интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Устройство и ремонт осушителя воздуха своими руками. Схема воздуха


Cхема озонатора воздуха | Полезное своими руками

Самодельный озонаторДанное устройство будет полезным для очистки воздуха в помещении или уничтожения бактерий при инфекционных болезнях. Небольшая концентрация озона позволяет также улучшить длительное хранение продуктов, например в подвале.

В основе работы прибора используется свойство воздуха при пропускании через него электрических искр образовывать новое вещество — озон (O3). При обычных условиях это газ, имеющий характерный запах (молекула озона состоит из трех атомов кислорода и в природных условиях находится в верхних слоях атмосферы и образуется в результате атмосферных разрядов).

Как сильный окислитель, озон убивает бактерии и потому может применяться, например, для обеззараживания воды и дезинфекции воздуха. Но следует знать, что озон ядовит и предельно допустимым является его содержание в воздухе 0,00001%. При этой концентрации хорошо ощущается его запах.

В схеме устройства на излучателе А1 образуется электрическая дуга, через которую проходит поток воздуха. Для образования равномерно распределенной дуги на излучателе необходимо получить высоковольтное напряжение (15...80 кВ) достаточной мощности.

Это осуществляется с помощью схемы преобразователя и трансформатора Т1. В первичной обмотке Т1 тиристор VS1 формирует импульсы за счет разряда конденсаторов С1...СЗ через обмотку. Управляет работой тиристора автогенератор на транзисторе VT1.

Резистор R2 подобран так, что, когда напряжение на конденсаторах С1...СЗ достигнет 300 В (за счет заряда от сети), открывается тиристор VS1.

Рис.1. Принципиальная схема озонатора воздуха.

Устройство не критично к деталям, и резисторы могут иметь номиналы, близкие к указанным на схеме. Конденсаторы С1...СЗ типа МБМ, К42У-2, на рабочее напряжение не менее 500 В, С4 — К73-9 на 100 В. Диоды VD1...VD4 можно заменить сборкой КЦ405Ж, В.

Рис. 2. Каркас для намотки высоковольтного трансформатора Т1

Высоковольтный трансформатор Т1 выполнен на пластинах из трансформаторного железа, набранных в пакет (рис. 2). Такая конструкция позволяет исключить намагничивание сердечника.

Намотка выполняется виток к витку: сначала вторичная обмотка — 2 — 2000 витков проводом ПЭЛ диаметром 0,08...0,12 мм (в четыре слоя), затем первичная — 1 — 20 витков. Межслойную изоляцию лучше выполнять из нескольких слоев тонкой (0,1 мм) фторопластовой ленты, но подойдет также и конденсаторная бумага (ее можно достать из высоковольтных неполярных конденсаторов).

После намотки обмоток трансформатор необходимо залить эпоксидным клеем. В клей перед заливкой желательно добавить несколько капель конденсаторного масла и хорошо перемешать.

Для удобства заливки можно изготовить картонный каркас по габаритам трансформатора, где и выполняется герметизация.

Изготовленный таким образом трансформатор обеспечивает во вторичной обмотке амплитуду напряжения более 90000 В, но включать его без защитного разрядника F1 не рекомендуется, так как при этом возможен пробой внутри катушки.

Защитный разрядник выполняется из двух оголенных проводов, расположенных на расстоянии 20...24 мм (для воздуха пробойное напряжение составляет примерно 3 кВ на 1 мм зазора).

Конструкция излучателя А1 приведена на рис. 3. Элементы конструкции крепятся на боковых пластинах из оргстекла толщиной 5...10 мм (на рисунке не показаны). В зазоре между токопроводящими пластинами и стеклом (1 мм) образуется равномерно распределенная дуга. Ее хорошо видно при затемнении — синяя полоса и характерный запах.

Для большей эффективности работы прибора можно использовать любой вентилятор, например типа ВН-2 — он ускорит циркуляцию воздуха в рабочей зоне излучателя.

Описанное устройство создает низкую концентрацию озона, и для освежения воздуха в жилом помещении необходима его работа в течение 10...20 минут.

Рис. 3. Конструкция излучателя А1

electro-shema.ru

Схема озонатора воздуха » Полезные самоделки

В 20-х годах на важность аэроионного состава воздуха обратил внимание Александр Леонидович Чижевский (1897-1964), предложивший и способ его нормализации. Автор настоящей работы - Борис Сергеевич Иванов - занимается внедрением аэроионной техники в наш быт уже многие годы. Мы знакомим читателя с "люстрой Чижевского" его конструкции. Основные узлы аэроионизатора - электроэффлювиальная "люстра" и преобразователь напряжения. В названии "люстры" отражен процесс образования аэроионов (эффлювий - истечение): с заостренных частей люстры с большой скоростью, обусловленной высоким напряжением, стекают электроны. "Налипая" на молекулы кислорода, они уходят от места своего образования, оказывая тем самым влияние на аэроионный состав воздушной среды всего помещения. От конструкции "люстры", размеров тех или иных ее деталей зависит эффективность работы аэроионизатора. Сделать ее "лучше", конечно, можно, но вот оценить результат - аэроионный состав излучаемого, его энергетику - вряд ли удастся.

 

Основа "люстры" - легкий металлический обод (например, обычное гимнастическое кольцо "хула-хуп") диаметром 750...1000 мм, на котором натягивают взаимно перпендикулярно с шагом 35...45 мм оголенные или облуженные медные провода диаметром 0,6... 1,0 мм. Эта клетчатая сетка, провисая, образует часть сферической поверхности (см. рис. 139). К узлам сетки припаивают иглы длиной не более 50 мм и толщиной 0,25...0,5 мм, например, булавки с колечком на конце. Остро заточенный кончик иглы увеличивает рабочий ток "люстры" и уменьшает выход нежелательных здесь озона и окислов азота. Под углом 120° к ободу "люстры прикреплены три медных провода диаметром 0,8...1,0 мм, которые спаивают между собой над центром обода. К этой точке будет подведено высокое напряжение, она же, связанная через изолятор с потолком или специальным кронштейном, будет и точкой подвеса "люстры". В качестве подвеса-изолятора можно взять рыболовную леску диаметром 0,5...0,8 мм. Ее длина должна быть не менее 150 мм. К "люстре" подключают "-" источника питания напряжением не менее 25 кВ. Только при таком напряжении обеспечивается достаточная "живучесть" аэроионов, сохраняется их способность проникать и в легкие человека. Для помещений большого объема, например, спортивных залов, напряжение на "люстре" может достигать и 40...50 кВ (обязательное условие - отсутствие коронного разряда, который легко обнаружить по запаху озона).

Принципиальная схема высоковольтного преобразователя, прошедшего всестороннюю и многолетнюю проверку, приведена на рис. 140. Во время положительного полупериода сетевого напряжения через резистор R1, диод VD1 и первичную обмотку трансформатора Т1 заряжается конденсатор С1. Тиристор VS1 при этом закрыт, так как отсутствует ток через его управляющий электрод (падение напряжения на диоде VD2 в этом режиме мало по сравнению с напряжением открывания тиристора).

 

При отрицательном полупериоде диоды VD1 и VD2 закрываются и между катодом и управляющим электродом тиристора возникает напряжение, достаточное для его открывания. Это ведет к тому, что конденсатор С1 разряжается через первичную обмотку трансформатора Т1 и на его повышающей обмотке возникает "пачка" двуполярных, быстро уменьшающихся по.амплитуде импульсов (колебательный процесс обусловлен здесь малыми потерями). Этот процесс повторяется в каждом периоде сетевого напряжения.

