Самый простейший ионизатор воздуха, предназначенный для автомобилей, можно смастерить своими руками, не вкладывая в это практически никаких денежных средств. Все, что вам потребуется – это детали старой ненужной аппаратуры. Принцип работы устройства основывается на высоковольтном преобразователе напряжения, который будет работать по схеме блокинг-генератора. Как собрать ионизатор своими руками? Схема преобразователя является простой и доступной, в ее состав входит один-единственный активный элемент – транзистор. Выбор транзистора не важен. Можно использовать различные модели, начиная от прямых транзисторов серии КТ818 и заканчивая транзисторами обратной проводимости, например, КТ819. Использовать можно и аналоги перечисленных выше моделей, но при этом придется немного изменить схему и поменять полярность питания. При воплощении схемы желательно устанавливать транзистор на теплоотвод. Диапазон работы схемы инвертора довольно широк, работать устройство начинает уже от одного вольта входного напряжения. В качестве умножителя следует использовать такие диоды как КЦ106 или же подобные ему аналоги, выбор конденсатора не критичен, главное обращать внимание на то, что у конденсатора рабочее напряжение должно быть выше трех кВ (идеал – 6кВ), а его емкость должна варьироваться в пределах 500-4700пкФ. Трансформатор высоковольтного типа мотается на сердечнике Б30, размер и форма сердечника значения не имеют. Первая обмотка состоит из 2х30 витка провода. Сечение провода должно быть 0,75мм, но можно также использовать и провод 0,65мм и 1мм. Поверх первой обмотки необходимо уложить изоляцию, которая сделана из фторопласта или любого другого изоляционного материала, затем начинаем делать вторую обмотку. Делать обмотку лучше всего по слоям, каждый слой должен состоять из ста витков (при проводе 0,05мм). Для того чтобы избежать межслойных пробоев, необходимо каждый слой изолировать с особой тщательностью. После того как трансформатор будет готов, его желательно залить эпоксидной смолой. xn----7sbgjfsnhxbk7a.xn--p1ai Вы никогда раньше не интересовались, почему в маленьких помещениях так часто бывает душно. Всё потому что воздухом с преобладанием молекулярного газа дышать тяжелее, чем ионизированным кислородом. А в закрытых помещениях ионов воздуха в 10 – 15 раз меньше, чем на открытом воздухе. К тому же любые электрические приборы поглощают отрицательно заряженные частицы из воздуха. Ну, а через системы вентиляции и отопления автомобилей проходит и вовсе мёртвый воздух. Возможно, из-за воздуха лишённого ионов кислорода, вас за рулём машины так часто и клонит в сон. Впрочем, есть смысл подумать, об установке прибора для ионизации воздуха в любом случае. Поскольку, вдыхая богатый ионами воздух, можно делать профилактику болезней дыхательных путей, кроветворных органов и сердечно-сосудистой системы. Ещё одна, немало важная, польза от ионизатора заключается в том, что он достаточно хорошо устраняет неприятные запахи. Поэтому, если в салоне машины кто-то курит, то и в этом случае пригодится ионизатор, он же быстро удаляет зловоние от табачного дыма. Хватит рассуждать, пора приступать к делу. Ведь ионизатор имеет совсем простую конструкцию, и его не сложно собрать самому. Для сборки самоделки понадобятся доступные детали, которые можно найти дома или дёшево купить. Прибор, который мы будем собирать, состоит из трёх отдельных частей. Теперь нужно посмотреть, как отдельные части ионизатора соединены вместе на схеме, и узнать какие запчасти понадобятся для его сборки. Импульсный генератор собран на микросхеме интегрального таймера NE555, которая стоит всего 0,3 – 0,5 доллара. Микросхема имеет два режима работы: высокоточный таймер и генератор прямоугольных импульсов. В данной схеме она подключена для работы во втором режиме. Все подключённые до микросхемы резисторы (R2 на 1 кОм и R3 около 3 кОм), конденсаторы (C1 на 10 