интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Коридорный выключатель. Выключатель коридорный схема


Коридорный выключатель

В электропроводке освещения длинных коридоров, лестничных маршев, подъездов, длинных ангаров и в других местах где необходимо включать и выключать свет из двух (вход и выход, начало и конец коридора) и более мест, обычно применяют так называемые коридорные переключатели. Устанавливают их в разных концах коридора. Схема известна любому электрику, а для изменения состояния освещения (включено, выключено) переключатель нужно переключать в противоположное бывшему положению. Такая схема требует прокладки к выключателям трех проводов вместо двух, и это только если управлять освещением нужно из двух мест. Если мест управления должно быть больше - три, четыре, то не только проводка усложняется в геометрической профессии, но и усложняется сам процесс управления, так как уже нужно выбирать не из двух, а из трех, четырех положений ручки переключателя.

В этом случае хорошим выходом из положения может быть электронный выключатель на основе D-триггера, состояние которого можно изменять кнопкой без фиксации. Причем число кнопок совершенно неограниченно. Кнопки подключаются параллельно к одной маломощной двухпроводной линии, в любом ее месте и в любом количестве. Нажатие любой из этих кнопок приводит к изменению состояния освещения (включено, выключено).

На рисунке 1 показана схема первого варианта коридорного выключателя - с одной лампой.

Коридорный выключатель

Рис. 1

Напряжение от сети поступает на схему. При включении питания (например, включении рубильника в щитке) на ИМС D1 поступает напряжение питания, равное 12 В. Это напряжение вырабатывается с помощью простейшего бестрансформаторного источника постоянного тока. Напряжение от сети выпрямляется диодом VD4 и одним из диодов выпрямительного моста VD5...VD8. Резистор R5 со стабилитроном VD1 образует параметрический стабилизатор, понижающий и стабилизирующий напряжение на уровне12 В. Конденсатор С3 сглаживает пульсации. При поступлении питания зарядка С1 через R2 создает импульс, устанавливающий триггер в нулевое состояние. Напряжение, поступающее на затвор VT1, равно нулю, сам транзистор закрыт и лампа Н1 не горит.

Чтобы включить лампу нужно изменить состояние D-триггера на противоположное. Для этого нажимаем и отпускаем кнопку S1 (или любую из числа S1-SN). Так создаем на входе. С импульс, который устанавливает триггер в то состояние, которое есть на его входе D. Так как D соединен с инверсным выходом, на нем уровень противоположный тому, что подается на затвор полевого транзистора. В результате уровень на прям выходе D1 меняется с каждым нажатием кнопки. Когда на прямом выходе D1 единица транзистор VT1 открывается и включает лампу.

Триггер на микросхеме срабатывает очень быстро, а любая кнопка хоть сколько-то, но дребезжит. Поэтому, при нажатии кнопки триггер может установиться в любое случайное положение, так как одно нажатие дает не только один основной импульс, но и массу коротких импульсов от дребезга. Так вот чтобы подавить сбои от дребезга введена цепочка C2-R3. Она не позволяет состоянию на входе D триггера меняться слишком быстро. Поэтому, сколько бы паразитных импульсов не сгенерировала дребезжащая кнопка, но если они короче постоянной времени этой цепи, изменение состояния будет только одно. Резистор R4 разгружает выход триггера от влияния тока зарядки емкости затвора мощного полевого транзистора. Диоды VD2 и VD3 ускоряют разрядку емкости затвора и подавляют выбросы напряжения которые могут быть на емкости затвора.

Схема по рисунку 1 управляет толькоодной лампой (или одной цепью освещения, состоящей из нескольких ламп). Это не всегда удобно, в случаях с очень большой длинойпомещения желательно сделать две группы ламп, которыми можно было бы управлять из любой точки помещения, соответственно установив кнопки в этих точках

На рисунке 2 показана схема коридорного выключателя, работающего с двумялампами (или двумя цепями освещения, состоящими из нескольких ламп). Здесь используется второй триггер микросхемы К561ТМ2, который в первой схеме не задействован. Он включается последовательно первому триггеру образуя двухразрядный двоичный счетчик, отличающийся от "типового" только наличием цепи задержки R3-C2 в первом триггерном звене. Теперь состояние выходов триггеров будет меняться соответственно двоичному коду.

Коридорный выключатель

Рис. 2

При включении питания оба триггера устанавливаются в нулевое состояние, чтобы это происходило вход R второго триггера соединен с таким же входом первого. Теперь цепь C1-R2 действует на оба триггера, обнуляя их при подаче питания.

С первым нажатием кнопки в единичное состояние устанавливается триггер D1.1 -включается лампа Н1. Если еще раз нажать кнопку состояние триггера D1.1 изменится, и лампа h2 погаснет, но вместе с этим произойдет изменение состояния второго триггера D1.2 - на его прямом выходе установится логическая единица и откроется транзистор VT2, который включит лампу Н2.

С третьим нажатием кнопки двоичный счетчик перейдет в состояние "3", единицы будут на прямых выходах обоих триггеров и гореть будут обе лампы. А с четвертым нажатием обе лампы погаснут.

Больше отличий в схеме нет.

С использованием транзисторов IRF840 и диодов 1N4007 в выпрямительных мостах мощность каждой лампы или каждой цепиосвещения, если она состоит из нескольких ламп, не должна превышать 200 Вт. Если нагрузки более мощные, это потребует замены диодов 1N4007 в мостах на диоды соответствующей нагрузке мощности. Плюс, полевые транзисторы нужно будет поставить на радиаторы. Вообще, IRF840 в этой схеме могут управлять нагрузками мощностью до 2000 Вт, но только с радиаторами, а при мощности нагрузки до 200W вследствие низкого сопротивления в открытом состоянии на самих транзисторах падает мощность весьма незначительная, поэтому и радиаторы при работе с нагрузками до 200 Вт им не требуются.

Диоды 1N4148 можно заменить практически любыми диодами, например, КД521, КД522 КД102, КД103.

Диоды 1N4007 можно заменить любыми выпрямительными диодами, на напряжение не ниже 400 В и по току соответственно мощности нагрузки. Например, при нагрузке не более 120 ватт можно использовать диоды КД209.

Стабилитрон Д814Д можно заменить любым стабилитроном на 11...13 В. Желательно использовать стабилитрон средней мощности или в металлическом корпусе. Вообще нужно учесть что при обрыве стабилитрона 220 В пойдет на всю схему (микросхему, затворы транзисторов), что ее практически полностью уничтожит, поэтому надежность стабилитрона имеет большое значение.

Автор:Саньков Е.М.

shema.info

Электронный проходной выключатель - Каталог статей - Каталог статей

Электронный проходной выключательКоридорный выключатель очень хорошо знаком электрикам старшего поколения. Сейчас подобное устройство несколько забыто, поэтому придется вкратце рассказать об алгоритме его действия.

Представьте, что Вы выходите из комнаты в коридор, в котором нет окон. Около двери щелкаете выключателем, и в коридоре загорается свет. Этот выключатель условно назовем первым.

Дойдя до противоположного конца коридора, перед выходом на улицу Вы гасите свет вторым выключателем, расположенным около выходной двери. Если в комнате еще кто-то остался, то он также может при выходе включить свет первым выключателем, и с помощью второго выключить. При заходе в коридор с улицы свет включается вторым выключателем, а уже в комнате выключается первым.

Хотя все устройство в целом называется выключателем, для его изготовления потребуются два переключателя с перекидным контактом. Обычные выключатели здесь не подойдут. Схема такого коридорного выключателя показана на рисунке 1.

Коридорный выключатель с двумя переключателями

Рисунок 1. Коридорный выключатель с двумя переключателями.

Как видно из рисунка схема достаточно проста. Лампочка будет светить в том случае, если оба переключателя S1 и S2 замкнуты на один и тот же провод, или верхний, или нижний, как показано на схеме. В противном случае лампа погашена.

Для управления одним источником света из трех мест, не обязательно одной лампочкой, это может быть несколько светильников под потолком, схема уже другая. Она показана на рисунке 2.

Коридорный выключатель с тремя переключателями

Рисунок 2. Коридорный выключатель с тремя переключателями.

По сравнению с первой схемой, эта схема несколько сложнее. В ней появился новый элемент – переключатель S3, который содержит две группы переключающих контактов. В положении контактов, указанном на схеме, лампа включена, хотя обычно указывается положение, при котором потребитель выключен. Но при таком начертании, легче проследить путь тока через выключатели. Если теперь любой из них перевести в положение противоположное указанному на схеме, то лампа выключится.

Чтобы проследить путь тока при других вариантах положения переключателей, достаточно просто поводить по схеме пальцем и мысленно перевести их во все возможные положения. Обычно такой способ позволяет разобраться и с более сложными схемами. Поэтому длинного и скучного описания работы схемы здесь не приводится.