Умножитель напряжения - диоды VD3-VD6, конденсаторы С2-С5 - выполнен здесь по классической схеме. Резистор R1 может быть составлен из трех параллельно соединенных резисторов МЛТ-2 3 кОм, a R3 - из трех-четырех последовательно соединенных МЛТ-2 общим сопротивлением 10...20 МОм*. Резистор R2 - МЛТ-2. Диоды VD1, VD2 могут быть и другими - с током не менее 300 мА и обратным напряжением не ниже 400 В (VD1) и 100 В (VD2). Диоды VD3-VD6 можно заменить на КЦ201Г(Д, Е). Конденсатор С1 - типа МБМ на напряжение 250 В, СЗ-С5 - ПОВ на напряжение не ниже 10 кВ, С2 - ПОВ на напряжение не менее 15 кВ. Тиристор VS1 - КУ201К(Л), КУ202К(Н). Трансформатор Т1 - катушка зажигания Б2Б (на 6 В) от мотоцикла. Аэроионизатор монтируют так, как это принято в высоковольтных аппаратах - на изоляторах с хорошими поверхностями, с достаточно большими расстояниями между полюсами, гладкими пайками и т.п. Аэроионизатор в наладке не нуждается. Изменить напряжение на его выходе можно подбором резистора R1 или конденсатора С1. Простейший индикатор нормальной работы аэроионизатора - вата: небольшой ее кусочек должен притягиваться к "люстре" с расстояния 50...60 см. Для проверки напряжения на "люстре" можно воспользоваться, конечно, и электростатическим вольтметром. В бытовых "люстрах" рекомендуется установить напряжение в пределах 30...35 кВ.

При работе аэроионизатора не должно быть никаких посторонних запахов (признаков появления озона и окислов азота), это особо оговаривал Чижевский. О технике безопасности. Хотя ток, возникающий при случайном прикосновении к "люстре", очень мал и сам по себе опасности не представляет, но большого удовольствия такой разряд, конечно, не доставит. А падение с высоты после удара им может иметь и вполне реальные последствия. Поэтому при каких-либо работах с "люстрой" ее необходимо не только отключить от сети (оба провода), но, замкнув высоковольтный вывод преобразователя на общий провод, разрядить все конденсаторы.

 

Автор рекомендует "принимать ионы" следующим образом: расстояние от "люстры" - 1...1.5 м, время 30...50 мин. И так - ежедневно, лучше - перед сном. *) При замыкании "люстры" к резистору R3 будет приложено полное выходное напряжение преобразователя и составляющие его резисторы могут быть пробиты (предельно допустимое напряжение для резистора МЛТ-2 - 750 В). Здесь был бы предпочтительнее высоковольтный резистор - например, КЭВ-5.

www.freeseller.ru

Системы воздушного отопления: как устроить своими руками

Практика показывает, что подавляющее большинство домовладельцев, проживающих на территории России, выбирают для отопления системы с жидким теплоносителем. Возможно, когда-то это, действительно, был наиболее практичный вариант.

Но техника развивается, и появляются все более эффективные конструкции. Такие как различные системы воздушного отопления, позволяющие быстро и экономно обогреть любое помещение.

Содержание статьи:

Принцип работы и виды воздушного отопления

Надо знать, что существует два различных вида отопления воздушного типа, каждый из которых может использоваться на практике.

Первый реализуется в системах с калорифером. Он по своей сути аналогичен отоплению с жидкостным теплоносителем с той разницей, что вместо жидкости используется разогретый воздух. Канальный нагреватель разогревает воздух, который движется по специальным трубам в отапливаемые помещения.

Галерея изображений

Фото из

Нагревательное оборудование воздушного отопления

Нагревательное оборудование воздушного отопления

Система без стандартных радиаторов

Система без стандартных радиаторов

Принудительный тип воздухной системы

Принудительный тип воздухной системы

Бесканальный вариант воздушного отопления

Бесканальный вариант воздушного отопления

Канальный вариант воздушного отопления

Канальный вариант воздушного отопления

Совмещение с вентиляцией

Совмещение с вентиляцией

Нагревательный агрегат для частного сектора

Нагревательный агрегат для частного сектора

Калорифер для воздушных схем отопления

Калорифер для воздушных схем отопления

Воздуховоды, наполненные горячим воздухом, обогревают комнату. Такие системы сегодня мало используются, поскольку в процессе эксплуатации каналы неизбежно повреждаются. От чередования нагрева с охлаждением воздуховоды то расширяются, то сужаются, из-за чего ослабляются стыки, а в стенках появляются трещины.

Это приводит к нарушению процесса распределения воздуха и, как следствие, к  неравномерному обогреву помещений, что нежелательно. Более практичной считается система воздушного отопления открытого типа.

Схема устройства системы воздушного отопления

В устройстве воздушного отопления много общего с традиционным водяным видом и реже используемым паровым. Основное отличие заключается в отсутствии стандартных приборов отопления — радиаторов

Принцип ее действия заключается в следующем. Теплогенератор разогревает воздух, который через систему труб подается в отапливающиеся помещения. Здесь он выходит наружу и смешивается с присутствующим в комнате воздухом, тем самым повышая в ней температуру. Остывший воздух направляется вниз, где попадает в специальные трубы и по ним вновь поступает в теплогенератор для нагрева.

Схема системы канального воздушного отопления

Теплоноситель воздушных систем отопления относится к разряду вторичных, т.к. перед этим нагревается первичным теплоносителем — паром или водой (+)

По радиусу действия системы отопления нагретым воздухом делятся на местные и центральные. К первым относятся контуры, предназначенные для обслуживания одного объекта (коттеджа, комнаты, двух или более смежных помещений), ко вторым многоквартирные дома, общественные и производственные объекты

Все системы подразделяются на схемы с полной рециркуляцией теплоносителя, с частичной рециркуляцией и прямоточные.

Схемы организации воздушного отопления

Местные системы с полной рециркуляцией воздуха бывают канальными (а) и бесканальными (б). Это схемы с естественным движением нагретого воздуха. Если отопление совмещается с вентиляцией, то применяются другие схемы (в,г) с частичной рециркуляцией. Согласно чему часть воздуха подмешивается к имеющейся в помещении воздушной массе без передвижения по каналам

Все центральные системы относятся к категории прямоточных. Для них воздушный теплоноситель нагревают в отопительном центре здания, а затем поставляют в помещения через воздухораспределители. Центральные схемы бывают только канальными.

Центральное воздушное отопление

Воздушные прямоточные системы слишком затратны для частного сектора. Их устраивают там, где сооружается вентиляция, обрабатывающая воздушную массу, равную по объему воздушной массе, требующейся для отопления

Центральное воздушное отопление устраивают на производствах, выпускающих или применяющих в изготовлении возгораемые, токсичные, взрывоопасные и т.д. вещества. В обустройстве загородных домов этот вид применяется, если требуется транспортировка нагретого воздуха на большое расстояние.

Организация схемы для частников нецелесообразна из-за необходимости в использовании мощного вентиляционного оборудования.

Действующие разновидности системы

На сегодня существует несколько разновидностей воздушного отопления, с каждой из которых необходимо познакомиться всем, кто собирается установить подобную конструкцию в своем доме. Системы можно классифицировать по разным признакам. Начнем со способа циркуляции воздуха. Исходя из этого, можно выделить два основных типа.

Воздушное отопление своими руками

Естественная циркуляция предполагает, что разогретый воздух поднимается вверх и самостоятельно движется по трубопроводам. Поэтому выходы воздуховодов располагаются только в верхней части помещений

Система с естественной воздушной циркуляцией

Для работы такой конструкции используется свойство горячего воздуха подниматься вверх. Разогретый газ по проложенным в стенах воздуховодам поднимается в комнаты и через отверстия, расположенные в потолке помещения, выходит наружу. Главное достоинство  подобных систем – дешевизна, поскольку отсутствует необходимость тратиться на дополнительное оборудование.

Однако значимых недостатков довольно много. Прежде всего, скорость, с которой воздух поднимается по трубам, невелика. Таким образом помещение будет обогреваться достаточно долго. Кроме того, при использовании отопления с естественной циркуляцией чаще всего приходится располагать выходы воздуховодов в верхней части комнаты, что не всегда может быть удобным.