пФ и C2 около 3 пФ) образуют времязадающую RC-цепочку. Резистор R1 на 5 – 10 Ом ограничивает ток на затвор полевого транзистора IRL3705. Повышая ёмкости конденсаторов или уменьшая сопротивления резисторов RC-цепочки можно уменьшить частоту работы генератора, и наоборот. Хотя это не так важно для работы ионизатора. Гораздо важнее подобрать полевой транзистор. Так как собираемый генератор является однотактным, то вся нагрузка ложится на один ключ – транзистор. Поэтому мало того, что транзистор должен быть подобран достаточной мощности (свыше 70 Вт), а также его потребуется закрепить на теплоотводе – радиаторе. Повышающий трансформатор должен иметь первичную обмотку с 7 – 8 витками провода диаметром 0,8 мм, и вторичную обмотку с 700 – 800 витками провода диаметром не меньше 0,1 мм. Низковольтную первичную обмотку трансформатора совсем просто намотать виток к витку, а высоковольтную придётся постараться уложить равномерно слоями по 70 – 80 витков. Также между слоями вторичной обмотки желательно прокладывать обмоточную изоляцию. Сердечник повышающего трансформатора должен быть сделан из феррита, потому что трансформатор работает в импульсном режиме. Но, достать магнитопровод из такого материала совсем не сложно, поскольку маленькие трансформаторы, намотанные на ферритовом стержне, можно найти в старых блоках питания компьютера. Также они установлены в цоколях КЛЛ (экономных лампах), да и в другой импульсной аппаратуре, которая заселила сегодня каждый дом. Умножитель напряжения, в нашем случае, четырёхкратно увеличивает напряжение с вторичной обмотки трансформатора. Собирается эта часть схемы из высоковольтных диодов и неполярных конденсаторов. Диоды можно купить, а можно забрать КЦ106 из умножителя напряжения строчной развёртки отечественного телевизора, или найти импортные 2CL72, 2CL73, R4000, R5000 в других умножителях. Конденсаторы нужно найти на рабочее напряжение свыше 3 кВ, и одинаковыми ёмкостями от 470 до 3300 пФ. Оптимально подойдут конденсаторы ёмкостями по 2200 пФ, и на напряжение 5 кВ или 6,3 кВ. Собранный умножитель желательно залить эпоксидной смолой или свечным стеарином (парафином), чтобы избежать пробоя при близком расположении к другим частям ионизатора. Концы проводочков, выходящие из умножителя, можно припаять к двум металлическим сеткам расположенным друг от друга на небольшом расстоянии, или просто залудив их, развести на расстояние 2 – 3 мм. После соединения всех элементов схемы ионизатора вместе, готовый прибор необходимо поместить в пластмассовую трубку подходящего диаметра. Эта трубка-ионизатор в салоне машины будет лежать на боку, в удобном месте. Главное чтобы хватило длины выведенных наружу проводов для подключения прибора к сети питания машины. Автор: Виталий Петрович. volt-index.ru Схема ионизатора воздуха из строчника Данная схема люстры чижевского или иначе как говорят щас ионизатора воздуха, можно изготовить своими руками. В интернете полно схем однотипных, но в данной статье представлен ионизатор воздуха с вентилятором и выполнен из строчника(трансформатора строчной развертки) и обладает множествами плюсов, он быстрей ионизирует воздух засчет потока воздуха, и более безопасен так как разрядник находится внутри корпуса. Схема ионизатора воздуха класса HI FI Схема питается от сети с напряжением 220 В. Микросхема-драйвер IR2153 управляет силовыми транзисторами VT1 и VT2 поочередно включая и выключая их. Нагрузка полумоста – первичная обмотка трансформатора Т1 включается между выходом полумоста и средней точкой делителя напряжения образованного полярными конденсаторами C5 и C6. Для ограничения тока в первичной обмотке Т1 последовательно с ней включается индуктивный балласт L1. Балласт представляет собой 20 витков провода диаметром 0,5 мм намотанные на чашечном сердечника Ч36 (диаметр 36 мм) из феррита М2000НМ1, межу чашечками феррита обязательно с помощью плотного картона вводится немагнитнай зазор 0,5 мм. Рабочая частота полумоста задается цепочкой R2C3 и регулируется в пределах 30-80 кГц. Регулировка выходного высокого напряжения осуществляется подстройкой частоты с помощью резистора R2.1 : выходное напряжение с уменьшением частоты (с увеличением R2.1) возрастает.