом здесь является тот факт, что осуществляется защита устройства от сильных перепадов напряжения и электромагнитных помех. Другими словами, пускорегулирующий аппарат защищает светодиодный модуль от капризов поведения питающей сети.

Кроме этого, происходит экономия расхода энергии в пределах 30%, поэтому это играет большую роль в применении ЭПРА. Электричество экономится за счет того, что теперь не нужно часто менять стартеры, которые очень часто выходят из строя, в отличие от ПРА.

Обзор моделей

Пускорегулирующая аппаратура выбирается большинством потребителей. Наиболее популярными изготовителями приборов освещения с ЭПРА стали следующие фирмы:

• Helvar – начало выпуска изделий в 1921 г. С самого начала фирма показала себя наиболее надежной в выпуске радиотехники, наладила выпуск пускорегулирующих устройств, выпуск продолжается до настоящего времени. Страна фирмы изготовителя – Финляндия.• Tridonic – является одной из лидирующих фирм в производстве аппаратуры для освещения. Фирма в конце 70-х годов начала производство своей продукции, которая до сих пор прославляет качество австрийских товаров.• Osram – гигантская фирма в сфере выпуска приборов освещения и комплектующих элементов к ним.

Эти именитые производители выпускают недешевую продукцию, но это оправдывается качеством. Хотя, подобные товары других фирм можно приобрести намного дешевле.

Порядок выбора

Перед покупкой пускорегулятора нужно сначала правильно выбрать производителя. Наиболее популярными являются сегодня фирмы, которые мы рассмотрели выше. Но, выбрав устройство одной из этих фирм, нет гарантии того, что выбранный аппарат не станет причиной неисправности вашего источника света, так как кроме изготовителя, нужно обращать внимание и на другие моменты.

Особое внимание необходимо обращать на такие параметры и свойства:

• Тип применяемых ламп.• Мощность ламп.• Условия окружающей среды (указаны в инструкции к устройству).

Электромагнитная пускорегулирующая аппаратура

Простые электромагнитные пускорегуляторы (ЭМПРА) включают в себя обычное индуктивное сопротивление, состоящее из металлического сердечника, на который намотан медный провод. Применение такого вида сопротивления обуславливает к значительной потере мощности и выделению теплоты. Мощность функционирующей с пускорегулятором лампы на 26 ватт для сети обходится в 32 ватта. Это значит, что потери мощности равны 6 ваттам, это 23%.

Есть несколько методов применения:

  • Со стартером.
  • Без стартера.
  • С ограничением температуры.
Принцип действия ЭМПРА

Схема электромагнитного пускорегулирующего аппарата со стартером считается наиболее дешевой и простой.

При включении питания напряжение по обмотке дросселя и нити накала идет к электродам стартера. Он выполнен в виде небольшой лампы с газовым разрядом. Напряжение образует тлеющий разряд, инертный газ начинает светиться и нагревать его среду. Биметаллический датчик включает контакты и в цепи образуется замкнутый контур, с помощью которого нагревается нить люминесцентной лампы. Создается термоэлектронная эмиссия. Вместе с этим нагреваются пары ртути, расположенные в колбе.

Напряжение на электродах стартера и разряд уменьшаются, температура понижается. Биметаллическая пластина размыкает цепь между электродами и ток прекращается. В дросселе образуется ЭДС самоиндукции, создающая кратковременный разряд между нитями накала.

Величина разряда может достигать нескольких тысяч вольт, которые пробивают инертный газ с парами ртути, возникает дуга, которая и является источником света.

Стартер в дальнейшей работе не принимает участие. После запуска светильника ток нуждается в ограничении, иначе перегорят элементы схемы. Эту задачу выполняет дроссель, индуктивное сопротивление которого ограничивает увеличение тока, не дает лампе выйти из строя.

Достоинства использования ЭМПРА с источником света

  • Равномерный и быстрый запуск.
  • Нет мерцания.
  • Повышение срока работы лампы.
  • Повышенный КПД.
  • Улучшенная защита от удара током.
  • Коэффициент мощности составляет выше 0,9.
  • Главное достоинство – низкая цена.