Как организовать воздушное отопление своими руками

Веский минус гравитационного воздушного отопления (т.е. схем с естественным движением теплоносителя) заключается в ограниченном радиусе действия. Варьирует он в интервале 8 — 10 м

Конструкция с принудительной циркуляцией воздуха

Такие системы в обязательном порядке оборудуются вентиляционной установкой, мощность которой зависит от протяженности и количества воздуховодов. Для больших площадей потребуется установка нескольких приборов. Главная задача оборудования заключается в продвижении разогретого воздуха по воздуховодам к отапливаемым помещениям. Вследствие чего его скорость возрастает, и обогрев комнат осуществляется в самые короткие сроки.

Несмотря на необходимость установки вентиляторов, такие системы оказываются в итоге более экономичными. За счет возросшей скорости воздухообмена система засасывает из комнаты остывший воздух достаточно высокой температуры. Он просто не успевает охладиться до минимальных значений. На его повторный разогрев затрачивается намного меньше энергии, что дает в целом значительную экономию средств.

Схема воздушного отопления принудительного типа

Для стимуляции движения воздуха к потребителю отопительные системы оснащаются вентиляторами, что переводит их в разряд энергозависимых, но ощутимо повышает эффективность

По месту размещения воздуховодов отопительные системы можно тоже разделить на две группы.

Напольное воздушное отопление

Отличительной особенностью системы являются вмурованные в пол или встроенные в плинтуса выводы воздуховодов. В результате получается максимально эффективное распределение нагретого воздуха, поступающего в нижнюю часть помещения. Теплый воздух стремится вверх, вследствие чего происходит достаточно быстрое перемешивание воздушных масс и помещение прогревается быстрее.

Воздушное отопление своими руками

Напольное воздушное отопление предполагает, что выводы воздухопроводов располагаются в плинтусах или встроены непосредственно в напольное покрытие

Подвесные воздушные системы

Схема предполагает наличие встроенных в потолочные перекрытия или стены воздуховодов, чьи выводы располагаются строго в верхней части комнаты. Чаще всего под потолком. Как вариант встречаются подвесные воздуховоды с такими же выводами. Надо признать, что такие системы в целом менее эстетичны, чем напольные аналоги. Хотя существуют способы декорирования и маскировки воздуховодов.

Кроме того, использование напольной системы предполагает, что наиболее высокой будет температура воздуха, расположенного внизу. В верхней половине комнаты будет чуть холоднее. Такое распределение температур медики считают лучшим для человека. Кроме того, встроенные в пол или плинтуса выводы воздуховодов практически незаметны, что значительно улучшает внешний вид комнаты.

Главным недостатком подвесных систем, который особенно нежелателен для частных домов, считается более низкая, чем наверху, температура воздуха у самого пола. Разогретый воздух быстрее и интенсивнее обогревает именно верхнюю часть помещения, тогда как пол остается прохладным. Именно поэтому такие системы либо редко используются в жилых домах, либо комбинируются еще с каким-то отоплением.

По способу теплообмена все воздушные отопительные системы делятся на три типа.

Воздушное отопление своими руками

Воздуховоды подвесного типа лучше всего монтировать на этапе строительства здания. В этом случае их можно замаскировать при проведении отделочных работ

Прямоточная отопительная схема

Известна уже несколько столетий. Подобными системами отапливались древние римляне и средневековые россияне. Принцип действия прямоточного отопления весьма прост. В нижней части строения, чаще всего в подвале, устанавливается отопительный прибор, который разогревает попадающий в него воздух. Далее нагретые воздушные массы по воздуховодам поступают в отапливаемые помещения.

Схема прямоточной системы воздушного отопления

На рисунке представлена схема обустройства воздушного отопления прямоточного типа. Такие конструкции использовались еще в Древнем Риме

После чего, пройдя через них, выводятся на улицу. Таким образом тепловая энергия тратится не только на обогрев помещения, но и в прямом смысле на «отопление улицы». Именно поэтому прямоточная система считается наименее эффективной из всех и отличается самыми высокими первоначальными и эксплуатационными затратами.

Главное преимущество такой конструкции – полная вентиляция отапливаемых помещений. Ее используют только тогда, когда необходим объем вентиляции равный объему воздушных масс, требующихся для отопления. Такое условие может быть обязательным при эксплуатации помещений, где работают с взрывоопасными, опасными для здоровья или с неприятно пахнущими веществами.

Для домашнего отопления прямоточная система используется крайне редко. Если по каким-то причинам требуется установить именно ее, стоит смонтировать оборудование для дополнительной рекуперации. Это может быть воздушный обменник, который позволит использовать часть тепла выходящего наружу воздуха для обогрева приточных воздушных масс. Таким образом удастся несколько снизить эксплуатационные затраты.

Рециркуляционная система обогрева

Обогрев помещения производится с использованием замкнутого цикла. Сначала воздух разогревается теплогенератором и движется по трубам внутрь комнаты. Здесь он постепенно остывает и начинает опускаться к полу, где располагаются входы отводящих воздуховодов. Попав в них, остывший воздух движется к теплогенератору, где вновь подвергается разогреву и цикл повторяется.

Воздушное отопление своими руками

Системы с полной рециркуляцией воздушной массы применяются, если нет необходимости в организации искусственной вентиляции помещения

Такая схема является максимально эффективной, поскольку потери тепла практически исключены. Ее главным недостатком является низкое качество воздуха, который циркулирует внутри отапливаемых помещений. Поэтому она чаще используется для отопления нежилых комнат или складов. Если такая схема применяется в жилых домах, в обязательном порядке требуется установка дополнительного оборудования для ионизации и увлажнения воздуха.

Схема с частичной рециркуляцией

Такая система позволяет нивелировать главный недостаток рециркуляционной схемы – низкое качество воздуха. Для этого в нее включается дополнительное вентиляционное оборудование, которое забирает наружный воздух и подмешивает его в нужных пропорциях к воздушным массам, циркулирующим внутри помещения. Все остальное аналогично схеме с полной рециркуляцией.

Воздушное отопление своими руками

Системы с частичной рециркуляцией производят забор части воздуха снаружи и подмешивают его к части находящейся в помещении воздушной массе. Смесь разогревается калорифером до требующегося значения температуры, затем вентилятором направляется в помещение

Система отличается максимальной гибкостью и способна работать в нескольких режимах: как вентиляционная, как отопительная или как комбинированная отопительно-вентиляционная. При этом она может забирать любое нужное количество воздуха, нагревать или даже остужать его до нужной температуры. Схема с частичной рециркуляцией считается оптимальной для обустройства воздушного отопления в частном доме.

Аргументы в пользу выбора воздушной системы

По сравнению с привычными системами, работающими на жидком теплоносителе, воздушные схемы имеют значимые преимущества. Рассмотрим их поподробнее.

  1. Высокий КПД воздушных систем. Производительность контуров нагрева воздухом достигает порядка 90%.
  2. Возможность отключения/включения оборудования в любое время года. Прерывание работы возможно даже в самые сильные зимние холода. Это означает, что отключенная отопительная система не придет в негодность при отрицательных температурах, что, например, неизбежно для водяного отопления. Включить в работу ее можно в любой момент.
  3. Невысокая эксплуатационная стоимость воздушного отопления. Отсутствие необходимости приобретения и монтажа достаточно дорогостоящего оборудования: запорной арматуры, переходников, радиаторов, труб и др.
  4. Возможность объединения систем отопления и кондиционирования. Результат объединения позволяет поддерживать в здании комфортную температуру в любой сезон.
  5. Низкая инерционность системы. Это обеспечивает предельно быстрый прогрев помещений.
  6. Возможность установки дополнительного оборудования, которое используется для поддержания оптимального микроклимата. Это могут быть ионизаторы, увлажнители, стерилизаторы и тому подобное. Благодаря этому можно подобрать комбинацию приборов и фильтров, точно соответствующую потребностям жильцов дома.
  7. Максимально равномерный прогрев помещений без локальных зон подогрева. Указанные проблемные участки обычно находятся около радиаторов и печей. За счет этого удается предотвратить температурные перепады и их следствие – нежелательную конденсацию водяных паров.
  8. Универсальность. Воздушное отопление можно использовать для обогрева помещений любой площади, расположенных на каком угодно этаже.