Импульсы высокого напряжения с вторичной обмотки трансформатора T1 поступают на вход умножителя на 4 собранного по симметричной схеме на диодах VD4-VD7 и конденсаторах С9-С11 . Выходное напряжение умножителя (10-12 кВ) подается на систему острий, представляющую собой многожильный медный провод, проводники которого разведены «зонтиком» и согнуты под прямым углом. Расстояние между остриями и корпусом – 12 мм. Один из выводов вторичной обмотки трансформатора заземляется (соединяется с корпусом). Для предотвращения возникновения высокой разности потенциалов между корпусом и остальными частями схемы введены резисторы R5-R7. Разрядник SG1 представляющий собой искровой промежуток длиной 5 мм предназначен для предотвращения пробоя вторичной обмотки трансформатора при регулировке выходного напряжения (резистором R2.1).Ионизатор вместе с системой острий помещается в металлический корпус компьютерного блока питания стандарта АТХ и поэтому электрическое поле высокой напряженности вблизи ионизатора отсутствует. Для создания потока воздуха, проходящего через систему острий, применяется вентилятор – кулер того же блока питания, ранее предназначенный для охлаждения. Для питания вентилятора (12 В, 0,13 А) применяется схема с реактивным емкостным сопротивлением (конденсаторы С7, С8, диодный мост VD2, стабилитрон VD3). Вид собранного ионизатора воздуха К сожалению печатной платы данного устройства предоставить не могу Смотрите еще одну схему интересного и подробно описанного ионизатора radiostroi.ru Зачем нужен ионизатор? Измерения показали, что воздух лесных массивов и лугов содержит от 700 до 1500, а иногда и до 15 000 отрицательных аэроионов в кубическом сантиметре. Чем больше аэроионов содержится в воздухе, тем он полезнее. В жилых же помещениях их число падает в 100 раз, что способствует быстрой утомляемости и даже заболеваниям. Увеличить насыщенность воздуха в помещении отрицательными аэроионами можно с помощью специального устройства — аэроионизатора. В 20-х годах профессором А. Л. Чижевским был разработан принцип искусственной аэроионизации и создана первая конструкция, впоследствии получившая название "Люстра Чижевского". В последствии, аэроионизаторы Чижевского прошли проверку в лабораториях, медицинских учреждениях, в школах и детских садах, в домашних условиях и показали высокую эффективность аэроионизации как профилактического и лечебного средства. Тут мы рассмотрим простейшую конструкцию люстры, собрать которую под силу даже начинающему радиолюбителю. Основные узлы устройства — электроэффлювиальная "люстра" и преобразователь напряжения. Электроэффлювиальная "люстра" — это генератор отрицательных аэроионов. С заостренных частей "люстры" с большой скоростью (обусловленной высоким напряжением) стекают электроны, которые затем "налипают" на молекулы кислорода. Возникшие таким образом аэроионы тоже обретают большую скорость. Основа "люстры" —легкий металлический обод (например, стандартное гимнастическое кольцо "хула-хуп") диаметром 750…1000 мм, на котором натягивают по взаимно перпендикулярным осям с шагом 35…45 мм оголенные или облуженные медные провода диаметром 0,6…1,0 мм. Они образуют часть сферы — сетку, провисающую вниз. В узлах сетки впаяны иглы длиной не более 50 мм и толщиной 0,25…0,5 мм. Желательно, чтобы они были максимально заточены, поскольку ток, поступающий с острия, увеличивается, а возможность образования побочного вредного продукта - озона уменьшается. К ободу "люстры" через 120° прикреплены три медных провода диаметром 1 мм, которые спаяны вместе над центром обода. К этой точке подводится