Схема заземления it: Система заземления IT область применения, схема, преимущества

Содержание

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается. В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

 

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

 

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C


Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S


Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S


С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT


При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

 

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT


Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

 

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

Смотрите также:

Система заземления IT. Возможности реализации в жилых домах

 

Международная классификация и кодирование систем электроснабжения

При описании систем электроснабжения в данной статье будем руководствоваться материалами и стандартами международной электротехнической комиссии (МЭК) и российскими «Правилами устройства электроустановок» (ПУЭ).

Если исходить из вышеперечисленных нормативных документов, описания систем электроснабжения в проектировании варьируются в зависимости от способов заземления, используемых в распределительных сетях. Специалистами употребляются различные виды методик в сфере защиты от негативных факторов поражения электрическим током. В практической деятельности инженеры-электрики сталкиваются с функциональным и защитным заземлениями.

Функциональное заземление служит для обеспечения нормальной работы электрических приборов. А вот с целью обеспечения безопасности электрических сетей и электроустановок на объектах применяют защитное заземление.

 

Разновидности систем заземления

Рассмотрим базовые понятия и расскажем Вам, что же означают буквенные обозначения, используемые специалистами электриками.

Часто в документации по электроснабжению, употребляется понятие «нулевой рабочий проводник» или по-другому он еще обозначается, как «N-проводник». Он используется для питания приемников электроэнергии, служит соединяющей частью для вывода с нейтралью электрооборудования, глухо заземленной. В разных случаях, он применяется, как в источниках однофазного/трёхфазного переменного тока, так и в сетях постоянного тока.

А вот в случае, когда вышеописанные два проводника совмещают свои функции в одном проводнике, то вводится понятие — PEN-проводник.

Исходя из правил МЭК, а также пользуясь принятой там системой кодирования согласно (ГОСТ Р 50571.2-94 «Электроустановки зданий. Часть 3. Основные характеристики»), расскажем Вам о специальных буквенных обозначениях, которые приняты в этой области знаний.

В этой терминологии первой латинской буквой обозначают, какое бывает состояние у нейтрали источника питания в отношении «земли».

Если есть нейтраль, которая заземлена, то пишем T (Terra, в переводе с латинского «земля»). Если речь идет об изолированной нейтрали, то используем I (англ., Isolate). При обозначении видов заземления ОПЧ пользуются буквой под номером два. Латинскую T применяют в случае автономного от связи источника питания с землей, заземления ОПЧ. А вот знаком N маркируют, если ОПЧ непосредственно контактируют с точкой заземления источника питания. Еще несколько латинских букв используют в качестве описания разных состояний PE-проводника и N-проводника.

При применении в схеме раздельных проводников, N и PE, используют S (от англ. термина Separated, в переводе означает «разделение»).

А вот если применяется PEN-проводник, в котором соединяются функции как нулевого защитного, так и нулевого рабочего проводников, то обозначают буквой C (от англ. слова Combined – комбинирован).

Теперь, зная основные буквенные обозначения, можно без труда расшифровать аббревиатуры, которыми помечают различные виды систем заземления.

Рассмотрим вид №1, TN-систему.

В таком схемном решении имеем нейтраль источника питания в положении «глухо заземлена». ОПЧ электрического оборудования присоединены к ней с помощью PE-проводников. Такое схемное решение заключает в себе ещё 3 подвида:

  • TN-C — в случае совмещения N/PE-проводников в одном. А вот если разделить конкретно в применении для всей системы функции N- и PE-проводников, то такую схему маркируют, как TN-S. Если же совместить функционал N/PE-проводников только для какой-нибудь из частей системы, то мы получим обозначение TN-C-S.
  • Второй вид – это TT. Это решение предусматривает существование нейтрали источника питания, которая «заземлена глухо». ОПЧ, как правило, заземляют от отдельного заземлителя. Он расположен совершенно автономно от заземления нейтрали источника питания.
  • И наконец, перейдем к третьему виду — IT. Это решение предусматривает изоляцию токоведущих частей системы питания от земли. В некоторых случаях допустимо заземление с помощью приборов с большим сопротивлением. Заземление ОПЧ осуществляется отдельно. Иногда, такой вариант в технической литературе называют «системами c изолированной нейтралью».

 

Детали и особенности применения распределительных сетей, защитных заземлений

Определившись с классификацией распределительных сетей, кратко определимся с их практическим назначением. И начнём наше рассмотрение c типа TN. Конкретно возьмем для примера — TN-C. Является одной из наиболее старых и проверенных систем. Она досталась нам ещё от Ленинского плана ГОЭЛРО. Достоинства её в экономичности и простоте. Недостаток – отсутствие РЕ-проводника, а значит повышенная опасность в условиях быта в части уравнивания потенциалов и отсутствия в жилых зданиях защитного заземления (возможно лишь «зануление»). Уходящая технологическая система. Не рекомендуется для электроснабжения вновь возводимых объектов.