Есть у системы и некоторые недостатки. Из числа наиболее значимых стоит отметить энергозависимость конструкции. Таким образом, при отключении электроэнергии отопление перестает функционировать, что особенно заметно в местностях с перебоями в электроснабжении. Кроме того, система требует частого технического обслуживания и наблюдения.

Воздушное отопление своими руками

Воздушное отопление очень экономично. Первоначальные затраты на его обустройство невелики, эксплуатационные расходы тоже невысокие

Еще одна отрицательная особенность воздушного отопления заключается в том, что монтаж конструкции должен осуществляться в процессе строительства. Установленная система не подлежит модернизации и практически не меняет свои эксплуатационные характеристики. При необходимости возможен монтаж воздушного отопления в построенном здании, но в этом случае используются только подвесные воздуховоды, что не эстетично и не всегда эффективно.

Основные элементы отопительной системы

Прежде, чем своими руками обустроить воздушное отопление, нужно познакомиться с элементами, из которых оно состоит.

Подогревающие воздух устройства

Основная задача оборудования заключается в разогревании до нужной температуры поступающего внутрь воздуха. Для этого могут использоваться практически все известные источники тепла. В зависимости от вида прибора отопления воздушные массы либо пропускают через теплообменник с горячим паром, водой и т.п., либо разогревают непосредственно внутри нагревателя.

Схема для сооружения воздушного отопления своими руками

Теплогенераторы, использующиеся для разогрева воздуха в системе воздушного отопления, не должны нагревать воздух до температуры свыше 70º, чтобы после смешивания с находящимся в помещении воздухом он не утрачивал своих свойств как среда, приходная для вдыхания (+)

В качестве теплогенераторов для воздушных отопительных систем на практике используется четыре типа конструкций:

  • Топливные системы прямого нагрева. В них воздух нагревается от тепла, полученного от сгорания какого-либо топлива. К этому типу относятся угольные, газовые, дизельные, пеллетные и другие нагреватели.
  • Электрическое оборудование прямого нагрева. Представляет собой мощный тепловентилятор, который подключается к воздуховодам.
  • Приборы косвенного нагрева. Предполагается наличие теплообменника, в котором циркулирует горячая жидкость. Последняя может разогреваться любым способом: при помощи дровяной печи или любого другого отопительного прибора. Как вариант можно рассмотреть подключение теплоносителя из централизованной системы отопления.
  • Комбинированная конструкция. Представляет собой две, иногда три системы разных типов, объединенных в общую конструкцию. Наиболее эффективный и практичный вариант получается при комбинировании электрической и жидкостной системы.

Последний вариант считается наиболее удачным, поскольку такое оборудование сможет обеспечить дом теплом даже в случае отключения электроэнергии или возникновения проблем с топливом. Однако по понятным причинам такие приборы имеют большую стоимость. Тратить на них средства не всегда оправданно, особенно если перебои с электроэнергией крайне редки.

Воздушное отопление своими руками

Магистральные трубопроводы изготавливаются из оцинкованного металла. Это жесткие конструкции, к которым подключаются гибкие отводы

Каналы для движения воздушных масс

Отопительная система канального типа не сможет работать без сети воздуховодов. По ним воздушные массы движутся в помещения и возвращаются в теплогенератор. Чаще всего используется круговая транспортировка, поскольку однотрубные конструкции, которые тоже могут применяться, имеют ограниченный функционал и большое количество недостатков. На чертеже такая конструкция напоминает два дерева.

Роль стволов играют два жестких магистральных трубопровода, выполненных их оцинкованного металла. Один из них подающий, второй – обратка. К ним через переходники подключаются «ветви». Это гибкие воздуховоды меньшего сечения, отходящие к комнатам. Они обязательно герметизируются алюминиевым скотчем и утепляются. Изоляция в этом случае не только сохраняет тепло, но и поглощает звуки.

Для изоляции, как правило, используются фольгированные утеплители разных марок. Для магистралей выбирается покрытие толщиной от 3 до 10 мм. Для разводящих каналов подойдет материал толщиной 25-30 мм.

Внутри одноэтажных зданий подогретый воздух направляется снизу вверх, поэтому воздуховоды могут быть вмонтированы в пол. В двухэтажных постройках сеть воздуховодов может быть проложена по потолку первого этажа либо в толще межэтажного перекрытия.

Воздушное отопление своими руками

Воздуховоды обязательно должны быть изолированы. Изоляционный материал не только бережет тепло, но и поглощает звуки

В этом случае горячий воздух на первый этаж подается с потолка. Выходы воздуховодов на втором этаже располагаются в нижней части внутренних стен и на полу. Обратка тоже размещается по-разному. На первом этаже отверстия для сбора охлажденного воздуха находятся на уровне пола. На втором, наоборот, у потолка. Здесь собираются перегретые воздушные массы, которые и поступают в обратку.

Вентиляторы для обеспечения циркуляции воздуха

Воздушные массы внутри трубопроводов транспортируются принудительно. Эту операцию осуществляют специальные вентиляторы канального типа. Оборудование устанавливается как на возвратных, так и на подающих воздуховодах. Кроме того, чаще всего они являются еще и конструктивными элементами воздухонагревателя. При выборе вентилятора помимо технических характеристик желательно учитывать такие параметры:

  • возможность работать на разных оборотах;
  • минимальный уровень шума;
  • отсутствие чувствительности к перепадам напряжения;
  • оснащение системой плавного пуска;
  • возможность плавной регулировки скорости оборудования.

Нужно понимать, что вентиляторы отвечают за напорную производительность оборудования, по сути, определяют ее. Поэтому технические параметры оборудования должны точно соответствовать специфике конкретной системы.

Внутриканальные вентиляторы систем воздушного отопления

Схема установки внутриканального вентилятора внутри воздуховода: 1 — вентилятор осевого типа; 2 — воздухонагреватель, сооруженный из медных труб с алюминиевыми пластинами; 3 — воздухораспределитель со створками, меняющими направление

Распределение потоков: решетки и диффузоры

Все подходящие к комнате воздуховоды подключаются к решеткам или диффузорам. Эти элементы предназначаются для разделения потоков воздуха, предназначенных для отопления, для вентиляции и для кондиционирования, а также для равномерного распределения воздушных потоков внутри помещения.

Выпускаются напольные, стеновые и потолочные устройства, среди которых можно найти модели с подвижными регулируемыми жалюзи.

Внутриканальные заслонки и клапаны

Элементы предназначены для настройки пропускной способности отопительной системы. В подающих воздуховодах обязательно монтируются дроссельные заслонки. Устройства регулируют напор воздушных масс, поступающих в разные комнаты, и дают возможность при необходимости его фиксировать.

Клапанами оборудуются различные участки воздуховодов. В обязательном порядке ставят приточные клапаны, регулирующие приток воздуха с улицы.

Клапан дымоудаления для системы вентиляции

Кроме клапанов, контролирующих приток и отток воздушного потока, системы вентиляции оборудуют клапанами дымоудаления и противопожарными аналогами. При пожарах они препятствуют распространению огня и стимулирующих горение газов, отводят гарь и угар из помещений

Оборудование для подготовки воздуха

Учитывая, что воздушное отопление часто объединяется с системами кондиционирования, подготовка воздуха становится востребованной опцией. В этом случае конструкция оборудуется различными фильтрами: угольными, механическими, электростатическими. Они очищают воздух от всевозможных примесей. Дополнительно могут устанавливаться увлажнители, ионизаторы, стерилизаторы, осушители и тому подобное оборудование.

Воздушное отопление своими руками

Так выглядит диффузор, равномерно распределяющий потоки на выходе из воздуховода

Автоматические системы управления

Воздушное отопление само по себе, а особенно объединенное с вентиляцией и кондиционерами, считается достаточно сложной системой. Для координации ее функционирования используются автоматические блоки управления, которые дают возможность быстро и точно изменять параметры работы системы.

При необходимости владелец может задавать нужные ему характеристики, получая максимально комфортный для него микроклимат в доме.

Блоки управления различаются по функционалу и подбираются индивидуально к каждой конкретной отопительной системе. Грамотно подобранная автоматика позволяет не только полностью контролировать воздушное отопление, но и менять на расстоянии заложенные в программу настройки, зонировано распределять воздушные потоки и включать отопление в систему умный дом.