Такая схема позволяет управлять освещением из трех мест. Она может найти применение в коридоре, в который выходят две двери. Конечно, можно возразить, что в этом случае проще поставить современный датчик движения, который даже следит за тем, день сейчас или ночь. Поэтому днем освещение включаться не будет. Но в некоторых случаях такая автоматика просто не поможет.

Представьте себе, что такой тройной выключатель установлен в комнате. Одна клавиша расположена у входной двери, другая над письменным столом, а третья около кровати. Ведь автоматика может включить свет, когда вы просто во сне перевернетесь с боку на бок. Можно найти еще немало условий, где необходима именно схема без автоматики. Такие выключатели называют также проходными, а не только коридорными.

Теоретически такой проходной выключатель можно сделать и с большим количеством переключателей, но это значительно усложнит схему, потребуются переключатели все с большим количеством контактных групп. Уже даже всего пять переключателей сделают схему неудобной для монтажа и просто понимания принципов ее работы.

А если такой выключатель потребуется для коридора, в который выходит десять, а то и двадцать комнат? Ситуация достаточно реальная. Таких коридоров достаточно в провинциальных гостиницах, студенческих и заводских общежитиях. Как же быть в этом случае?

Вот тут на помощь придет электроника. Ведь как работает такой проходной выключатель? На одну клавишу нажали - свет включился, и горит до тех пор, пока не нажали на другую. Такой алгоритм работы напоминает работу электронного устройства – триггера. Более подробно о различных триггерах можно почитать в цикле статей «Логические микросхемы. Часть 8».

Если просто стоять и нажимать на одну и ту же клавишу, то лампочка будет поочередно включаться и гаснуть. Такой режим похож на работу триггера в счетном режиме – с приходом каждого управляющего импульса состояние триггера меняется на противоположное.

При этом в первую очередь следует обратить внимание на то, что при использовании триггера клавиши не должны иметь фиксации: достаточно просто кнопок, наподобие звонковых. Для подсоединения такой кнопки потребуется всего два провода, причем не очень даже и толстых.

А если параллельно одной кнопке подключить еще одну, то получится проходной выключатель с двумя кнопками. Ничего не меняя в принципиальной схеме, можно подключить пять, десять и более кнопок. Схема с использованием триггера К561ТМ2 показана на рисунке 3.

Проходной выключатель на триггере К561ТМ2

Рисунок 3. Проходной выключатель на триггере К561ТМ2.

Триггер включен в счетном режиме. Для этого его инверсный выход подключен к входу D. Это стандартное включение, при котором каждый входной импульс по входу C изменяет состояние триггера на противоположное.

Входные импульсы получаются при нажатии кнопок S1…Sn. Цепочка R2C2 предназначена подавления дребезга контактов, и формирования одиночного импульса. При нажатии на кнопку происходит заряд конденсатора C2. При отпускании кнопки конденсатор разряжается через C – вход триггера, формируя входной импульс. Таким образом обеспечивается четкая работа всего переключателя в целом.

Цепочка R1C1, подключенная к входу R триггера обеспечивает сброс при начальном включении питания. Если этого сброса не требуется, то R – вход следует просто подключить к общему проводу питания. Если его оставить просто «в воздухе», то триггер воспримет это как высокий уровень и будет все время находиться в нулевом состоянии. Поскольку RS – входы триггера являются приоритетными, подача импульсов на вход C состояния триггера менять не сможет, вся схема окажется заторможенной, неработоспособной.

К прямому выходу триггера подключается выходной каскад, управляющий нагрузкой. Самый простой и надежный вариант это реле и транзистор, как показано на схеме. Параллельно катушке реле подключен диод D1, назначение которого уберечь выходной транзистор от напряжения самоиндукции при выключении реле Rel1.

Микросхема К561ТМ2 в одном корпусе содержит два триггера, один из которых не используется. Поэтому входные контакты незадействованного триггера следует соединить с общим проводом. Это контакты 8, 9, 10 и 11. Такое подключение предотвратит выход микросхемы из строя под воздействием статического электричества. Для микросхем структуры КМОП такое соединение всегда обязательно. Питающее напряжение +12В следует подать на 14 вывод микросхемы, а 7 вывод соединить с общим проводом питания.

В качестве транзистора VT1 можно применить КТ815Г, диод D1 типа 1N4007. Реле малогабаритное с катушкой на 12В. Рабочий ток контактов выбирается в зависимости от мощности светильника, хотя может быть и любая другая нагрузка. Здесь лучше всего использовать импортные реле типа TIANBO или им подобные.