 Недостатки ЭМПРА

  • Большие габариты и масса.
  • Значительные потери мощности, особенно для люминесцентных ламп.
  • Частота потока света составляет 100 герц, это влияет через подсознание на человека. Импульсы света образуют эффект стробоскопа, когда детали и предметы, движущиеся с частотой, совпадающей с пульсацией света, представляются для человека неподвижными. Это может негативно отразиться на повышении травматизма на производстве.
  • Свет не управляется, это создает ограничение в комфортных условиях.
  • Дроссели издают гул, неприятный для человека звук.

Чтобы устранить эти недостатки, для люминесцентных ламп самым действенным способом оказалось подключение ламп к току высокой частоты. Для создания такого подключения последовательно с лампой включают балласт в виде электронного устройства, которое переделывает напряжение одной частоты в другую, и обеспечивает запуск ламп. Эти устройства называются электронными пускорегулирующими аппаратами (ЭПРА), которые мы уже рассмотрели выше.

Похожие темы:

 

electrosam.ru

Электронный пускорегулирующий аппарат фирмы PHILIPS

Документация

Главная  Справочник  Документация

"Документация" - техническая информация по применению электронных компонентов, особенностях построения различных радиотехнических и электронных схем, а также документация по особенностям работы с инженерным программным обеспечением и нормативные документы (ГОСТ).

Электронный пускорегулирующий аппарат (ЭПРА) обеспечивает работу трубчатых люминесцентных ламп со щадящими режимами пуска. ЭПРА с полумостовым инвертором разработан для управления стандартной лампой Philips TLD58W или лампами аналогичных типов. Схема оптимизирована для ламп мощностью 50 Вт при номинальном напряжении сети 230 В и частоте 50...60 Гц. Щадящий режим пуска увеличивает срок службы лампы. Постоянство мощности лампы обеспечено автоматическим управлением. Предусмотрены защита от емкостного режима работы и защита от удаления лампы.

ЭПРА работоспособен в диапазоне напряжений сети 185...265 В при частоте 50...60 Гц. Автоматическое управление поддерживает мощность горения лампы в пределах 47,6...50,3 Вт при изменении напряжения сети в пределах 200...260 В. Одним из основных компонентов является высоковольтная ИМС UBA2021, предназначенная для управления как компактными люминесцентными лампами, так и трубчатыми лампами. Микросхема UBA2021, включающая высоковольтный драйвер со схемой запуска, генератор и таймер, обеспечивает управление режимами пуска, подогрева, зажигания и горения лампы, а также защиту от емкостного режима и удаления лампы. UBA2021 управляет работой мощных полевых МОП-транзисторов PHX3N50E, являющихся ключами полумостового инвертора, который питается от сети с номинальным напряжением 230 В и частотой 50...60 Гц. При этом обеспечивается необходимый сдвиг уровней питания полевых транзисторов, осуществляющий защиту от емкостного режима работы. Основными достоинствами этого изделия являются малое число компонентов и низкая стоимость, что достигнуто благодаря применению ИМС UBA2021, которая способна обеспечить максимальную гибкость разработки при минимальном числе периферийных элементов.

Блок-схема устройства приведена на рис.1, полная электрическая схема - на рис.2. Напряжение сети переменного тока преобразуется в питающее полумостовой инвертор напряжение постоянного тока с помощью мостового выпрямителя на четырех диодах и сглаживающего конденсатора. Помехоподавляющий сетевой фильтр (рис.1) препятствует проникновению помех в сеть. Полумостовой инвертор относится к группе высокочастотных резонансных преобразователей напряжения, которые удобны для управления газоразрядными лампами. Используемый принцип переключения двух мощных МОП-транзисторов при нулевом напряжении позволяет уменьшить потери на их переключение и обеспечивает высокий КПД аппарата.

Блок схема устройства

Рис. 1Блок схема устройства

После подачи сетевого напряжения люминесцентная лампа сначала подогревается. Это называется мягким пуском и обеспечивает надежную и долговечную работу лампы. Величина тока подогрева регулируется микросхемой UBA2021. Этот ток, проходящий через нити накала лампы, разогревает электроды лампы до температуры, обеспечивающей достаточную эмиссию электронов. Достаточный подогрев позволяет уменьшить напряжение зажигания лампы, что снижает ударные электрические нагрузки на элементы схемы. Автоматическое управление в значительной степени стабилизирует излучаемый лампой световой поток в широком диапазоне вариаций напряжения сети.