Особенности проведения грамотного расчета

Несмотря на уверения горе-мастеров, самостоятельно рассчитать воздушное отопление очень сложно. Такая задача под силу только специалистам. Заказчик может только проконтролировать наличие всех пунктов проекта, в число которых входят:

  • Определение тепловых потерь каждого из отапливаемых помещений.
  • Тип отопительного оборудования с указанием необходимой мощности, которая должна быть рассчитана исходя из реальных теплопотерь.
  • Требуемое количество подогретого воздуха с учетом мощности выбранного отопительного прибора.
  • Необходимое сечение воздуховодов, их длина и т.п.

Это основные пункты расчета отопительной системы. Правильно будет заказать проект у специалистов. В результате заказчик получит несколько вариантов расчета, из которых можно будет выбрать и воплотить в реальность наиболее понравившееся решение.

Схема для устройства воздушного отопления

Система воздушного отопления — сложная конструкция, состоящая из множества элементов. Для ее расчета лучше привлечь профессионалов, для ознакомления с компонентами стоит подробно изучить схему (+)

Полезное видео по теме

Почему выбирают воздушное отопление:

Как самому рассчитать систему воздушного отопления:

Основы обустройства воздушного отопления в частном доме:

Воздушное отопление относится к числу безопасных, экономичных, чрезвычайно долговечных и надежных систем. Именно поэтому оно становится все более востребованным. Самостоятельно обустроить систему достаточно просто, а вот провести грамотные расчеты вряд ли получится.

Возможные ошибки приведут к понижению эффективности системы, постоянным сквознякам и другим неприятным последствиям. Оптимально получить профессионально подготовленный проект и при желании воплотить его в жизнь собственными руками.

sovet-ingenera.com

Осушитель воздуха – ремонт своими руками, схема, устройство

Бытовой осушитель воздуха – это переносной электроприбор, который предназначен для снижения и поддержания комфортной относительной влажности воздуха в помещениях дома или квартиры.

Фото осушитель воздуха Kaut K20, внешний вид

Для быта обычно выпускаются осушители воздуха, работающие на принципе охлаждения воздуха и конденсации из него воды с помощью встроенного компрессора с испарителем, как в холодильниках. Поэтому они называются конденсационными. Такие осушители обладают высокой производительностью и способны быстро создать и постоянно поддерживать в помещении комфортную для человека, домашних животных и имущества относительную влажность воздуха в пределах 40-60%.

Устройство и принцип работыконденсационного осушителя воздуха

Если из корпуса холодильника убрать шкаф для хранения продуктов с морозилкой, а все остальное разместить в отдельном корпусе, то получится конденсационный осушитель воздуха, который представлен на фотографии.

Рассмотрим устройство и принцип работы осушителя воздуха на примере немецкой модели «Kaut K20», схема которого приведена на чертеже.

Влажный воздух из помещения через решетку на лицевой панели осушителя за счет вращения лопастей вентилятора всасывается в корпус осушителя. Далее воздух проходит через теплообменник, в котором из него удаляется вода, проходит через фильтр и возвращается обратно в помещение уже сухим.

Фото схемы и устройства осушителя воздуха Kaut K20

Теплообменник состоит из двух зон – теплой и холодной. Сначала влажный воздух попадает в нагретую зону теплообменника и подогревается. Далее проходит через холодную зону теплообменника и охлаждается. Так как разница температур между подогретым воздухом и холодной зоной теплообменника большая, то вода из воздуха осаждается на его ребрах (конденсируется) и по стенкам стекает в лоток для конденсата.

Электрическая схема и принцип работы

Осушитель воздуха к электрической сети переменного тока 220 В подключается с помощью электрической вилки типа С6. Для индикации поступления питающего напряжения на схему на лицевой панели установлен индикатор, выполненный на неоновой лампочке HL1.

При работе осушителя из воздуха удаляется вода, которая собирается в водосборном резервуаре объемом 5,5 л. Для исключения перелива воды установлен датчик ее уровня S, который в случае наполнения резервуара отключает осушитель и включает неоновую лампочку-индикатор наполнения резервуара HL2, установленную на лицевой панели. Резисторы R1 и R2 служат для ограничения тока, протекающего через неоновые лампочки. Датчик уровня воды выполнен на механическом микропереключателе.

Электрическая схема осушителя воздуха Kaut K20

Требуемый уровень влажности воздуха задается и поддерживается благодаря гиростату (Н) типа TW2001R-A, способного регулировать относительную влажность в диапазоне от 10% до 80%. Управление гиростатом осуществляется с помощью ручки, расположенной на лицевой панели осушителя. При снижении относительной влажности до заданного уровня гиростат отключает подачу питающего напряжения на вентилятор и компрессор.

Для обеспечения циркуляции воздуха через теплообменник служит вентилятора М, который имеет два режима скорости. При замкнутом выключателе I, питающее напряжение подается без ограничения и лопасти вентилятора вращаются с максимальной скоростью. Для снижения уровня шума, например, при работе осушителя в ночное время, установлен токоограничивающий резистор R3, благодаря которому при размыкании выключателя I скорость лопастей снижается. Стоит заметить, что в таком режиме производительность осушителя тоже снижается.

Для исключения образования ледяной шубы на теплообменнике в схеме имеется блок управления, а в теплообменник вмонтирован датчик температуры. Если температура охлаждающей секции теплообменника приближается к 0°С, то блок управления отключает компрессор на время, пока температура не повысится.

Как работает компрессор в осушителе?

Компрессор представляет собой герметичный металлический корпус цилиндрической формы. В нем установлен электродвигатель с системой клапанов, которые при работе электродвигателя создают на выходе высокое давление. В качестве хладагента в компрессорах используется газ фреон или другие с подобными физическими характеристиками, например R134a.

С выхода компрессора нагретый и принявший жидкое состояние от сжатия фреон по медной трубке, сначала проходит через зону теплообменника подогрева воздуха, где отдает свое тепло. Выходя из зоны подогрева, трубка сужается до внутреннего диаметра 0,6-0,8 мм, образуя капилляр длиной более полметра. Далее трубка опять расширяется до прежнего диаметра.

Фото схемы работы компрессора осушителя Kaut K20

Выходя из капиллярной трубки фреон, направляется в охлаждающую зону теплообменника. Из-за большой разности диаметров трубок возникает перепад давления. В результате фреон вскипает и переходит в газообразное состояние, поглощая при этом большое количество тепла, которое отбирается от охлаждающей зоны теплообменника. После этого фреон возвращается в компрессор, где газ опять сжимается и направляется в теплообменник. Пока включен электродвигатель компрессора циркуляция фреона через теплообменник будет происходить постоянно.

По такому принципу работает компрессор в любом домашнем холодильнике, только нагревающаяся часть теплообменника устанавливается на задней стенке его шкафа, а охлаждающая (морозилка) внутри него.

Внимание! При ремонте осушителя воздуха и любых других электроприборов, включенных в бытовую сеть, следует соблюдать предельную осторожность. Прикосновение незащищенным участком тела человека к токоведущим проводам и деталям, находящимся под напряжением может нанести серьезный урон здоровью, вплоть до остановки сердца. Не забывайте вынимать вилку осушителя из розетки!

Ремонт осушителя воздуха своими руками

Изучив принцип работы и электрическую схему осушителя воздуха можно приступать к его самостоятельному ремонту.

Фотография панели управления осушителя воздуха Kaut K20

Первым делом нужно убедиться, что водосборный резервуар для воды не переполнен. Далее с помощью ручки гиростата выставить требуемый уровень влажности, например, установив указатель на цифру 6 (относительная влажность 60%). Кнопка переключения скорости вентилятора должна находиться в утопленном положении. Затем вставить вилку осушителя в розетку, должен загореться зеленый индикатор подключения к сети HL1 и не гореть красный индикатор переполнения резервуара HL2. Лопасти вентилятора должны завращаться и заработать компрессор.