высокое напряжение. За эту же точку "люстра" крепится с помощью рыболовной лески диаметром 0,5 мм к потолку или кронштейну на расстоянии не менее 150 мм. Высокое напряжение подаваемое на люстру, должно быть не менее 20 кВ. Только при таком напряжении обеспечивается достаточная "живучесть" аэроионов, обеспечивающая им проникновение в легкие человека. Во время положительного полупериода сетевого напряжения через резистор R1, диод VD1 и первичную обмотку трансформатора Т1 заряжается конденсатор С1. Тринистор VS1 при этом закрыт, поскольку отсутствует ток через его управляющий электрод (падение напряжения на диоде VD2 в прямом направлении мало по сравнению с напряжением, необходимым для откры-вания тринистора). При отрицательном полупериоде диоды VD1 и VD2 закрываются. На катоде тринистора образуется падение напряжения относительно управляющего электрода (минус — на катоде, плюс — на управляющем электроде), в цепи управляющего электрода появляется ток и тринистор открывается. В этот момент конденсатор С1 разряжается через первичную обмотку трансформатора. Во вторичной обмотке появляется импульс высокого напряжения (трансформатор повышающий). И так — каждый период сетевого напряжения. Импульсы высокого напряжения (они двусторонние, поскольку при разрядке конденсатора в цепи первичной обмотки возникают затухающие колебания) выпрямляются выпрямителем, собранным по схеме умножения напряжения на диодах VD3–VD6. Постоянное напряжение с выхода выпрямителя поступает (через ограничительный резистор R3) на "люстру". Трансформатор Т1 — катушка зажигания Б2Б (на 6 В) от мотоцикла, но можно использовать и другую, например от автомобиля. Возможно применение в ионизаторе телевизионного трансформатора строчной развертки ТВС-110Л6, вывод 3 которого соединяют с конденсатором С1, выводы 2 и 4 — с "общим" проводом (управляющий электрод тиристора и другие детали), а высоковольтный провод — с конденсатором СЗ и диодом VD3. Аэроионизатор не нуждается в налаживании и начинает работать сразу после включения в сеть. Изменять постоянное напряжение на выходе аэроионизатора можно подбором резистора R1 или конденсатора С1. Для некоторых экземпляров тиристоров иногда нужно подобрать резистор R2 по моменту открывания его при минимальном сетевом напряжении. Как убедиться в нормальной работе аэроионизатора? Простейший индикатор — вата. Небольшой кусочек ее притягивается к "люстре" с расстояния 50 см. Поднеся руку к остриям игл, уже на расстоянии 10 см ощутите холодок, что укажет на исправность ионизатора. На фотографиях в тексте показан один из возможных вариантов компактного исполнения ионизатора, где ионы истекают с металличческой заострённой пластинки. Стоит заметить, что эффективность такого метода ниже, чем полноразмерной люстры, но если она установлена возле вашего рабочего места – пойдёт и так. Конструкцию испытал: феска. В отличие от другого зарядного устройства, данное усовершенствованное зарядное устройство обеспечивает автоматическое поддержание аккумуляторной батареи в рабочем состоянии не давая ей разряжаться ниже установленного уровня. Описанный цикл работы устройства позволяет использовать eгo для автоматической тренировки аккумуляторных батарей циклами «заряд - разряд» при подключении к нему параллельно аккумуляторной батарее разрядного резистора. Устройство предназначено для зарядки литиевых аккумуляторов от мобильных телефонов. Достаточно простая конструкция обеспечивает правильную зарядку аккумулятора. Имеет светодиодный индикатор заряда. Как и на какой диапазон можно самому сделать простейший радиопередатчик - схема и фото собранного трансмиттера на одном транзисторе. Преобразователь цифрового сигнала компьютера, снимаемого с USB, обычный аналоговый НЧ. На основе зарядного устройства несложно изготовить лабораторный источник питания с регулировкой выходного напряжения от 0 до 30 В и порогом ограничения тока от 