Полная электрическая схема устройства

Рис. 2Полная электрическая схема устройства

После включения выпрямленное напряжение сети поступает на буферный конденсатор С4 через резистор R1 (рис.2), ограничивающий бросок тока. Конденсатор сглаживает пульсации напряжения с удвоенной частотой сети. Полученное высоковольтное напряжение UHV постоянного тока является питающим для полумостового инвертора, в состав силовых компонентов которого входят транзисторы VT1, VT2, катушка L1, конденсаторы С5, С6, С7 и лампа, подключаемая к разъемам Р2 и РЗ.

На этапе пуска ток от высоковольтного конденсатора С4 проходит через резистор R2, нить накала лампы, резистор R4, выводы 13 и 5 микросхемы UBA2021, соединенные между собой в период пуска внутренним ключом, и заряжает конденсаторы низковольтного питания С9, СЮ и С13. Как только напряжение питания Vs на С13 достигнет величины 5,5 В, происходит переключение UBA2021, в результате которого транзистор VT2 открывается, а транзистор VT1 запирается. Это позволяет зарядиться пусковому конденсатору С12 через внутреннюю цепь микросхемы. Напряжение питания Vs продолжает увеличиваться, и при Vs > 12 В схема начинает генерировать. Величина тока потребления ИМС внутренне фиксируется на уровне порядка 14 мА. Далее происходит переход к этапу подогрева.

При отсутствии лампы пуск автоматически блокируется, т.к. в этом случае оказывается разорванной цепь зарядки пускового конденсатора.

На этапе подогрева МОП-транзисторы VT1 и VT2 поочередно переводятся в проводящее состояние. Это генерирует переменное напряжение прямоугольной формы относительно средней точки полумоста с амплитудой VHV. Стартовая частота колебаний составляет 98 кГц. В этих условиях цепь, состоящая из С8, VD5, VD6, С9 и СЮ, оказывается способной выполнить функцию источника низковольтного питания, которая во время пуска обеспечивалась током через вывод 13 ИМС.

В течение интервала времени, примерно равного 1,8 с (время подогрева tPRE), продолжительность которого определяется номиналами С17 и R7, система находится в режиме подогрева, когда через нити накала лампы проходит ток контролируемой величины. Это позволяет оптимальным образом разогреть оба электрода лампы. Нагретые электроды эмиттируют в лампу большое число электронов, и в этом состоянии для ее зажигания требуются значительно меньшие напряжения, что минимизирует ударные электрические нагрузки на элементы схемы и лампу в момент зажигания. Подогрев электродов весьма важен для обеспечения большого срока службы лампы.

После возникновения генерации небольшой переменный ток начинает протекать от средней точки полумоста через нити накала лампы, L1 и С7. Частота колебаний постепенно снижается, что приводит к соответствующему росту величины тока. Скорость снижения частоты определяется емкостью конденсатора С14 и внутренним источником тока ИМС. Частота прекращает падать, как только будет достигнуто определенное значение напряжения переменного тока на резисторах R5 и R6, являющихся датчиками тока подогрева. Это происходит примерно через 3 мс после включения. UBA2021 стабилизирует ток через нити накала, отслеживая величину падения напряжения на R5 и R6.

В течение всего этапа подогрева частота работы полумостового инвертора остается выше резонансной частоты цепочки L1, С7 (55,6 кГц), и в силу этого напряжение на С7 еще мало для зажигания лампы. Весьма важно удержать это напряжение достаточно малым: ведь преждевременное, так называемое холодное, зажигание приводит к потемнению концов лампы.

Величина индуктивности балластной катушки L1 определяется необходимым током через лампу, емкостью конденсатора поджига С7 и рабочей частотой в режиме горения. Минимальная величина емкости С7 определяется индуктивностью L1, величиной не приводящего к зажиганию напряжения на лампе при данном токе подогрева и минимальным напряжением сети. В результате оптимальным для подогрева оказывается значение емкости С7, равное 8,2 нФ.