Если осушитель исправен, то через 5-10 минут работы из его задней решетки должен поступать холодный воздух, а в резервуаре появится вода. В противном случае осушитель неисправен и требуется его ремонт.

Поиск неисправности любого электроприбора всегда начинается с розетки, вилки и сетевого шнура. Если светится зеленый индикатор, то с этим все в порядке. В противном случае необходимо убедиться в исправности розетки, вилки и сетевого шнура. Для проверки розетки достаточно вставить в нее вилку любого электроприбора, например, настольной лампы.

Как разобрать осушитель

Если осушитель не работает и светит красный индикатор, а в резервуаре воды нет, то, неисправность связана с микропереключателем S. Для его проверки и ремонта необходимо осушитель разобрать.

Фотография выкручивания винта на нижней стенке осушителя воздуха Kaut K20

Для того чтобы добраться до деталей и узлов необходимо снять переднюю и заднюю панели, и верхнюю крышку. Разборку удобнее начинать с задней панели. Для этого нужно сначала выкрутить саморез, который удерживает панель со стороны дна.

Фотография выкручивания винта на задней стенке осушителя воздуха Kaut K20

Затем выкрутить еще четыре самореза, расположенные непосредственно в потайных отверстиях панели и ее снять. Заодно стоит проверить состояние воздушного фильтра.

Фотография снятой передней стенки осушителя воздуха Kaut K20

Далее нужно отвинтить четыре винта в потайных отверстиях на передней панели и аккуратно снять ее, чтобы не повредить провода, идущие от органов управления. После этого останется только раздвинуть нижние края П-образной крышки, и снять ее, сдвинув вверх.

Фотография размещения узлов и деталей осушителя воздуха Kaut K20

Теперь все узлы станут доступны для проверки и ремонта. На представленной фотографии нанесены надписи с указанием места нахождения всех основных узлов.

Первым делом нужно внимательно осмотреть все разъемные соединения. На них не должно быть изменений цвета покрытий и почернений. Далее проверить надежность посадки разъемов на клеммы. Для этого нужно попробовать каждый из разъемов подергать, взявшись за него пальцами, разъемы на клеммах должны держаться намертво. В случае, если разъем легко снялся, то нужно его поджать плоскогубцами.

Проверка индикатора и датчика уровня воды резервуара

В первую очередь необходимо убедиться, что толкатель датчика воды свободно перемещается. Для этого нужно надавить пальцем руки на черную клавишу, которая находится в верхнем правом углу отсека резервуара воды.

Фотография толкателя датчика уровня воды осушителя

При нажатии и отпускании клавиша должна легко утапливаться и возвращаться в исходное положение. При этом должен раздаваться характерный щелчок работы микропереключателя. Индикатор красного цвета при нажатии на клавишу должен гаснуть, а при отпускании – загораться. Если что-то не так, то нужно снять датчик и выяснить, почему он не работает.

Фотография датчика уровня воды в резервуаре осушителя воздуха Kaut K20

Датчик уровня воды установлен со стороны вентилятора и находится правее его гасящего сопротивления. Для того чтобы добраться до датчика достаточно открутить пару саморезов и разъединить две половинки корпуса, в котором микропереключатель установлен. На фото переключатель голубого цвета.

Далее нужно проверить работу самого микропереключателя. При нажиме на выступающий из него толкатель, он должен мягко со щелчком входить в корпус и возвращаться в исходное состояние при прекращении нажима.

На последнем этапе проверки нужно проверить с помощью мультиметра или тестера, включенного в режим измерения сопротивления, исправность внутренних контактов микропереключателя.

Проверка исправности гиростата

Если датчик уровня воды и сигнальный индикатор исправны, то следующим элементом, управляющим работой компрессора является гиростат типа TW2001R-A.

Фотография гиростата TW2001R-A, установленного в осушителе воздуха Kaut K20

Гиростат представляет собой металлическую коробку, в которой размещен датчик влажности, механически связанный с электрическими контактами. Это практически программируемый выключатель, замыкающий или размыкающий контакты при достижении заданного уровня влажности.

Для проверки гиростата достаточно выставить с помощью ручки на панели управления низкий уровень влажности и включить осушитель. Если лопасти вентилятора завращались, значит, гиростат работает нормально. Если вентилятор не заработал, то возможно он неисправен. Для проверки вентилятора надо закоротить выводы гиростата или подать напряжение питания непосредственно на выводы вентилятора, предварительно отключив их от схемы осушителя.

Фотография заклиненного датчика уровня воды в осушителе воздуха Kaut K20

Осушитель воздуха не будет работать, если не установлен резервуар для воды (будет гореть красный индикатор). Чтобы заставить осушитель работать без установленного резервуара, нужно утопить клавишу датчика уровня воды и заклинить ее с помощью, например куска провода, как показано на фотографии.

Проверка работы вентилятора

При вращении лопастей вентилятора с недостаточной скоростью или остановкой охлаждающий теплообменник остынет до отрицательной температуры. Тогда блок управления отключит компрессор, и осушитель перестанет работать.

Фотография вентилятора осушителя воздуха Kaut K20

Вентилятор может плохо вращаться из-за недостаточной смазки подшипников вала двигателя или неисправности обмоток. Для проверки смазки достаточно провернут лопасти рукой. Лопасти должны после воздействия некоторое время продолжать вращаться. Если лопасти вращаются туго и после воздействия не продолжают вращаться, то нужно смазать подшипники через предусмотренные для этого отверстия в его корпусе.

Если такой возможности нет, то нужно будет разобрать двигатель, удалить старую застывшую смазку с помощью уайт-спирта и нанести свежую. Если неисправны обмотки, то двигатель придется заменить новым.

Фотография токоограничивающего резистора вентилятора осушителя воздуха Kaut K20

Вентилятор может не работать из-за неисправности кнопки переключения режима его работы или токоограничивающего резистора (сопротивления), показанного на фотографии. При нажатии на кнопку переключения скорости вращения лопастей вентилятора, она должна зафиксироваться в нажатом состоянии и скорость вращения лопастей должна увеличиться.

Если вентилятор работает при нажатой кнопке, а при отжатой лопасти не вращаются, то неисправен токоограничивающий резистор. Если кнопка не влияет на скорость, то она неисправна.

Как проверить работу компрессора

Если проверка показала, что сетевой шнур, датчик уровня воды, гиростат и вентилятор исправны, то осталось проверить работоспособность блока управления и компрессора.

Фотография компрессора осушителя воздуха Kaut K20

Из этих двух узлов проще всего проверить компрессор, на этикетке которого написано, что он работает от переменного напряжения 220 В. Для проверки достаточно подать на его входные клеммы с помощью отдельного шнура с вилкой напряжение сети 220 В.

Фотография снятой с компрессора осушителя воздуха Kaut K20 крышки

Чтобы получить доступ к клеммам нужно с компрессора снять защитную пластмассовую крышку, для чего вставить и надавить в находящееся в ней сверху отверстие жало плоской отвертки. Защелка отойдет, и крышка легко снимется.

Фотография снятой с компрессора осушителя воздуха Kaut K20 крышки

К компрессору подключено три провода. Провод желто - зеленого цвета является заземляющим, а по черному и синему проводам подается питающее напряжение. Поэтому нужно снять разъемы с этих контактов и подать на них 220 В. Если с компрессором все в порядке, то он заработает и через пару минут охлаждающая зона теплообменника станет холодной. В случае если двигатель компрессора работает, а температура теплообменнике не изменяется, значит, имеет место утечка фреона.

Если компрессор неисправен, то придется обратиться в сервис. В домашних условиях без специального оборудования отремонтировать компрессор самостоятельно домашнему мастеру не по силам.

ydoma.info

Системы воздушного отопления, плюсы и минусы, проектирование, схема

На американском континенте и в Европе уже долгое время системы воздушного отопления пользуются популярностью. В России же традиционно используют газовое отопление. Однако заметим, что водяная система обычно дает относительно низкий КПД, в то время как воздушная – 90%. Чем же еще хороша система воздушного отопления и как ее обустроить?