0,1 до 10 А. samodelnie.ru Схема ионизатора воздуха из мастер кит Такой несложный ионизатор я привожу в сегодняшний праздник вербное воскресение. Как и в любом ионизаторе, или как говорят еще люстра чижевского, в схеме является основой высокое напряжение. Смоделирован ионизатор на основе набора мастер кит NK292 Схема ионизатор Как видим, схема состоит из блокинг генератора. Блокинг-генератор выполнен на транзисторе Т и высоковольтном трансформаторе TR. Умножитель напряжения состоит из элементов схемы D1 — D2; C4 — C5. Сопротивление R2 служит для ограничения до 200 мкА тока короткого замыкания. Рассмотрим работу устройства на модели в программе EWB. Наличие в схеме трехобмоточного высоковольтного импульсного трансформатора создает определенные трудности в создании виртуальной модели. Поэтому смоделируем работу устройства поблочно: вначале создадим модель блокинг-генератора, а затем умножителя напряжения. В качестве трансформатора TR в этой части модели будем использовать идеальный трансформатор Ideal Transformer из раздела Basic (рис. 2). Свойства трансформатора выберем в соответствии рекомендациями, которые были даны ранее при описании модели преобразователя постоянного напряжения “Мастер КИТ” NK131. Конкретно, на рис. 3 показано окно выбора параметров трансформатора. Остальные компоненты выбираем в соответствии описанием набора, за исключением транзистора, поскольку в библиотеке программы отсутствует модель типа BD135. Для наблюдения процесса генерации, схема дополнена двухканальным осциллоскопом. Развернув лицевую панель осциллоскопа и выполнив на ней необходимые предустановки, после включения моделирования, получим характерную картину генерации импульсов (рис. 4). Здесь верхний луч (канал А) регистрирует импульсы на базе транзистора, а нижний (канал В) – на его коллекторе. Собственно вот этот характерный вид импульсов и заложен в название генератора: блокинг-генератор – это такой однокаскадный релаксационный генератор, в котором положительная обратная связь входной и выходной цепей обеспечивается за использования импульсного трансформатора. Импульсный трансформатор имеет не насыщающийся магнитопровод (“сердечник”). В катушке Румкорфа и автомобильной бобине – это разомкнутый магнитопровод из стальной проволоки, в генераторах строчной и кадровой разверсток телевизионных приемников специальные типы ферритов. Автоколебательный процесс заряда и разряда конденсаторов в цепи базы транзистора сопровождается периодическим отпиранием транзистора и его переводом в активный режим, что приводит в свою очередь к приращению коллекторного тока до его насыщения. Этот ток за счет трансформаторной связи (при определенной фазировке обмоток) в свою очередь приводит к приращению базового тока. Процесс переключения транзистора развивается лавинообразно и формирует фронт импульса и его вершину (прямой блокинг-процесс). Затем начинает формироваться срез импульса (обратный блокинг-процесс). Транзистор лавинообразно запирается, и начинается сравнительно длительное восстановление начальных условий. Меняя в виртуальной схеме (рис. 2) параметры RC-цепей (R1, [R], R2, C2 и C3), можно пронаблюдать изменение характеристик генерируемых импульсов на осциллоскопе. Здесь, правда, необходимо отметить, что схемы автогенераторов при моделировании на ПК ведут себя неустойчиво, что связано с линеаризацией исходных нелинейных систем, и зачастую требуют кропотливой настройки. Модель удвоителя напряжения Рассмотрим как работает в данном случае удвоитель напряжения,или как говорят еще умножитель Обратившись теперь к исходной схеме на рис. 1, мы видим, что в ней с обмоткой, включенной в коллекторную цепь, связана еще одна третья (выходная) обмотка. Далее следует диодно-емкостная цепь (D1-C5-D2-C4), выполняющая роль выпрямителя с удвоением напряжения. Смоделируем эту цепь, при произвольных значениях параметров для демонстрации самого