После окончания этапа подогрева UBA2021 возобновляет дальнейшее снижение частоты переключений полумоста вплоть до низшей частоты fB (39 кГц). Однако теперь понижение частоты осуществляется гораздо медленнее, чем это происходило в стадии подогрева. Частота переключений смещается к резонансной частоте последовательной цепочки, состоящей из индуктивности L1 и суммарной емкости конденсатора С7 и электродов лампы (55,6 кГц), причем сопротивления блокирующих постоянный ток конденсаторов С5 и С6 достаточно малы.

Максимальная величина напряжения зажигания в наихудшем случае (когда и светильник, и схема ЭПРА подключены к защитному заземлению сети) для лампы TLD58W при низких температурах составляет примерно 600 В.

Сочетание балластной катушки индуктивности L1 и конденсатора поджига С7 подобрано таким образом, чтобы напряжение на лампе могло превысить эти необходимые для надежного зажигания 600 В. Величина напряжения зажигания определяет максимальное значение емкости С7 при заданной индуктивности L1, выбранной исходя из нижней частоты fB UBA2021. Нижняя частота fB задается величинами R7, С15 и С16. Максимально возможная продолжительность этапа зажигания TIGN равна 1,7 с (15/16-ых от TPRE), она устанавливается подбором С17 и R7.

В предположении, что лампа зажглась в ходе понижения частоты, частота уменьшается до минимального значения fB. UBA2021 может осуществить переход к этапу горения двумя путями: 1 - при снижении частоты до fB, и 2 - если частота fB не достигнута, но переход происходит по истечении максимально возможной продолжительности этапа зажигания TIGN.

На этапе горения частота колебаний в схеме обычно снижается до fB (39 кГц), которая может использоваться в качестве номинальной рабочей частоты. Однако, в силу применения в ЭПРА автоматического управления, частота колебаний зависит от величины тока, протекающего через вывод 13 (вывод RHV) ИМС UBA2021. Автоматическое управление начинает функционировать после достижения fB.

Во время этапа пуска конденсаторы низковольтного питания С9, С10 и С13 заряжаются током, протекающим от высоковольтного конденсатора С4 через R2, нить накала лампы, R4 и внутренне соединенные выводы 13 и 5 UBA2021. На этапе горения происходит перекоммутация. Вместо вывода 5 к выводу 13 оказывается подключенным вывод 8. Теперь ток, протекающий через резисторы R2 и R4, используется в качестве информационного параметра в системе автоматического управления частотой переключений силового инвертора, так как сила этого тока пропорциональна уровню выпрямленного напряжения сети. Пульсации с удвоенной частотой сети (100... 120 Гц) фильтруются конденсатором С17. В результате излучаемый лампой световой поток остается почти постоянным при изменении напряжения сети в пределах от 200 до 260 В.

Таблица 1

Напряжение питания, В 200 210 220 230 240 250 260
Энергия, потребляемая от сети, Вт 52 53,5 54,4 55 55,4 55,6 55,8
Энергия, потребляемая лампой, Вт 47,6 48,9 49,6 50 50,2 50,3 50,3
Коэффициент полезного действия, % 92 91 91 91 91 91 90

На частотах выше 10 кГц лампа может рассматриваться как резис-тивная нагрузка. Светоотдача возбуждаемых на частотах выше 10 кГц трубчатых ламп существенно лучше, чем при их питании с частотой 50...60 Гц. Это означает, что лампа TLD58W при высокочастотном питании с мощностью 50 Вт излучает такой же световой поток, как и TLD58W при мощности питания 58 Вт на частоте 50...60 Гц. Рабочая точка установившегося состояния для подключенной к ЭПРА TLD58W характеризуется напряжением на лампе 110 В и током через нее 455 мА, что соответствует мощности питания 50 Вт.

Величина индуктивности балластной катушки L1 определяется рабочей точкой лампы, емкостью конденсатора поджига С7 и рабочей частотой, которая примерно равна 45 кГц при номинальном напряжении сети 230 В.

Желаемая мощность возбуждения лампы может быть достигнута при различных сочетаниях величин индуктивности L1 и емкости С7. Выбор конткретного сочетания зависит от таких факторов как режим подогрева, минимально необходимое напряжение зажигания и допуски на параметры компонентов схемы. В большинстве случаев оптимальным является сочетание дроссельной катушки L1 с индуктивностью 1 мГн и конденсатора поджига С7 с емкостью 8,2 нФ.