системы воздушного отопленияСистема воздушного отопления частного дома

Преимущества воздушной отопительной системы

  • Полная безопасность. Современная система автоматического контроля проверяет полную исправность всех элементов перед тем, как будет запущен процесс отопления. В случае обнаружения неисправности работа всего оборудования блокируется. Это дает возможность избежать любой проблемы. Кроме того, схема воздушного отопления является более безопасной, поскольку не имеет труб, заполненных теплоносителем – соответственно, исключается возможность прорыва, протекания и так далее.
  • Более высокая скорость обогрева. Большинство систем, работающих на каком-либо типе теплоносителя, тратят львиную долю времени на его нагрев. Например, в водной системе отопление начинается лишь после того, как вода (выступающая теплоносителем) нагреется до определенного уровня и распространится по всем радиаторам – и только после этого начинается прогрев помещения. В воздушной системе отопления прогрев помещения происходит всего за 20-40 минут – это зависит от мощности оборудования и, конечно же, от размера самого помещения.
  • Экономичность. Обладая высоким КПД, воздушная система использует достаточно мало ресурсов. А тот факт, что данная система не имеет промежуточных узлов (которые способствуют увеличению теплопотери), делает ее еще более выгодной.
расчет воздушного отопленияСравнение воздушной и водяной систем отопления
  • Большой срок службы. Правильно произведенные проектирование воздушного отопления и монтаж системы, а также регулярное ее сервисное обслуживание позволят вам наслаждаться ее качественной работой на протяжении минимум 17-20 лет.
  • Легкость управления. Поскольку вся работа системы контролируется автоматикой, у вас не возникнет сложностей с ее эксплуатацией. Вы с легкостью сможете менять уровень температуры обогрева, повышая или понижая его в зависимости от необходимости.
  • Доступность. Система воздушного отопления имеет вполне доступную стоимость. Также следует отметить, что окупается она за довольно короткий промежуток времени – от 7 месяцев до 1,5 года – в зависимости от интенсивности и частоты использования.
  • Внешняя привлекательность. Особенностью системы, выгодно выделяющей ее среди остальных, является еще и то, что для нее не требуются батареи и трубы. Это позволит вам устанавливать любого размера окна, делать современный ремонт и не бояться, что из-за отопительных приборов его привлекательность будет снижена.
воздушное отопление плюсы и минусыГорячий воздух поднимается через такие отверстия в полу и обогревает помещение

Строение и принцип работы системы

Для полноценной работы современной воздушной системы отопления необходимо использование теплогенератора. В теплообменник нагнетается воздух. Оптимальная температура нагрева 50-60 градусов. Далее по воздуховоду горячий воздух перемещается в помещение, где равномерно распределяется, нагревая комнату. Далее через специальные отверстия (решетки, вмонтированные в пол, или стены) остывший воздух вновь возвращается к теплогенератору. Нередко для подачи остывшего воздуха используются воздуховоды обрата.

воздушное отопление на твердом топливеПринцип работы теплогенератора

При рассмотрении схемы становится понятно, что основными элементами теплогенератора выступают вентилятор, обеспечивающий перемещение воздуха, и теплообменник. Сегодня существует много видов воздушных отопительных систем. Одним из отличий можно выделить метод нагрева воздуха. Это возможно несколькими способами, которые показывает такая классификация систем воздушного отопления:

  • посредством применения теплового насоса;
  • использование газовой горелки. При этом допустимо как подключение к основной газовой магистрали, так и использование газового баллона.
  • горячей водой из централизованной системы;
  • использованием дизельной горелки, или воздушное отопление на отработанном масле.

В зависимости от размера отапливаемых помещений, расход воздуха в системе может варьироваться от 1000 до 4 000 м3/час. При этом средний показатель давления в системе – 150 Па.

Следует учитывать, что если воздуховод имеет достаточно большую протяженность (в больших помещениях), то это может вызвать некоторую теплопотерю. Чтоб ее избежать, можно внедрить в систему несколько вспомогательных теплогенераторов. Важно помнить, оптимальная длина воздуховода (при которой уровень теплопотери минимален) составляет 30 м, а продолжительность ответвлений воздуховода не должна превышать 15 м.

Рекомендуем к прочтению:

проектирование воздушного отопленияГруппа воздуховодов системы воздушного отопления

Для получения максимального эффекта от эксплуатации системы рациональным является решение дополнить ее блоком кондиционирования. Таким образом, в прохладное время года с ее помощью вы будете совершать обогрев дома, а в жаркое – производить некоторое охлаждение. Это позволит круглый год поддерживать в доме наиболее комфортную температуру. Кроме того, вы сможете дополнить воздушное отопление на твердом топливе такими полезными устройствами, как, допустим, увлажнитель или стерилизатор воздуха.

Вентиляция системы может быть двух типов:

  • естественная. Горячий воздух в системе просто поднимается вверх и произвольно перемещается по воздуховоду, нагревая его. Весомые минусы воздушного отопления в таком случае – то, что в случае попадания холодного воздуха в помещение (через окна, двери) он оседает в нижней части комнаты, создавая существенный дискомфорт. А в это время горячий воздух согревает потолок.
  • принудительная. Более эффективная модель работы системы, поскольку циркуляция воздуха значительно ускоряется посредством применения мощных вентиляторов. Система работает прекрасно, но шум вентилятора, доносящийся из воздуховода, может создавать определенный дискомфорт.
воздушное отопление на дровахЕстественная и принудительная системы вентиляции частного дома

Требования к выбору оборудования

При выборе воздушной отопительной системы для дома важно учесть тип топлива, которое будет использовано для нагрева воздуха. Для максимального удобства отдельными производителями были предложены модели систем, в которых допускается переход с одного типа топлива на другой. Например – с природного газа на сжиженное топливо. В таком случае вам необходимо будет лишь сменить горелку и насадку, подающую топливо.

В случае если вы остановили свой выбор на приобретении системы, работающей на жидком топливе, то необходимо предварительно позаботиться о наличии бака для хранения топлива, трубопровода для его подачи.

Такое воздушное отопление совмещенное с вентиляцией должно быть оснащено дополнительными фильтрами. Точно также некоторое вспомогательное оборудование необходимо будет приобрести для систем на жидком газе. А в случае использовании баллонов с газом возникает необходимость создания помещения для их хранения. Единственный тип топлива, не требующий дополнительного оборудования – природный газ.

Рекомендуем к прочтению:

воздушное отопление расчетРекуперативный воздухонагреватель

Система предусматривает обязательное наличие воздуховодов. Оно могут быть:

  • круглые – для их создания используются трубы диаметром 100-200 мм, которые скрепляются при помощи хомутов. Использование такого типа труб дает небольшое преимущество – они обладают небольшим аэродинамическим сопротивлением. А это, в свою очередь, положительно сказывается на КПД системы.
  • квадратные (прямоугольные) – в силу большей эстетичности именно такой тип труб применяется для создания отопительной системы жилых домов.
  • совмещенные – в системе используются как прямоугольные, так и круглые трубы. Важно учесть – если необходимо провести трубу через неотапливаемое помещение – обязательно наличие защитного термоизолирующего чехла, который предотвращает теплопотерю.
схема воздушного отопленияВоздуховоды системы воздушного отопления

Предварительный расчет

Процесс планирования воздушной отопительной системы предполагает учет многих нюансов. Поэтому наиболее правильным является решение предоставить провести такой расчет воздушного отопления специалистам. Что они учитывают:

  • теплопотерю в каждом помещении;
  • тип и мощность нагревательного элемента;
  • какое необходимо оптимальное количество нагретого воздуха;
  • сечение трубопровода;
  • снижение давления в системе.

В случае если вы закажете проект отопительной системы у специалистов, вам на рассмотрение будет представлено несколько проектов. И только учтя воздушное отопление плюсы и минусы каждого, можно принимать решение относительно того, как именно устраивать отопительную систему.

Не следует пытаться смонтировать воздушное отопление на дровах или газу самостоятельно, не зная всех требований и правил. Нередки случаи, когда неправильное планирование приводит к тому, что в помещении постоянно стоит шум от вентиляторов и присутствует сквозняк. Воздушная отопительная система прекрасно способна отапливать дом – но только в том случае, если она спланирована и смонтирована специалистами.