Источник питания показан на рисунке 4.

Источник питания

Рисунок 4. Источник питания.

Источник питания выполнен по трансформаторной схеме с использованием интегрального стабилизатора 7812, обеспечивающего на выходе постоянное напряжение 12В. В качестве сетевого трансформатора используется трансформатор мощностью не более 5…10 Вт с напряжением вторичной обмотки 14…17В. Диодный мост Br1 можно применить типа КЦ407, либо собрать из диодов 1N4007, которые в настоящее время очень распространены.

Электролитические конденсаторы импортные типа JAMICON или подобные. Их теперь также проще купить, чем детали отечественного производства. Хотя стабилизатор 7812 имеет встроенную защиту от коротких замыканий, но все равно перед включением устройства следует убедиться в правильности монтажа. Это правило забывать не следует никогда.

Источник питания, выполненный по указанной схеме, обеспечивает гальваническую развязку от осветительной сети, что позволяет применять данное устройство в сырых помещениях, таких как погреба и подвалы. Если такого требования не предъявляется, то источник питания можно собрать по бестрансформаторной схеме, подобно той, которая показана на рисунке 5.

Бестрансформаторный источник питания

Рисунок 5. Бестрансформаторный источник питания.

Такая схема позволяет отказаться от использования трансформатора, что в ряде случаев достаточно удобно и практично. Правда кнопки, да и вся конструкция в целом, будут иметь гальваническую связь с осветительной сетью. Об этом не следует забывать, и соблюдать правила техники безопасности.

Выпрямленное сетевое напряжение через балластный резистор R3 подается на стабилитрон VD1 и ограничивается на уровне 12В. Пульсации напряжения сглаживаются электролитическим конденсатором C1. Нагрузка включается транзистором VT1. При этом резистор R4 подключается к прямому выходу триггера (вывод 1), как показано на рисунке 3.

Собранная из исправных деталей схема не требует налаживания, начинает работать сразу.

www.electromontag-pro.ru

Электронный коридорный переключатель - RadioRadar

Светотехника

Главная  Радиолюбителю  Светотехника

Задача управления светом в длинном коридоре обычно решается установкой механических коридорных переключателей. Схема их установки известна любому электрику, - она позволяет включить свет одним переключателем, а выключить его другим. Таким образом получается два места управления одной лампой (или одной цепью ламп). Но, в некоторых случаях требуется не два места управления (вход и выход), а значительно больше. Например, в условиях подъезда многоквартирного дома желательно чтобы всей цепью осветительных ламп, установленных на лестничных площадках можно было управлять с каждой лестничной площадки.

Или в условиях протяженного и разветвленного коридора с большим числом входов-выходов. В этих случаях механическими коридорными переключателями не обойтись.

Либо схема проводки получится просто-таки фантастической, а каждый коридорный переключатель должен будет быть с числом положений, равным числу точек управления (например, 12 для подъезда 12-этажного дома).

В таком случае лучше сделать электронную схему, вроде той что показана на рисунке 1, в которой каждый пункт управления состоит из двух кнопок без фиксации. Все эти пункты управления равноправны и их количество практически ни чем не ограничено (все подключаются параллельно к трехпроводной шине).

Электронная схема переключателя

Рис. 1. Электронная схема переключателя

Схема очень проста и функциональна. Трехпроводная шина управления прокладывается так чтобы пройти через все точки управления. Если это многоэтажный дом, то шина прокладывается, соответственно, снизу вверх. На каждой лестничной клетке к ней подключается по одному органу управления, состоящему из двух кнопок S1 и S2.

Основной блок располагается в самом низу, - на первом этаже, где был расположен механический выключатель света в подъезде.

Кнопка группы S1 служит для включения света, а кнопка S2 - для его выключения. Они подключаются к входам инверсного RS-триггера образованного элементами D1.2 и D1.3 микросхемы D1. При нажатии на S1 напряжение логического нуля поступает на вывод 13 D1.2. Триггер устанавливается в состояние логической единицы на выходе элемента D1.2. Далее этот уровень через буферный каскад на элементах D1.1 и D1.4 (этот каскад снижает влияние затворной цепи полевого транзистора на работу RS-триггера) поступает на затвор высоковольтного полевого транзистора VT1 типа BUZ90A. Резистор R3 снижает бросок тока включения / выключения полевого транзистора, вызванного значительной емкостью затвора. При логической единице на выходе D1.4 открывается полевой транзистор VT1 и включает лампу Н1.

Мощность лампы может быть до 200W при работе транзистора без теплоотвода. Возможна мощность нагрузки до 2000 W, но это, во-первых, потребует замены диодов выпрямительного моста VD2-VD5 диодами соответствующей мощности, а во-вторых, полевой транзистор нужно будет установить на достаточно эффективный радиатор. Нижний порог мощности нагрузки отсутствует, - ключевой полевой транзистор в отличие от тиристора может быть открыт даже при самом минимальном токе нагрузки.

Чтобы выключить лампу нажимают кнопку S2. При этом на вывод 8 D1.3 поступает напряжение логического нуля. Триггер D1.2-D1.3 переключается в состояние логического нуля на выходе элемента D1.2. Соответственно на выходе D1.4 тоже будет ноль. Полевой транзистор закрывается и выключает лампу.

Как уже сказано, блоков управления, состоящих из двух кнопок может быть практически неограниченное количество. Все они подключаются к трехпроводной шине управления точно так же, как показанный на схеме один блок управления. Кноки в блоках управления должны быть без фиксации. Можно использовать обычные тумблерные или домофонные кнопки, установив по две штуки в подходящие корпуса. В качестве корпуса можно использовать доработанный стандартный выключатель для внешней проводки с широкой клавишей. Его разбирают и удаляют контакты и механизм кнопки. Клавишу используют как фальшпанель для установки двух тумблерных кнопок. Сверлят в ней два отверстия для установки тумблерных кнопок и еще два отверстия по углам для привинчивания клавиши к основанию выключателя.

Возможен и другой вариант конструкции, например, в качестве корпуса можно использовать телефонную евророзетку для внешней проводки удалив из неё телефонный разъем.

Чтобы выключатель автоматически устанавливался в выключенное положение после перебоя в электропитании нужно параллельно любой из кнопок S2 включить конденсатор емкостью 0,047 - 0,47 мкФ. Конденсатор можно подключить в любом из блоков управления или непосредственно на плате основного блока - между выводом 8 D1.3 и общим минусом питания.

Микросхема питается от параметрического стабилизатора на стабилитроне VD1.

Диоды VD2-VD5 должны быть выбраны соответственно мощности нагрузки и на обратное напряжение не ниже 300V. Стабилитрон Д814Д нужен в металлическом корпусе. Его можно заменить на КД512 или какой-то импортный средней мощности. Использовать КД212 или Д814Д-1 в стеклянном корпусе не желательно, так как это сильно снижает надежность схемы. Обрыв стабилитрона приведет к выходу из строя микросхемы и, может быть, полевого транзистора, так как при этом на микросхему поступает недопустимо повышенное напряжение питания. В принципе, для повышения надежности можно взять два одинаковых стабилитрона и включить их параллельно соблюдая полярность.

Полевой транзистор BUZ90A можно заменить на IRF840 или КП707В2. При мощности нагрузки до 200W он работает без радиатора.

Микросхему К561ЛА7 можно заменить на К176ЛА7 или CD4011.

Конденсатор С1 должен быть на напряжение не ниже 16V.

Все, кроме блоков управления и лампы, расположено на одной печатной плате с односторонними печатными дорожками. Схема и разводка платы приводится на рис.2.

Схема и разводка платы

Рис. 2. Схема и разводка платы

В качестве основы автор использовал другую свою разработку (Л.1). Печатная плата (рис.2.) сделана на основе платы устройства из Л.1, в разводку которой внесены необходимые изменения.

При исправных деталях и безошибочном монтаже никакого налаживания не требуется, - устройство работает сразу же после первого включения.

Автор: Лыжин Р.

Литература:

1. Лыжин Р. Автоматический выключатель лампы в туалете. ж. Радиоконструктор №4 за 2009 год.

Дата публикации: 16.10.2015

Мнения читателей
  • vs-63 / 18.10.2015 - 17:38Автору видимо не известно что схема управления светом с разных точек решается с помощью трехпроводного кабеля или трех отдельных проводов , установив в конце линии перекидные выключатели , а в промежуточных точках проходные и не о каких двенадцати положениях и контактах речи не идет, людей пугать не надо ,а так это тригерная схема и она имеет право на жизнь ,например в качестве части схемы релейной или технологической защиты(управления) по каким либо технологическим контактам . .

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:

www.radioradar.net


Каталог товаров
    .