принципа удвоения напряжения. Напряжение на выходной обмотке представим генератором переменного синусоидального напряжения Е2 с действующим значением напряжения 100 В и частотой 50 Гц (см. рис. 5). Собрав удвоитель напряжения на элементах D1-C5-D2-C4, подсоединим, соблюдая полярность (жирная черта в рамке вольтметра – минус), дополнительно в цепи три контрольных вольтметра V1…V3. Включив моделирование, произведем отсчет показаний вольтметров (округляя до целых значений): V1 = -140 В, V2 = -280 В, V3 = -280 В. Эти значения получаются следующим образом. В полупериод, когда потенциал точке А в схеме на рис. 6 отрицательный, конденсатор С5 заряжается через диод D1 до амплитудного значения напряжения на источнике Е2, которое больше действующего в 1.4 раза, т.е. V1 = -140 В. В следующем полупериоде, когда потенциал точке А станет положительным откроется диод D2 и аналогично будет заряжаться конденсатор C4, но напряжение на нем, как не трудно видеть равно сумме напряжений на источнике и конденсаторе С5, т.е. V2 = -280 В. В точке В на выходе напряжение таким образом составит: V3 = -280 В. В принципе, дополняя эту схему далее еще диодами и конденсаторами можно получить дополнительное умножение напряжения. При практической реализации подобных устройств необходимо обратить внимание на электрическую прочность используемых компонентов (диодов и конденсаторов). Кроме того, с ростом напряжения и мощности устройств, немаловажными становятся и вопросы электробезопасности. В частности, в отсутствии дополнительных резисторов конденсаторы в умножителях напряжения могут удерживать на себе заряд весьма длительное время после отключения питания. Ионизатор воздуха на основе набора МАСТЕР КИТ NK292 В рассматриваемом ионизаторе воздуха на основе набора МАСТЕР КИТ NK292 (рис. 6), при напряжении питания 9-12 В, потребляемый ток составляет 80-150 мА, а выходное напряжение на ионизирующем электроде. В результате этот ионизатор вырабатывает отрицательно заряженные ионы, которые уничтожает бактерии, находящиеся в воздухе и способствует ряду физиологических функций организма. В соответствии с исследованиями проф. Чижевского, воздух, обогащенный отрицательными ионами кислорода, снимает бессонницу, головную боль, уменьшает чувствительность организма к изменению погоды, улучшает концентрацию внимания. При длительной эксплуатации ионизатора рекомендуется применять сетевой источник питания. Это полезное устройство (рис. 7) предназначено для комнаты обьёмом около 60 м3. В случае больших размеров комнаты, рекомендуется соответственно увеличить число приборов, размещаемых в комнате. Возможно использование ионизаторов совместно с вентилятором, обеспечивающим хорошее распределение отрицательных ионов кислорода в воздухе. Прибор смонтирован в ударопрочном пластмассовом корпусе и не требует сборки. Устройство предназначено для длительной работы в течение рабочего дня. Размеры модуля: 110х87х47мм. Конечно, описанные источники надо рассматривать как первые шаги в освоении подобной техники, реализующей формулу здоровья по Чижевскому: “Кислород воздуха + электроны=здоровье”. Но зато последующие шаги будут более осмысленными. Ведь не зря же в народе говорят: “Лиха беда – начало” . Так же на сайте смотрите еще одну схему более продвинутого и мощного ионизатора radiostroi.ru В данной статье рассматривается сборка люстра Чижевского своими руками, которая вырабатывает отрицательно заряженные аэроионы, ее еще называют ионизатором воздуха. Большое количество замеров свидетельствуют о том, что в одном кубическом сантиметре лесного воздуха имеется от 600 до 1400, а иногда и до 14000 отрицательно заряженных аэроионов. Воздух будет более полезен при большом количестве этих аэроионов. К сожалению, в городских квартирах содержание их падает до 25 на кубический сантиметр, что может сказаться на значительную утомляемость и усталость. Поднять уровень аэроионов в воздухе городских квартир можно при помощи особого прибора – ионизатора Чижевского. В 20-х годах прошлого века профессор Чижевским А.