Оцените публикацию: Загрузка...

otoplenie-doma.org

Схема озонатора воздуха « схемопедия

 Данное устройство будет полезным для очистки воздуха в помещении или уничтожения бактерий при инфекционных болезнях. Небольшая концентрация озона позволяет также улучшить длительное хранение продуктов, например в подвале.   В основе работы прибора используется свойство воздуха при пропускании через него электрических искр образовывать новое вещество — ОЗОН. При обычных условиях это газ, имеющий характерный запах (молекула озона состоит из трех атомов кислорода и в природных условиях находится в верхних слоях атмосферы и образуется в результате атмосферных разрядов).

Рис.1. Принципиальная схема озонатора воздуха.

  Как сильный окислитель, озон убивает бактерии и потому может применяться, например, для обеззараживания воды и дезинфекции воздуха. Но следует знать, что озон ядовит и предельно допустимым является его содержание в воздухе 0,00001%. При этой концентрации хорошо ощущается его запах.   В схеме устройства (рис. 6.21) на излучателе А1 образуется электрическая дуга, через которую проходит поток воздуха. Для образования равномерно распределенной дуги на излучателе необходимо получить высоковольтное напряжение (15…80 кВ) достаточной мощности. Это осуществляется с помощью схемы преобразователя и трансформатора Т1. В первичной обмотке Т1 тиристор VS1 формирует импульсы за счет разряда конденсаторов С1…СЗ через обмотку. Управляет работой тиристора автогенератор на транзисторе VT1. Резистор R2 подобран так, что, когда напряжение на конденсаторах С1…СЗ достигнет 300 В (за счет заряда от сети), открывается тиристор VS1.   Устройство не критично к деталям, и резисторы могут иметь номиналы, близкие к указанным на схеме. Конденсаторы С1…СЗ типа МБМ, К42У-2, на рабочее напряжение не менее 500 В, С4 — К73-9 на 100 В. Диоды VD1…VD4 можно заменить сборкой КЦ405Ж, В.

Рис. 2. Каркас для намотки высоковольтного трансформатора Т1   Высоковольтный трансформатор Т1 выполнен на пластинах из трансформаторного железа, набранных в пакет (рис. 6.22). Такая конструкция позволяет исключить намагничивание сердечника. Намотка выполняется виток к витку: сначала вторичная обмотка — 2 — 2000 витков проводом ПЭЛ диаметром 0,08…0,12 мм (в четыре слоя), затем первичная — 1 — 20 витков. Межслойную изоляцию лучше выполнять из нескольких слоев тонкой (0,1 мм) фторопластовой ленты, но подойдет также и конденсаторная бумага (ее можно достать из высоковольтных неполярных конденсаторов).   После намотки обмоток трансформатор необходимо залить эпоксидным клеем. В клей перед заливкой желательно добавить несколько капель конденсаторного масла и хорошо перемешать.   Для удобства заливки можно изготовить картонный каркас по габаритам трансфоратора, где и выполняется герметизация.   Изготовленный таким образом трансформатор обеспечивает во вторичной обмотке амплитуду напряжения более 90000 В, но включать его без защитного разрядника F1 не рекомендуется, так как при этом возможен пробой внутри катушки. Защитный разрядник выполняется из двух оголенных проводов, расположенных на расстоянии 20…24 мм (для воздуха пробойное напряжение составляет примерно 3 кВ на 1 мм зазора).   Конструкция излучателя А1 приведена на рис. 6.23. Элементы конструкции крепятся на боковых пластинах из оргстекла толщиной 5…10 мм (на рисунке не показаны). В зазоре между токопроводящими пластинами и стеклом (1 мм) образуется равномерно распределенная дуга. Ее хорошо видно при затемнении — синяя полоса и характерный запах.   Для большей эффективности работы прибора можно использовать любой вентилятор, например типа ВН-2 — он ускорит циркуляцию воздуха в рабочей зоне излучателя.   Описанное устройство создает низкую концентрацию озона, и для освежения воздуха в жилом помещении необходима его работа в течение 10…20 минут.

Рис. 3. Конструкция излучателя А1

shemopedia.ru

Блок осушки воздуха принцип работы и схема — Оборудование

Надежность работы пневмоаппаратуры во многом зависит от качества поступающего сжатого воздуха: стабильности давления, наличия влаги и механических примесей в воздухе.

Для стабилизации давления наряду с соответствующей производительностью компрессорной станции большое значение имеют достаточное проходное сечение воздуховодов, длина воздуховодов, отсутствие утечек, а также расположение ресиверов вблизи пультов управления и исполнительных механизмов. Давление, подходящее к воздухораспределителям, должно быть примерно 0,6 МПа и при срабатывании механизмов не должно опускаться ниже 0,4 МПа.

Рис. 85. Ступень давления турбокомпрессора

1 – направляющий аппарат: 2 – диафрагма; 3 – колесо; 4 – вал

Значительное количество влаги, которая попадает в компрессор вместе со всасывающим воздухом, выпадает в промежуточном и концевом холодильниках компрессора и ресиверах. Для спуска конденсата в нижней части всех этих агрегатов имеются спусковые вентили. Однако значительная часть влаги, продолжающая оставаться в воздухе, вызывает коррозию внутренней поверхности труб; эта ржавчина является причиной забивания дроссельных отверстий, износа золотников и исполнительных механизмов. В зимнее время влага, скапливаясь, вызывает замерзание разных узлов. Для качественной подготовки воздуха на системах устанавливают устройства для улавливания влаги и масла после компрессора. Применяют два принципа отделения воздуха: первый основан на выделении влаги из воздуха при его охлаждении, второй – на поглощении влаги различными материалами, из которых наибольшее применение получил силикагель.

Влагомаслоотделитель

Простейшее устройство первого типа – влагомаслоотделитель (рис. 88). Воздух, входя в корпус, ударяется о перегородку, расширяется и, охлаждаясь за счет этого, теряет влагу в виде мельчайших капель.

Рис. 88. Влагомаслоотделитель

Рис. 89. Блок осушки воздуха 1 – теплообменник; 2 – влагомаслоотделитель; 3 – абсорбер; 4 – электрический подогреватель; 5 – фильтр пыли; 6 – ресивер

Направляющиеся вниз капли за счет инерционности попадают на днище, где скапливаются, а воздух заворачивает вверх и выходит к потребителю. Более эффективно работают влагоотделители, работающие по принципу циклона, в котором воздух, вращаясь, выделяет влагу и масло на стенки. Очищенный воздух выходит через центральную часть циклона.

Блок осушки

Однако самую качественную очистку от влаги можно получить в блоках очистки воздуха, где наряду с вышеописанными устройствами для очистки воздуха для окончательного влагоотделения используют силикагелиевые фильтры. Принципиальная схема блока осушки воздуха изображена на рис. 89.

Воздух на первой стадии проходит через водо-воздушный теплообменник, где охлаждается до 20° С. Выпадающая влага в виде конденсата сбрасывается в дренаж через конденсатоотводчик. Далее воздух попадает во влагомаслоотделитель, где влага спускается за счет расширения воздуха и изменения направления потока.

Блок осушки состоит из двух силикагелиевых абсорберов, работающих поочередно с циклом 8 ч. Проходя через один из абсорберов, воздух отдает там влагу и, осушенный, попадает в керамический фильтр, где отделяется пыль от выносимого силикагеля. В это время воздух во второй абсорбер поступает через электрический подогреватель с температурой 200 °С. Проходя через абсорбер, горячий воздух выделяет влагу из силикагеля и выносит ее в трубопровод продувки. Температурный режим контролируется электро – контактными термометрами.

После фильтра пыли воздух поступает в буферную емкость и затем через ресивер, где выравнивается давление, поступает к потребителю. Блок осушки воздуха выделяет влагу соответствующей точке росы (40 °С). С помощью обводных линий и запорных вентилей любой блок станции может быть выключен без снижения производительности станции.

arxipedia.ru


Каталог товаров
    .