В качестве переходной подсистемы предлагается TN-C-S. В технической реализации она достаточно проста. Переход просто осуществляется c подсистемы TN-C. Но в случае серьезного повреждения проводника типа PEN, потребители электроэнергии могут оказаться в опасности.

И наконец, подробнее остановимся на технологии ТТ. Из-за угроз от поражения электрическим током такая технология в СССР была запрещена.

Однако, в современной действительности, в Российской Федерации достигнут большой прогресс в применении средств АЗС и УЗО. И эта технология «получила вторую жизнь», как средство подачи электроэнергии на буровых, в строительные бытовки и на другие передвижные и временные объекты.

К заземляющему устройству такой системы предъявляются повышенные требования, которые отражаются в проекте и прописываются в технических условиях.

А теперь мы подходим к основной цели нашего повествования – системам IT, на которых сконцентрируем основное наше внимание.

 

Распределительные сети IТ: историческая ретроспектива, принципы построения, показатели назначения, области возможных применений

В исторически обозримом прошлом (начало и середина XX века) распределительные IT системы имели доминирующее положение в странах Западной Европы. Однако по ряду причин экономического и технического характера от них отказались и перешли на TN-технологии. Если задуматься, почему это было сделано, то приходит на ум такой пример, как слабая устойчивость сетей IT к импульсным перенапряжениям коммутационного и грозового характера и более высокая стоимость таких решений перед пришедшими на смену TN-технологиями. Исключением является Королевство Норвегия, где распределительные IT-сети успешно эксплуатируются и развиваются. На это существуют свои причины, среди которых следует отметить географическое расположение (северные территории с малым количеством гроз, северные сияния не идут в счёт т.к. они происходят в верхних слоях атмосферы), повсеместный скальный грунт (трудности с построением высокоэффективной системы заземления), невысокая нагрузка на энергетическую систему страны ввиду отсутствия в массовом характере энергозатратных производств, а вследствие небольшой территории и предыдущего фактора, больших перетоков мощностей (коммутационных перенапряжений) в распределительных сетях. Тем не менее, давайте оставим пока «норвежский феномен» и зададимся вопросом: какова нишевая применимость данной технологии в современных условиях постиндустриального общества? И чтобы ответить на данный вопрос рассмотрим архитектуру построения распределительной IT-сети. В этой технологии, как мы уже писали выше, нейтраль изолирована от земли или же заземлена через специальные приборы с высоким импедансом (иногда в особых случаях применима низкоимпедансная, реже дугогасящая схема). При этом ОПЧ потребителя надёжно заземлены, а это предполагает низкие токи утечки на токопроводящие части электроустановки и на землю. Таким образом, при аварийной ситуации — замыкании на землю, исключается немедленное отключение питающей установки от присоединённого электрооборудования, система продолжает работать без перерыва питания. Также исключается возникновение дугового разряда и «шагового напряжения» с высоким потенциалом. Следует заметить, что данная технология при трёхфазном вводе позволяет организовать подключение потребителя двумя возможными способами: «треугольником» и «звездой».

Положив в основу особенности архитектуры построения данных систем заземления и их свойства в части электробезопасности, определим основные показатели назначения технологии заземления распределительных IT-сетей:

  • это безопасность для людей и животных, а также применимость как в обычных бытовых, так и в необычных (экстремальных) условиях;
  • повышенная защищенность от пожаров, взрывов;
  • облегченная возможность монтирования этих систем в виде наложения распределительной сети на уже имеющиеся технологии электроснабжения;
  • эффективность масштабирования сети;
  • простое управление емкостью сети;
  • система обнаружения повреждений;
  • устойчивости сети к неоднократным межфазным замыканиям;
  • системы настроек защиты (АЗС, УЗИП, УЗО).

Исходя из показателей назначения, вытекает сфера возможных применений. Это, прежде всего, медицинские стационары (операционные, реанимация и пр. ), где требуется обеспечение высокой живучести и электробезопасности систем жизнеобеспечения. Научные лаборатории, где используется чувствительное электронное и компьютерное оборудование. Взрывоопасные производства (предприятия нефтехимии, деревообработки, газовое хозяйство, угольные шахты и пр.). Помещения с повышенной влажностью (банно-прачечные комбинаты, бассейны, животноводческие фермы и др.). ГЭС и высоковольтные подстанции, где велика вероятность образования аварийного шагового напряжения высокого потенциала. В этом случае по технологии IT-заземления организуется наложенная обслуживающая технологическая система энергоснабжения.