Л. создал первую подобную установку. В данной статье будет рассмотрена простая конструкция ионизатора, которую можно собрать своими руками в домашних условиях. Люстра Чижевского состоит из двух частей – собственно из самой люстры и схемы преобразователя высокого напряжения. Люстра Чижевского представляет собой алюминиевый обруч имеющий диаметр до 1 метра. На него крепят обслуженные медные провода диаметром до 1 мм и с шагом 35 – 45 мм взаимно-перпендикулярно. Полученная сетка должна провисать на расстоянии 60 – 90 мм. На пересечении проводов припаиваются металлические иголки длинной до 40 мм. Желательно что бы они были максимально острыми, так как от этого зависит эффективность работы всей конструкции. К обручу на равном расстоянии ( через каждые 120 гр.) необходимо прикрепить три медных провода диаметром до 1 мм., которые другими концами спаиваются вместе над обручем. К этой точке затем подсоединяется сам высоковольтный генератор. Для эффективной работы люстры Чижевского, необходимо высоковольтное напряжение не менее 25кВ. Для помещения примерно в 50 кв. м необходимо порядка от 30кВ до 40кВ. Этого можно добиться путем добавления в схему ионизатора необходимое количество каскадов умножителя. Ниже приведена простая электрическая схема высоковольтного генератора для ионизатора, которая прошла почти тридцатипятилетнюю проверку и доказала свою эффективность. В момент положительного полупериода электросети происходит заряд конденсатора C1 через цепочку элементов R1, VD1 и обмотку трансформатора Тр1. Тиристор VS1 в этот момент заперт. При поступлении отрицательного полупериода, диоды VD1, VD2 находятся в запертом состоянии. На катоде тиристора создается падение напряжения по отношению к управляющему электроду. В электрической цепи управляющего электрода тиристора появляется электрический ток, и он открывается. После этого, происходит разряд конденсатора С1 через первичную обмотку трансформатора Т1. Во вторичной обмотке трансформатора появляется импульс высокого потенциала и это повторяется каждый период. Электроимпульсы повышенного напряжения проходят сквозь выпрямитель, собранного на диодах VD3...VD6 по схеме умножителя напряжения. Выпрямленное напряжение с выхода данного выпрямителя идет через токоограничивающее сопротивление R3 на люстру. Трансформатора Тр1 - катушка зажигания Б2Б (на 6 В) от мотоцикла, но можно применить и от автомобиля. Сопротивление R1 может быть собрано из трёх параллельно соединённых резисторов мощностью по 2Вт и сопротивлением по 3 кОм, а резистор R3 из трёх или четырёх последовательно соединённых резисторов на общее сопротивление 10-20 МОм. Диоды VD3-VD6 высоковольтные типа КЦ201Г-Е. Конденсатор С1 бумажный не менее 250 В, С2-С5 конденсаторы типа ПОВ на напряжение не менее10 кВ, а С2 не менее 15 кВ. Тиристор VS1 КУ202 К-Н, КУ201К. Диоды VD1 и VD2 любые не ниже 400 В. Монтаж деталей ионизатора надлежит выполнять в корпусе подходящих размеров так, чтобы между выводами конденсаторов и высоковольтных диодов было большое расстояние. Для предотвращения возникновения коронных разрядов в ионизаторе, желательно после монтажа эти выводы покрыть расплавленным парафином. При правильном монтаже люстра Чижевского начинает работать сразу. При эксплуатации ионизатора не должно быть каких либо запахов. Запах свидетельствует о наличии вредных газов (окислов азота или озона). Они не должны появляться у исправной работающей люстры. В случае их появления нужно ещё раз произвести осмотр прибора и подключение ионизатора к люстре Чижевского. Выходное напряжение можно изменять путем подбора сопротивления R1 или емкости C1. В работоспособности ионизатора можно удостовериться путем поднесения (осторожно!) кусочка ваты к работающей люстре Чижевского. Примерно на