Для предохранения элементов силовой цепи от значительных перегрузок, в микросхему встроена функция защиты от емкостного режима работы, которая активна на этапах зажигания и горения. UBA2021 проверяет величину падения напряжения на R5 и R6 во время включения транзистора VT2 в каждом цикле работы инвертора. Если это напряжение оказывается меньше 20 мВ, это означает, что схема работает в емкостном режиме, и UBA2021 начинает повышать частоту переключений с гораздо большей скоростью, чем она ее снижала на этапах подогрева и зажигания. В итоге частота переключений превысит резонансную частоту. При исчезновении признаков емкостного режима частота переключений вновь уменьшается до необходимой.

Защита при удалении лампы обеспечена способом получения низковольтного напряжения питания для UBA2021. При удалении лампы становится нулевым напряжение переменного тока на конденсаторе С6, что приводит к исчезновению низковольтного питания ИМС. После замены лампы без отключения ЭПРА работа схемы возобновится с этапа пуска. И, наконец, пуск ЭПРА невозможен при отсутствии лампы - ведь в этом случае пусковой резистор R4 оказывается отключенным от высоковольтного напряжения.

В ЭПРА установлен электролитический конденсатор С4 типа ASH-ELB 043. Эти, специально разработанные для применения в электронных схемах питания люминесцентных ламп, конденсаторы характеризуются большим сроком службы (15000 часов) при температурах до 85°С и выдерживают значительные пульсации тока.

Силовыми ключами в инверторе являются полевые МОП-транзисторы типа PHX3N50E (индекс "Е" свидетельствует о повышенной надежности прибора). Благодаря использованию принципа переключения при нулевом напряжении, потери на переключение МОП-транзисторов минимизированы. Нагрев каждого из транзисторов вызывается только потерями в проводящем состоянии, и степень повышения температуры зависит от сопротивления открыто го канала сток-исток (Rds on) и теплового сопротивления корпуса (Rth)-Продолжительности этапов подогрева и зажигания достаточно малы, в силу чего выбор типа МОП-транзистора был обусловлен величиной тока, протекающего через балластную катушку индуктивности в режиме горения лампы. PHX3N50E характеризуются максимальным постоянным напряжением сток-исток 500 В и сопротивлением открытого канала менее 3 Ом, что делает эти приборы весьма привлекательными для применения данного ЭПРА.

Конструкция выдерживающей пиковые токи зажигания до 2,5 А балластной катушки L1 с индуктивностью 1 мГн позволяет применять ее в схемах без защитного заземления.

Поджигающим в ЭПРА является конденсатор С7 с емкостью 8,2 нФ типа КР/ММКР376. Этот тип конденсаторов разработан для применения в цепях с высокими скоростями нарастания напряжения и большой частотой повторения. Установленный конденсатор способен выдержать размах напряжения до 1700 В (600 В действующего значения синусоидального напряжения).

"Сердцем" ЭПРА является UBA2021. Эта специализированная ИМС предназначена для управления компактными и трубчатыми люминесцентными лампами. В состав UBA2021 входит высоковольтный драйвер со схемой запуска, генератор и таймер, обеспечивающие управление на стадиях пуска, подогрева, зажигания и горения лампы, а также защиту от емкостного режима. ИМС выдерживает напряжения до 390 В и кратковременные всплески напряжений (t

В таблице приведены энергетические характеристики ЭПРА.

Дата публикации: 07.11.2003

Мнения читателей
  • евгений / 08.12.2012 - 19:08Ни где не могу найти схему пру wd1f3515c1
  • Дементьев Вячеслав Васильевич / 23.06.2010 - 16:40Если схема вышла из строя, то она банально перегрелась! Этим страдают все компактные исполнения ЭПРА. И предполагаю, что микросхемы драйвера там не было!
  • chakon / 21.12.2009 - 20:53Полезная статья. Позволяетпонять,в чем состоит эффективность люминисцентных ламп. Спасибо Автору. Но нужно было показать надежность электроннойсхемы, мощьность рассеивания на элементах схемы. Вот почему. Купил такую лампу. Она погорела примерно месяц и "пшик". Вскрыл.Транзисторы выгорели. Проводники силовой части печатной платы выгорели. Сама лампа видимо цела. Сопротивление накалов лампы составило примерно 10- 11 Ом. Так что электроника слабая. Если повысить ее надежность, то видимо лампы будут более долговечны. С уважением. chakon

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:

www.radioradar.net

Электронный пускорегулирующий аппарат (ЭПРА), его применение для люминесцентных и светодиодных ламп

ЭПРА ДЛЯ ЛЮМИНЕСЦЕНТНЫХ ЛАМП - И СВЕТОДИОДНЫХ

Включение газоразрядных ламп, в чисто которых входят всем известные люминесцентные лампы, имеет ряд особенностей. Для возникновения разряда между электродами в среде газа требуется импульс высокого напряжения между предварительно прогретыми электродами.

Электронный пускорегулирующий аппарат ЭПРА

Во время работы ток разряда должен ограничиваться специальным балластом, функции которого выполняет дроссель – катушка с большой индуктивностью.

Пускорегулирующая аппаратура, разработанная для включения люминесцентных ламп имела множество существенных недостатков:

  • низкая надежность стартера из-за наличия контактной группы;
  • громоздкий тяжелый и шумный дроссель;
  • мерцание ламы с частотой питающей сети;
  • длительный процесс зажигания ламп;
  • затрудненный пуск при низкой температуре;
  • низкий КПД;
  • высокий уровень электромагнитных помех.

На смену устаревшим пусковым агрегатам были разработаны электронные устройства, которые не содержат механических контактов и тяжелого и габаритного дросселя.

Малые габариты современных электронных пускорегулирующих устройств (ЭПРА) дали толчок дальнейшему развитию и широкому распространению малогабаритных люминесцентных ламп, которые в народе прозвали «экономками».

Новое оборудование полностью свободно от перечисленных недостатков и, к тому же, увеличивает продолжительность работы источников света за счет плавного разогрева нитей накаливания.

Кроме того, ЭПРА имеет следующие достоинства:

  • отсутствуют механические контакты;
  • питание производится высокочастотным напряжением, что полностью исключает мерцание;
  • малые габариты и вес;
  • высокий КПД за счет введения цепей коррекции мощности;
  • минимум сетевых помех и практически полное отсутствие электромагнитных.

Работа лампы с электронным запуском включает несколько последовательных стадий:

  1. Разогрев нитей накаливания.
  2. Инициирование разряда в среде газа между электродами.
  3. Поддержание горения.

Все этапы включения полностью контролируются электронной схемой ЭПРА, которая состоит из следующих элементов:

Входной фильтр. Не пропускает помехи от ЭПРА в сеть и наоборот. Корректор мощности. Устанавливается, в основном в дорогих и мощных пускателях. Сглаживающий фильтр. Исполняется в виде электролитического конденсатора большой емкости.

Также в состав устройства входят инверторная схема преобразования напряжения и малогабаритный дроссель.

В инверторе используются мощные высоковольтные транзисторные ключи, которые включены в мостовую схему с автогенерацией или управляются специальной микросхемой. В диагональ моста включен многообмоточный резонансный трансформатор, одна из обмоток которого включена последовательно с нитями накала и резонансным конденсатором.

При включении лампы напряжение обмотки трансформатора разогревает нити накала, а затем, за счет резонанса, происходит разряд конденсатора между электродами.

Межэлектродный разряд уменьшает сопротивление рабочей среды лампы, в результате чего резонансный конденсатор оказывается закороченным и резонанс пропадает. Оставшегося значения напряжения достаточно для нормального горения. Ток разряда ограничивается дросселем, включенным последовательно с электродами.

ЭПРА ДЛЯ ПИТАНИЯ ЛЮМИНЕСЦЕНТНЫХ ЛАМП

Первоначально конструкции ЭПРА разрабатывались для замены старых дроссельно-стартерных устройств для установки в классические светильники с люминесцентными лампами. Для облегчения перехода на новую аппаратуру, ее габаритные размеры, как говорилось выше, делали схожими со старыми устройствами.

Такой подход позволял без изменения технологических линий по производству светильников устанавливать электронные пускатели.

Использование миниатюрных SMD компонентов и совершенствование схемотехники позволили создавать ЭПРА с минимальными габаритами. Такие устройства помещаются в стандартный цоколь типоразмера Е27 или даже Е14, что привело к широкому распространению энергосберегающих люминесцентных ламп обладающих большим разнообразием:

  • форм;
  • мощностей;
  • цветов и оттенков свечения.

Основными характеристиками электронного пускателя для люминесцентных ламп является допустимая мощность светильника и количество одновременно подключаемых источников. Некоторые типы имеют режим плавного пуска. При этом после нажатия клавиши включения освещения светильник загорается через время от одной до нескольких секунд.

В подобных устройствах за счет схемотехнических решений разряд резонансного конденсатора происходит только после полного прогрева нитей накаливания. Лампы, включаемые через такой пускатель меньше изнашиваются, поэтому срок их службы возрастает.

Некоторые модели дешевых пускорегулирующих аппаратов имеют низкое качество изготовления. Особенно это касается параметров электролитического конденсатора фильтра. Малая емкость приводит к заметным пульсациям света, а низкое граничное напряжение увеличивает вероятность выхода конденсатора из строя.

Очень опасны модели, в которых мощные ключевые транзисторы крепятся радиатором к металлическому корпусу устройства через пластиковую изоляцию. Через некоторое время работы пластик под действием нагрева транзистора деформируется и радиатор замыкается на корпус.

Прикосновение к такому блоку во время его работы приводит к удару электрическим током.

В начало

ЭПРА ДЛЯ СВЕТОДИОДНЫХ СВЕТИЛЬНИКОВ И ПАНЕЛЕЙ

Сразу следует заметить, что пускорегулирующая аппаратура для светодиодных ламп и других LED источников света не существует! Как бы не утверждали продавцы магазина или консультанты в интернет-сервисах, это свидетельствует лишь о их некомпетентности.

Светодиодные источники света в пусковых устройствах типа ЭПРА не нуждаются. Необходим источник постоянного напряжения, а в идеальном варианте – стабилизатор тока.

Такие устройства называются драйверами. Они формируют напряжение на выходных клеммах в соответствии с подключаемым источником света и ограничивают или стабилизируют значение выходного тока в определенных пределах.

Дело в том, что светодиоды нормально функционируют только в узком диапазоне протекающего через них тока. Меньшее значение снижает яркость, а высокое вызывает резкое снижение срока службы вплоть до мгновенного перегорания излучающего диода. Светодиод, как полупроводниковый элемент, обладает ярко выраженной зависимостью величины сопротивления от температуры, поэтому ее изменение всего на несколько градусов способно вызвать критический рост тока.

Чем отличается стабилизатор напряжения от стабилизатора тока?

Если выразить простыми словами, то стабилизатор напряжения имеет на выходе стабильное напряжение при том, что ток потребления подключенных устройств может меняться в широких пределах.

Иная ситуация в случае стабилизатора тока. Здесь обеспечивается стабильное значение тока при различных сопротивлениях нагрузки. При этом значение напряжения стабилизатора может изменяться в достаточно широком диапазоне.

Данная характеристика накладывает ограничение на совместимость устройств различных типов. К источнику тока нельзя подключать светодиодные светильники иной мощности, чем той, что указана в спецификации. Нельзя подключать параллельно несколько ламп. В крайнем случае возможно последовательное подключение, но это если позволяет диапазон выходных напряжений.

Пример.

Драйвер (именно так именуется в настоящее время стабилизатор тока) рассчитан на выходной ток 100 мА и 12 - 24 В выходного напряжения. Можно подключать:

  • светодиодную лампу 100 мА 12 В или 100 мА 24 В;
  • две лампы 100 мА 12 В, соединенные последовательно;
  • две лампы 50 мА 12 – 24 В, соединенные параллельно.

Схема драйвера может быть выполнена быть выполнена как на основе трансформатора, так и при помощи инвертора, что в настоящее время составляет подавляющее большинство устройств. Драйверы с изменяемым значением выходного тока используются для регулировки яркости LED светильников.

Большинство компактных ламп выпускаются со встроенными драйверами, освобождая покупателя от мук выбора. Использование отдельных драйверов необходимо только в случае использования светодиодных лент или изготовления светильников из отдельных светодиодов или матриц.

Приобретая светодиодные панели с фиксированными размерами, желательно сразу же рассчитывать на драйвер с рекомендуемыми параметрами.

В начало

© 2012-2018 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

eltechbook.ru


Каталог товаров
    .