Ну и конечно, часто задаваемый вопрос относительно возможности использования IT-заземления в квартире, индивидуальном строении (коттедж, дачный дом и пр.), т.е. в бытовых жилищных условиях. Отвечаем сразу – это возможно. И с технической стороны, здесь ключевую роль играет разделительный трансформатор, иногда называемый трансформатором безопасности. В данном устройстве первичная обмотка глухозаземлена и отделена от незаземлённой вторичной заземлённым металлическим экраном и усиленной изоляцией, при этом коэффициент трансформации равен 1, а К. П.Д. достигает 0,98. Все элементы организации IT-заземления в жилищном фонде имеются в продаже (трансформаторы безопасности, модульные системы заземления, заземляющие проводники и пр.) и разрешены к применению. Причём трансформаторы безопасности выпускаются в нескольких исполнениях (контейнерного и боксового типов), что позволяет устанавливать их как внутри, так и снаружи помещений. Кроме того трансформаторные системы разделительного типа снабжены развитой системой дистанционного контроля и диагностики состояния изоляции и заземления.

На этапе проектирования или модернизации объекта необходимо согласование проектно-сметной документации строительного проекта или модернизации системы электрообеспечения действующего жилья с органами энергонадзора. Для индивидуального строительства здесь особых проблем нет. Есть некоторые трудности с квартирным фондом старой застройки, как в части выбора места установки дополнительного оборудования, так и отсутствия заземления (технология TN-C).

Все изменения и модернизации в системе энергоснабжения должны быть отражены в техническом паспорте жилища!

 


Смотрите также:

  • Заземление. Что это такое и как его сделать
  • Молниезащита в частном доме: правила, расчеты, пример
  • Что такое грозоизолятор и как он работает?
  • Полезные материалы для проектировщиков: статьи, рекомендации, примеры
  • Таблица удельного сопротивления грунта

Смотрите также:

заземление — Заземление на принципиальных схемах

спросил

Изменено
9 лет, 8 месяцев назад

Просмотрено
852 раза

\$\начало группы\$

Часто на схемах вижу, что цепь соединена с землей:

Я понимаю, что это создает ссылку на нулевой потенциал, но почему весь ток просто не течет прямо в землю? Должно быть, у меня где-то фундаментальное непонимание.

  • цокольный
  • базовый

\$\конечная группа\$

2

\$\начало группы\$

Ток не весь просто течет на землю из-за Закона тока Кирхгофа. Закон Кирхгофа о токах гласит, что сумма токов, входящих в узел и выходящих из него, должна быть равна нулю. Если от источника питания течет x ампер, то x ампер должно вернуться в источник питания.

В вашей схеме до того, как было добавлено заземление, напряжения не имели ссылки. Добавление заземления помещает отрицательную клемму источника питания в потенциал земли, делая все напряжения относительно земли. Если вы предпочитаете думать об этом с точки зрения Spice, отрицательный терминал и узлы земли были объединены. Ток все еще должен течь обратно к источнику питания, откуда он пришел. Кроме того, если бы какая-либо другая точка цепи была заземлена, ток все равно протекал бы обратно к отрицательной клемме источника питания через землю.

\$\конечная группа\$

6

\$\начало группы\$

Символ земли:

означает, что «это связано проводом со всеми остальными вещами, связанными с другими экземплярами этого символа». Поскольку в вашем примере схемы есть только один из них, это вообще ничего не значит в этом отношении.

Это также может означать: «Если кто-то дает вам напряжение без явной ссылки, предположим, что оно относится к этой штуке».

Таким образом, это служит двум целям:

  1. сделать схему более читабельной. Здесь есть много вещей, которые соединяются, и без этого символа у нас было бы намного больше линий на большой схеме, и вам пришлось бы следовать за ними очень далеко, чтобы обнаружить, что они просто идут к источнику питания.
  2. делают обсуждение схемы короче, так как мы можем предположить опорное напряжение. Поскольку напряжения относительны, нам всегда нужна ссылка.

Обратите внимание, что обсуждение схемы и ее удобочитаемость действительно имеют ничего общего с тем, как работает схема. Электричество в цепи заботится о символе земли так же, как об идентификаторах частей, или основной надписи, или рамке. То есть ему все равно.

Что произойдет, если мы наклеим символ заземления между резисторами? Напряжения становятся:

  • C = 50 В
  • Б = 0 В
  • А = -25 В

Это не меняет работу схемы; просто наше обсуждение этого. Мы кладем землю там, где будет удобно вести дискуссию.

\$\конечная группа\$

1

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

.

Какой правильный символ схемы использовать для виртуальной земли?

спросил

Изменено
3 года, 6 месяцев назад

Просмотрено
1к раз

\$\начало группы\$

Я слежу за конструкцией схемы, требующей источника питания для обеспечения чего-то, что автор называет виртуальная земля , \$V_{gnd}\$. Схема выглядит так:

Тем не менее, я использую KiCad для проектирования и из всех доступных символов питания я не могу найти подходящего. Я уже использую символы заземления и общего/сигнального заземления для чего-то другого. Фактически, из этой схемы я даже не могу сказать, является ли это виртуальное напряжение отрицательным или положительным .

Я также рассмотрел эти соответствующие вопросы:

  • Использование символов заземления на принципиальных схемах
  • В чем разница между \$V_{CC}\$, \$V_{DD}\$, \$V_{EE}\$, \$V_{SS}\$
  • KiCAD 5 — что означают различные символы GND?
  • Почему компоненты питания в KiCad предназначены для ввода питания?

Кроме обозначения сети, как это делает автор…

В: Какой символ лучше заменить \$V_{gnd}\$?


PS. Мне кажется, или эта схема очень корявая? Кажется очень странным, что некоторые силовые сети заканчиваются в воздухе, в то время как другие просто помечены как внутрисхемные без какой-либо терминации. Я не могу представить, что это стандартная практика проектирования.


ОБНОВЛЕНИЕ:

  • Аккумулятор LiPo 3,7 В.
  • Штырьки U1 имеют номер «1» для + и «2» для - .
  • Выводы для AD8607, как показано выше, неверны и должны быть:
  • земля
  • схемы
  • символ
  • виртуальная земля

\$\конечная группа\$

8

\$\начало группы\$

Я бы не стал использовать символ «земля», если только я не имел в виду заземление сети или землю.

Доступны различные символы заземления.

Рис. 1. Из объяснения «Земля, земля и шасси» (мной).

В вашем случае я бы, вероятно, использовал символ полой земли для реальной земли и символ сплошной земли для виртуальной земли.

Рис. 2. Различные символы заземления для основного и виртуального заземления.

Примечания:

  • R1 и 2 представляют собой ссылку V CC /2.
  • C1 стабилизирует опорное напряжение и сохраняет его постоянным при колебаниях В CC .
  • U1 обеспечивает виртуальную землю.
  • C2 — конденсатор развязки питания для операционного усилителя.

Из комментариев:

Операционный усилитель — это просто повторитель напряжения? Зачем называть виртуальную землю Vcc/2?

Виртуальная земля имеет несколько значений. В конфигурации операционного усилителя инвертирующего усилителя это относится к инвертирующему входу, который очень близок к потенциалу земли из-за высокого коэффициента усиления и отрицательной обратной связи. В этом случае на Рисунке 2 ниже и в вопросе OP это заземление или опорное значение для аудиосигналов, и они чередуются выше и ниже этого опорного напряжения и равны этому опорному напряжению, когда звук находится в состоянии покоя.

Похоже, этот термин получил одобрение на высоком уровне. См. техническое описание TI для TLE2426, устройство «Прецизионное виртуальное заземление Rail Splitter».

Рис. 3. Belton-Brick использует виртуальную опорную землю, VB, для смещения всех операционных усилителей в цепи аудиосигнала на половинное питание, чтобы обеспечить переменное аудио напряжение. (Двойной щелчок для увеличения разрешения.) Источник: Hot Bottles.

\$\конечная группа\$

3

\$\начало группы\$

Хотя я решил принять ответ Транзистора, мне понравилось его четкое и подробное объяснение, я все еще не могу избавиться от тошнотворного чувства по поводу использования символа, связанного с заземлением , , для опорного напряжения виртуального заземления .

Так что, возможно, этот вопрос и обсуждение носят более субъективный и психологический характер, чем я думал сначала. В связи с этим я думаю, что использование символа земли, указывающего вниз, вводит в заблуждение. Как уже указывалось, схема драйвера представляет собой просто делитель напряжения буферизуется операционным усилителем, выход которого по-прежнему имеет положительное напряжение.
по сравнению с заземлением батареи. Поэтому кажется более естественным, чтобы и были направлены вверх, а не вниз, поскольку здесь ничего не тонет, даже если напряжение ниже, чем \$V_{dd}\$.

Одним из символов, который может дать лучшее изобразительное «ощущение», может быть то, что (в
KiCad) обозначается как цифровая земля , символ которой:

Но вместо вниз в схеме драйвера, у нас это вверх вот так:

Затем, когда мы фактически используем его в схеме, мы имеем его вниз.

Я хотел бы услышать, что сообщество думает об этом, особенно
если я нарушаю некоторые стандарты дизайна, делая это таким образом.