расстоянии 50 мм ее притянет к люстре. Также на расстоянии около 10 см. ощущается легкий ветерок аэроионов. Внимание! Так как элементы схемы находятся под напряжением, то следует соблюдать меры электробезопасности при наладке ионизатора. Источник: www.qrx.narod.ru www.joyta.ru Данная схема люстры чижевского или иначе как говорят щас ионизатора воздуха, можно изготовить своими руками. В интернете полно схем однотипных, но в данной статье представлен ионизатор воздуха с вентилятором и выполнен из строчника(трансформатора строчной развертки) и обладает множествами плюсов, он быстрей ионизирует воздух засчет потока воздуха, и более безопасен так как разрядник находится внутри корпуса.Схема питается от сети с напряжением 220 В. Микросхема-драйвер IR2153 управляет силовыми транзисторами VT1 и VT2 поочередно включая и выключая их. Нагрузка полумоста – первичная обмотка трансформатора Т1 включается между выходом полумоста и средней точкой делителя напряжения образованного полярными конденсаторами C5 и C6. Для ограничения тока в первичной обмотке Т1 последовательно с ней включается индуктивный балласт L1. Балласт представляет собой 20 витков провода диаметром 0,5 мм намотанные на чашечном сердечника Ч36 (диаметр 36 мм) из феррита М2000НМ1, межу чашечками феррита обязательно с помощью плотного картона вводится немагнитнай зазор 0,5 мм. Рабочая частота полумоста задается цепочкой R2C3 и регулируется в пределах 30-80 кГц. Регулировка выходного высокого напряжения осуществляется подстройкой частоты с помощью резистора R2.1 : выходное напряжение с уменьшением частоты (с увеличением R2.1) возрастает. Импульсы высокого напряжения с вторичной обмотки трансформатора T1 поступают на вход умножителя на 4 собранного по симметричной схеме на диодах VD4-VD7 и конденсаторах С9-С11 . Выходное напряжение умножителя (10-12 кВ) подается на систему острий, представляющую собой многожильный медный провод, проводники которого разведены «зонтиком» и согнуты под прямым углом. Расстояние между остриями и корпусом – 12 мм. Один из выводов вторичной обмотки трансформатора заземляется (соединяется с корпусом). Для предотвращения возникновения высокой разности потенциалов между корпусом и остальными частями схемы введены резисторы R5-R7. Разрядник SG1 представляющий собой искровой промежуток длиной 5 мм предназначен для предотвращения пробоя вторичной обмотки трансформатора при регулировке выходного напряжения (резистором R2.1).Ионизатор вместе с системой острий помещается в металлический корпус компьютерного блока питания стандарта АТХ и поэтому электрическое поле высокой напряженности вблизи ионизатора отсутствует. Для создания потока воздуха, проходящего через систему острий, применяется вентилятор – кулер того же блока питания, ранее предназначенный для охлаждения. Для питания вентилятора (12 В, 0,13 А) применяется схема с реактивным емкостным сопротивлением (конденсаторы С7, С8, диодный мост VD2, стабилитрон VD3). Вид собранного ионизатора воздуха radiolubitel.moy.suСамодельный автомобильный ионизатор воздуха. Ионизатор воздуха схема своими руками
Автомобильный ионизатор воздуха своими руками — Поделки для авто
Похожие статьи:
Самодельный автомобильный ионизатор воздуха | Каталог самоделок
Ионизатор воздуха своими руками схема
Подробности Создано: 10 марта 2012 КАК СДЕЛАТЬ ИОНИЗАТОР
Как сделать ионизатор - схема электрическая
Трансформатор ионизатора
ЗУ ДЛЯ АВТО СХЕМА ЗАРЯДНОГО УСТРОЙСТВА ОТ USB ПРОСТЕЙШИЙ РАДИОПЕРЕДАТЧИК USB DAC - СХЕМА ЦАП ЛАБОРАТОРНЫЙ БП ИЗ КОМПЬЮТЕРНОГО ATX Схема ионизатора воздуха
Люстра Чижевского своими руками | joyta.ru
Люстра Чижевского своими руками
Описание работы ионизатора воздуха для люстры Чижевского
Детали и конструкция самодельного ионизатора воздуха
Схема ионизатора воздуха класса HI FI из строчника - 18 Декабря 2014 - Блог
Схема ионизатора воздуха класса HI FI из строчника
Поделиться с друзьями: