Отсутствие у изготовителей и заказчиков определенного представления принципиальных отличий свойств силовых трансформаторов с малой мощностью и разными схемами соединения обмоток ведет к их неправильному использованию. При этом некорректный выбор схемы соединения обмоток ухудшает технические показатели электрических установок и понижает качество электроэнергии, а также приводит к возникновению серьезных аварий.
Это отмечают проектировщики из Нижнего Новгорода Алевтина Ивановна Федоровская и Владимир Семенович Фишман. Они в своем материале делают акцент на разнице в реакции трансформаторов на несимметричные токи, которые
содержат составляющую нулевой последовательности.
Схемы соединения обмоток и свойства трансформаторов
Известно, что силовые трансформаторы 6(10)/0,4 кВ имеют трехстержневой стальной сердечник, с расположенными там первичной и вторичной обмотки фазы А, В и С. Магнитные потоки трех фаз в симметричных режимах циркулируют в сердечнике трансформатора и не выходят за его пределы.
Что происходит во время нарушения симметрии с
преимуществом нагрузки одной
фазы на стороне 0,4 кВ? Подобные режимы работы исследуются с применением теории симметричных составляющих
[2]. По ней каждый несимметричный режим работы трехфазной сети представлен как геометрическая сумма 3 симметричных составляющих тока и напряжения: составляющие прямой, нулевой и обратной последовательностей.
Максимальная однофазная несимметрия достигается в режиме однофазного короткого замыкания на стороне 0,4 кВ трансформатора со схемой соединения обмоток D/Yн.
Картина токов симметричных составляющих в обмотках в таком режиме показана на рис. 1. В неповрежденных фазах на стороне 0,4 кВ геометрическая сумма трех симметричных составляющих тока приравнена нулю (не учитываем рабочую нагрузку фаз). В поврежденной фазе она достигает максимума и равняется току ОКЗ. Определяется она по формуле:
R1, R0, X1, Х0 – соответственно активные и реактивные сопротивления прямой и нулевой последовательности.
Сопротивления прямой последовательности
Сопротивления прямой последовательности R1 и X1 трансформаторов с разными схемами соединения обмоток определяются теми же формулами и имеют несущественные различия:
В каталогах видно, что известные величины в этих формулах Ркз и Uк почти не зависят от схем соединения обмоток трансформатора, а значит, не влияют на сопротивление прямой последовательности. Сопротивления же нулевой последовательности трансформаторов с различными схемами соединения обмоток имеют принципиальные отличия.
Сопротивления нулевой последовательностивекторов токов и магнитных потоков в трансформаторе со схемой соединения обмоток D/Yн (рис. 2).
В таких трансформаторах токи прямой, обратной и нулевой последовательностей текут и в первичной, и во вторичной обмотках. В то время как токи нулевой последовательности в первичной обмотке замыкаются внутри нее, не выходя при этом в сеть. Намагничивающие силы или ампер-витки, которые создают токи нулевой последовательности первичных и вторичных обмоток, имеют встречное направление и практически полностью компенсируют друг друга, обуславливая тем самым небольшую величину реактивных сопротивлений трансформатора. А сопротивления прямой и нулевой последовательностей приблизительно равны: R1 = R0; Х1 = Х0.
В трансформаторах со схемой соединения обмоток Y/Zн в аналогичном режиме ОКЗ токи нулевой последовательности протекают лишь по вторичной обмотке трансформатора, однако магнитного потока нулевой последовательности они не создают, что объясняется особенностью схемы Zн – «зигзаг».
Эта особенность состоит в том, что на каждом стержне трансформатора расположено по одной вторичной полуобмотке двух разных фаз (рис. 3). В режиме ОКЗ намагничивающие силы, создаваемые токами нулевой последовательности в этих полуобмотках, направлены встречно и друг друга взаимно компенсируют. При этом токи нулевой последовательности в первичной обмотке отсутствуют. В таких трансформаторах сопротивления нулевой последовательности оказываются меньше сопротивлений прямой последовательности: R0 < R1; Х0 < Х1.
Рис. 1. Токи симметричных составляющих в обмотках трансформатора в режиме однофазного короткого замыкания IA21, IA22, IA20, IB21, IB22, IB20, IC21, IC22, IC20 – токи фаз А, В, С прямой, обратной и нулевой последовательностей вторичной обмотки;
IA11, IA12, IA10, IB11, IB12, IB10, IC11, IC12, IC10 – токи фаз А, В, С прямой, обратной и нулевой последовательностей первичной обмотки.
Рис. 2. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток D/Yн
Рис. 3. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Zн
Из формулы (1) следует, что это обеспечивает большую величину тока ОКЗ у трансформаторов со схемами Y/Zн по сравнению с трансформаторами со схемами D/Yн.
Альтернативой трансформаторам со схемой Y/Z являются трансформаторы ТМГсу со схемой Y/Yn-0 со специальной встроенной симметрирующей обмоткой (СУ). Устройство было разработано кафедрой электроснабжения сельского хозяйства БАТУ, УП МЭТЗ им. В.И. Козлова и Минскэнерго, и теперь является неотъемлемой частью трансформатора со схемой У/Ун.
Симметрирующее устройство представляет собой отдельную обмотку, уложенную в виде бандажа поверх обмоток высшего напряжения трансформатора со схемой соединения обмоток У/Ун. Обмотка симметрирующего устройства рассчитана на длительное по ней протекание номинального тока трансформатора, т.е. на полную номинальную однофазную нагрузку.
Обмотка симметрирующего устройства включена в рассечку нулевого провода трансформатора из расчета того, что при несимметричной нагрузке и появлении тока в нулевом проводе трансформатора, а также связанного с ним потока нулевой последовательности, поток, создаваемый симметрирующим устройством равный по величине и направленный в противоположном направлении, компенсирует действие потока нулевой последовательности, предотвращая этим самым перекос фазных напряжений.
Схема подсоединения обмотки симметрирующего устройства (СУ) к обмоткам НН:
Трансформаторы с СУ улучшают работу защиты, повышают безопасность электрической сети. В них резко снижено разрушающее воздействие на обмотки токов при однофазных коротких замыканиях.
СУ значительно улучшает синусоидальность напряжения при наличии в сети нелинейных нагрузок, что крайне важно при питании многих чувствительных приборов, например, эвм, автоматики, телевизоров.
Трансформаторы ТМГ с симметрирующим устройством ТМГсу.
Теперь обратимся к трансформаторам со схемой соединения обмоток Y/Yн. Как известно, в обмотках, соединенных в звезду без выведенной нулевой точки, токи нулевой последовательности протекать не могут. Поэтому в режиме ОКЗ токи этой последовательности протекают только во вторичной обмотке трансформатора.
Рис. 4. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Yн
Схема замера сопротивлений нулевой последовательности приведена в ГОСТ 3484.1-88 [3]. К сожалению, в этом документе указано, что такие замеры предприятия-производители проводят по просьбе заказчиков. Вероятно, в последние годы таких просьб от заказчиков не поступает, а изготовители эти замеры самостоятельно не производят, считая, что в них нет необходимости. В результате проектировщики при выполнении расчетов пользуются старыми справочными данными. Однако использовать устаревшую информацию надо чрезвычайно осторожно, ведь конструкции современных силовых трансформаторов, в частности кожухов, а также материалы, из которых они изготовлены, существенно изменились.
Кроме того, имеющиеся на сегодня данные по сопротивлениям нулевой последовательности трансформаторов крайне скудны и противоречивы. Так, согласно замерам УП МЭТЗ им. В.И. Козлова, выполненным много лет назад, реактивные сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн превышают сопротивления прямой последовательности в среднем в 10 раз. В то же время в ГОСТ 3484.1-88 имеется фраза о том, что эти сопротивления могут отличаться на два порядка. И этим сегодня противоречия не исчерпываются[4].
Почему необходимо знать реальные значения сопротивлений?
Реальные значения сопротивлений нулевой последовательности знать необходимо, поскольку они определяют величину тока ОКЗ. Чем больше эти сопротивления, тем меньше ток ОКЗ, соответственно труднее осуществить защиту трансформатора.
В нормальных режимах работы большие сопротивления нулевой последовательности при неравномерной загрузке фаз трансформатора на стороне 0,4 кВ приводят к ухудшению качества электроэнергии у потребителя.
Так, если принять R1 = R0, X1 = X0, что характерно для трансформаторов со схемами соединения обмоток D/Yн, то получим:
Таблица 1. Токи короткого замыкания в конце защищаемой предохранителями зоны за трансформатором 100 кВА, 6/0,4 кВ, D/Yн при вводе на щит 0,4 кВ
Рис. 5. Схема подключения трансформатора 100 кВА, 6/0,4 кВ для питания собственных нужд ПС 110/35/6 кВ
Минимальный отключаемый ток предохранителем типа ПКТ-6 кВ, 20 А согласно каталожным данным составляет Iмин.откл.пр = 240 А, что значительно больше токов КЗ, приведенных в табл. 1.
Таким образом, защита предохранителями типа ПКТ 6 кВ оказывается нечувствительной. Более того, при протекании тока КЗ ниже минимально отключаемого, предохранитель не только не защищает оборудование, но и разрушается сам, вызывая аварию.
В качестве защитного аппарата можно рассмотреть возможность использования предохранителей зарубежных фирм, например марки Merlin Gerin. Номинальный ток предохранителя специалисты компании рекомендуют выбирать из условия Iпр. 0,1с 12 Iном.тр.Пользуясь времятоковой зависимостью, приведенной в [5], определяем, что этому условию удовлетворяет предохранитель Fusarc c номинальным током 20 А, минимальный ток отключения которого равен 55 А. Казалось бы, этот предохранитель надежно защищает электрооборудование, т.к. минимально отключаемый им ток меньше минимального тока КЗ: 62 А 55 А. Однако время отключения данным предохранителем тока КЗ, равного 62 А, составляет 7 с. При таком длительном времени необходимо учитывать эффект спада тока, вызванный увеличением активного сопротивления кабеля вследствие его нагрева [6]. В результате спада тока его значение приближается к минимальному току отключения предохранителя –55 А, что делает защиту ненадежной.
Улучшить надежность защиты можно путем применения силового трансформатора 6/0,4 кВ со схемой соединения обмоток Y/Zн. В этом случае минимальный ток короткого замыкания через предохранители увеличивается до 80 А, а время его отключения предохранителем сокращается до 0,6 с и защита становится достаточно надежной.
Если же в рассмотренном примере будет применен трансформатор со схемой соединения обмоток Y/Yн, то минимальный ток КЗ через предохранители составит лишь 22 А. Очевидно, что защитить электрооборудование предохранителями 6 кВ при таком токе невозможно. Недостатки трансформаторов со схемой соединения обмоток Y/Yн проявляются и в нормальных режимах работы при неравномерной загрузке фаз. Потери напряжения в более загруженной фазе могут резко возрасти по сравнению с менее за-груженными фазами, особенно при большой загрузке трансформатора и низком cos j нагрузки.
Однако означает ли всё вышесказанное, что трансформаторы со схемой соединения обмоток Y/Yн не должны изготавливаться вообще? Представляется, что это не так. Не всегда большая величина сопротивления нулевой последовательности трансформатора является недостатком. Например, при применении трансформаторов более 1000 кВА может возникнуть проблема устойчивости однофазной коммутационной аппаратуры 0,4 кВ к току ОКЗ. В этом случае большая величина сопротивления нулевой последовательности трансформатора со схемой Y/Yн поможет решить эту проблему.
Что же касается защиты таких трансформаторов, то она решается с помощью релейной защиты и выключателя 6(10) кВ, а с низкой стороны – с помощью вводного автомата.
Выводы
Для трансформаторов малой мощности (от 25 до 250 кВА), защищаемых предохранителями со стороны ВН, безусловное преимущество имеет схема соединения обмоток Y/Zн. Несколько меньший эффект дает схема D/Yн. Схему Y/Yн для таких трансформаторов применять не следует.
Схема соединения обмоток трансформаторов Y/Yн может применяться в сравнительно редких случаях для более мощных трансформаторов при необходимости ограничения тока однофазного КЗ с целью повышения устойчивости коммутационной аппаратуры.
Предприятиям-изготовителям силовых трансформаторов следует в обязательном порядке производить замеры их сопротивлений нулевой последовательности.
ЛИТЕРАТУРА
1. ГОСТ 11677-85. Трансформаторы силовые. Общие технические условия.
2. Ульянов С.А. Короткие замыкания в электрических системах. – М.: Госэнергоиздат, 1952. – 280 с.
3. ГОСТ 3484.1-88 (СТ СЭВ 1070-78). Трансформаторы силовые. Методы электромагнитных испытаний
4. Справочник по проектированию электроснабжения, линий электропередачи и сетей / Под ред. Большама Я.М., Круповича В.И., Самовера М.Л. и др. – М.: Энергия, 1975. – 696 с.
5. Каталог на предохранители Fusarc Merlin Gerin (стандарт DIN).
6. ГОСТ 28249-93. Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ.
_________________________________________________________________________________
Компания ООО Энетра Текнолоджиз на правах дилера ОАО МЭТЗ им. В. И. Козлова осуществляет продажу трансформаторов средней мощности. В нашем каталоге вы найдете сухие трансформаторы ТС, ТСЗ и ТСГЛ, масляные трансформаторы ТМ и ТМГ, а также специализированные трансформаторы различного назначения. Мы рады доставить выбранные вами трансформаторы по всей Сибири и СФО. Доставка трансформаторов осуществляется нами не только по СФО, но и по Дальнему Востоку.
www.enetra.ru В представленной работе рассматриваются вопросы конструкции силовых трансформаторов, автотрансформаторов и реакторов (далее - трансформаторов). Силовой трансформатор - это электрический аппарат, который предназначен для преобразования электрической энергии одного значения напряжения в электрическую энергию другого значения напряжения. Трансформаторы бывают: в зависимости от количества фаз: однофазные и трехфазные; по количеству обмоток: двухобмоточные и трёхобмоточные; в зависимости от места их установки: наружной и внутренней установки; по назначению: понижающие и повышающие. Кроме того, силовые трансформаторы различают по группам соединения обмоток, по способу охлаждения. Также при установке трансформаторов учитывают климатические условия. Принцип работы любого силового трансформатора основан на законе электромагнитной индукции. Если к обмотке данного устройства подключить источник переменного тока, то по виткам этой обмотки будет протекать переменный ток, который создаст в магнитопроводе трансформатора переменный магнитный поток. Замкнувшись в магнитопроводе, переменный магнитный поток будет индуктировать электродвижущую силу (ЭДС) в другой обмотке трансформатора. Это объясняется тем, что все обмотки трансформатора намотаны на один магнитопровод, то есть они связаны между собой электромагнитной связью. Значение индуктируемой ЭДС будет пропорционально количеству витков данной обмотки. ГОСТ Р 52719-2007 Трансформаторы силовые. ГОСТ 12965-85 Трансформаторы силовые масляные общего назначения классов напряжения 110 и 150 кВ. Технические условия. ГОСТ 17544-93 Трансформаторы силовые масляные общего назначения классов напряжения 220, 330, 500 и 750 кВ. Технические условия. ГОСТ 16110-82Трансформаторы силовые. Термины и определения. ГОСТ 24126-80 Устройства регулирования напряжения силовых трансформаторов под нагрузкой. Общие технические условия. ГОСТ 30830-2002 (МЭК 60076-1-93) Трансформаторы силовые. Часть 1. Общие положения. Стандарт организации ОАО «ФСК ЕЭС» СТО 56947007-29.180.01.116-2012. Классификация силовых трансформаторов по габаритам представлена в приложении 1, в приложении 2 представлены схемы и группы соединения обмоток трансформаторов. Структура условного обозначения типов отечественных трансформаторов: Буквенная часть условного обозначения должна содержать обозначения в следующем порядке: А - автотрансформатор; О или Т - однофазный или трёхфазный трансформатор; Р - расщепленная обмотка НН; Л - исполнение трансформатора с литой изоляцией; Т* - трёхобмоточный трансформатор; Н - трансформатор с РПН; С - исполнение трансформатора собственных нужд электростанций. _______________________________ * Для двухобмоточных трансформаторов не указывают. В стандартах или технических условиях на силовые трансформаторы конкретных групп или типов могут предусматриваться дополнительные буквенные обозначения после букв, перечисленных выше. Условное обозначение видов охлаждения: исполнение трансформатора с естественным масляным охлаждением или с охлаждением негорючим жидким диэлектриком с защитой при помощи азотной подушки без расширителя. Для трансформаторов с разными классами напряжения обмоток ВН допускается применять одинаковые условные обозначения, если эти трансформаторы различаются лишь номинальными напряжениями. В этом случае указывают наибольший из классов напряжения обмотки ВН. Примеры условных обозначений: ТМН-2500/110-У1: трансформатор трехфазный масляный с охлаждением при естественной циркуляции воздуха или масла, двухобмоточный, с регулированием напряжения под нагрузкой, мощностью 2500 кВА, класса напряжения 110 кВ, исполнения У категории 1; АТДЦТН-200000/330/110-У1: автотрансформатор трехфазный масляный с охлаждением при принудительной циркуляции воздуха и масла с ненаправленным потоком масла, трехобмоточный, с регулированием напряжения под нагрузкой, мощностью 200000 кВА, класса напряжения обмотки ВН - 330 кВ, класса напряжения обмотки - СН - 110 кВ, исполнения У категории 1. Необходимо контролировать правильность установки трансформаторов оборудованных устройствами газовой защиты. Крышка должна иметь подъем по направлению к газовому реле не менее 1 %, а маслопровод к расширителю - не менее 2 %. Полость выхлопной трубы должна быть соединена с полостью расширителя. При необходимости мембрана (диафрагма) на выхлопной трубе должна быть заменена аналогичной, поставленной заводом-изготовителем. studfiles.net Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика». В статье про приемо-сдаточные испытания трансформатора ТМГ11-1600 я рассказывал, что переключение ответвлений обмоток у силового трансформатора осуществляется с помощью переключателя ПТРЛ. Регулирование ступеней напряжения производится в ручную на стороне высокого напряжения (ВН) в пределах от -5% до +5% (ступенями по 2,5%) от номинального напряжения 6-10 (кВ) без возбуждения (ПБВ), т.е. при обязательном отключении силового трансформатора от сети, причем, как по высокой стороне (ВН), так и по низкой (НН). Регулирование напряжения по высокой стороне (ВН) позволяет упростить конструкцию переключателя из-за меньших токов по сравнению с обмоткой низкого напряжения (НН). Кроме того, обмотка высокого напряжения (ВН) имеет гораздо больше витков, а значит регулирование напряжения можно осуществлять гораздо точнее. В основном, переключатели ответвлений выполняют на 3 или 5 ступеней регулирования, среднее положение у которых всегда соответствует номинальному напряжению. При проведении очередных приемо-сдаточных испытаний у подобного трансформатора, правда чуть меньшей мощности (ТМЗ-630/10У1), у нас не проходили полученные значения омических сопротивлений обмоток ВН постоянному току, т.е. разница в измеренных сопротивлениях между фазами была существенная и значительно превышала норматив в 2%, причем на всех положениях переключателя ПБВ. ПУЭ, Глава 1.8, п.1.8.16.4 и ПТЭЭП, Приложение 3, п.2.5: РД 34.45-51.300-97 «Объем и Нормы испытаний электрооборудования», 6-ое издание, п.6.8: В связи с этим было решено слить масло, вскрыть крышку трансформатора и проверить контакты в переключателе ПБВ. Вот я и решил заодно показать Вам устройство и принцип работы переключателя, как говорится не на словах, а на деле. В рассматриваемом трансформаторе ТМЗ-630/10У1 установлен переключатель ПБВ реечного типа. Помимо переключателей реечного типа, существуют переключатели и барабанного типа, но о них я расскажу Вам как-нибудь в другой раз, по мере подходящего случая. Реечный переключатель расположен внутри трансформатора (в масле) прямо под крышкой бака, а его рукоятка выведена наружу. Как я и говорил в начале статьи, переключение ответвлений обмоток происходит по высокой стороне (ВН). Вот высоковольтные вводы (ВН) трансформатора. А вот их вид, но уже при слитом масле внутри бака трансформатора. Заодно покажу Вам и низкую сторону (НН). Мне не удалось найти чертеж конструкции переключателя именно нашего трансформатора ТМЗ-630/10У1. Зато на глаза мне попался чертеж аналогичного (похожего) реечного переключателя ПТРЛ с 6 выводами на каждую фазу. ПТРЛ расшифровывается, как: Как видите, конструкция реечного переключателя обмоток ПБВ достаточно простая. На нижней неподвижной рейке установлены 18 выводов (6 на каждую фазу). К каждому выводу подключено соответствующее ответвление от обмотки, согласно ниже представленной схемы («звезда» без нуля — Y). Над неподвижной рейкой расположена подвижная рейка, на которой установлены 3 контактных перемычки (на каждую фазу своя перемычка). Подвижная рейка соединена с валом ручного привода, при повороте которого она перемещается с определенным шагом через зубчатый сегмент и замыкает своими контактами (перемычками) соответствующие выводы ответвлений обмоток. Фиксация положения рукоятки переключателя на определенной ступени осуществляется специальным фиксирующим устройством, расположенным на баке трансформатора. Вернемся к нашей проблеме, по причине которой омическое сопротивление первичных обмоток постоянному току имели неодинаковые значения и выходили за рамки нормы. Согласно руководства по эксплуатации реечных переключателей, пружины, прижимающие подвижный контакт (перемычку) должны быть сжаты на 1/3 длины от их разжатого состояния, а винты, сжимающие пружины должны быть законтрагаены. Видимо, со временем длительной эксплуатации гайки немного ослабли и, соответственно, ослаб сам контакт, что и давало разброс параметров по омическому сопротивлению. В итоге сжимающие пружины и гайки затянули соответствующим образом, после чего все замеры пришли в норму. Вот такая вот история. Помимо представленной в статье схемы первичной обмотки «звезда» без нуля (Y), существует и схема «треугольника» (Д), причем переключение обмоток которой осуществляется аналогичным реечным переключателем с 6 выводами на фазу. Ниже представлено еще две схемы, где переключение обмоток также происходит с помощью реечного переключателя ПТРЛ, но только с 5 выводами на фазу. Схема соединения ответвлений обмоток по схема «звезда» без нуля (Y): Схема соединения ответвлений обмоток по схема «звезда» с нулем (Y0): Теперь Вы представляете себе устройство реечного переключателя и как происходит переключение обмоток трансформатора. Если у Вас напряжение в сети снизилось (увеличилось) меньше (больше) предельно-допустимого значения, то переключив ступени переключателя ПБВ можно привести выходное напряжение силового трансформатора в нормируемое значение. Принцип работы реечного переключателя ответвлений обмоток у трансформатора более наглядно продемонстрирован в видеоролике. P.S. На этом, пожалуй, и все. Всем спасибо за внимание. Если статья была Вам полезна, то поделитесь ей со своими друзьями: zametkielectrika.ru Для транспортировки электрической энергии на большие расстояния используются силовые трансформаторы, которые позволят снизить потери при электропередаче. Это осуществляется за счет передачи вырабатываемого генераторами электричества на электрическую подстанцию. На этой подстанции амплитуда напряжения, что поступает в линию электропередач, будет повышаться. Если вам необходимо купить трансформатор сухой силовой, вы можете сделать это в компании «Терра-Ток». Для уточнения подробностей позвоните нам. Если схематично описать данное устройство, представьте стальной сердечник с двумя катушками, которые имеют обмотки. Одна из них – первичная, другая – вторичная. Когда переменный ток начинает прохождение по первичной обмотке, в магнитопроводе (сердечнике) образуется магнитный поток, возбуждающий электродвижущую силу во вторичной обмотке. Если она (вторичная обмотка) не присоединена к цепи, которая потребляет энергию, то сила ее тока равна нулю. При подсоединении к цепи электроэнергия потребляется, и сила тока в первичной обмотке возрастает пропорционально, согласно с законом сохранения. Так происходит процесс преобразования и распределения энергии. Конструкция силового сухого трансформатора включает в себя: Обмотки трансформаторных фаз пропускают через себя ток нагрузки, а изготавливаются они из таких металлов, как алюминий или медь. Намотанные концентрические обмотки выполняются цилиндрами, которые располагаются один в другом. Для низкого напряжения (НН) обмотка бывает винтовой и цилиндрической. Она располагается вблизи стержня, чтобы изоляционный слой было проще сделать. Далее на нее устанавливается цилиндр, что обеспечивает изоляцию между сторонами низкого и высокого напряжений. На этот цилиндр монтируется обмотка высокого напряжения (ВН), которая может быть многослойной или непрерывной. Есть два способа для регулирования выходного напряжения. Они зависят от типа переключателя, которые могут изменять количество на обмотке витков либо с отключением нагрузки, либо под нагрузкой. Наиболее востребован второй способ. terra-tok.ru Данная статья является продолжением статей: «Как рассчитать трансформатор 220/36 вольт»; «Как изготовить каркас для Ш – образного сердечника»; "Как намотать трансформатор на Ш-образном сердечнике". Маломощные, однофазные силовые трансформаторы (до 100 ватт), обычно изготавливают трех видов: – Ш – образные, П – образные и намотанные на тороиде.Тороидальные трансформаторы изготавливают очень редко, хотя они и являются самыми эффективными. У тороидальных трансформаторов наименьшие поля рассеивания, наименьшие потери в сердечнике, высокий КПД и т.д. Однако изготовление их очень хлопотно – все работы по намотке провода проводятся вручную. Наиболее распространенные виды трансформаторов изготавливаются на Ш –образном и П – образном сердечниках. Как изготовить силовой трансформатор на Ш – образном сердечнике смотрите в статье «Как намотать трансформатор на Ш-образном сердечнике?». Силовой трансформатор на П — образном сердечнике немного отличается от Ш — образного трансформатора: Силовые трансформаторы на старых ламповых телевизорах все были изготовлены такой конструкции и на мой взгляд, их проще изготовить, чем Ш — образный трансформатор. Особенностью работы любого трансформатора является процесс преобразования электрической энергии переменного тока в переменное магнитное поле и наоборот. Поочередный обмен электрической и магнитной энергией происходит между катушками первичной и вторичной обмоток и сердечником магнитопровода. Пространство между витками обмоток и обмотками, обладает очень малой магнитной проницаемостью и большим магнитным сопротивлением, а потому почти весь магнитный поток сосредоточен в магнитопроводе. Стальной магнитопровод обладает в тысячи раз меньшим магнитным сопротивлением, чем воздух и окружающая среда. Чтобы передать электрическую энергию из первичной обмотки трансформатора во вторичную обмотку с наименьшими потерями, необходимо соблюдать следующие условия: Не рекомендуется разносить первичную и вторичную обмотки на каркасе, а тем более по разные стороны сердечника. Чем больше разнесены обмотки друг от друга на сердечнике магнитопровода, тем больше потери магнитной энергии на магнитном сопротивлении магнитопровода. Все эти условия удачно сочетаются и в трансформаторе с П – образным сердечником. Расчет П – образного трансформатора ничем не отличается от расчета Ш – образного. Приведенный расчет трансформатора в статье «Как рассчитать трансформатор 220/36 вольт», полностью подходит и для нашего случая. Попробуем изготовить этот трансформатор на магнитопроводе с П – образным сердечником. Общее количество витков обмоток, диаметр провода, поперечное сечение магнитопровода — идентичны. Параметры трансформатора из статьи: Рассмотрим схему включения трансформатора и его обмоток. Особенность изготовления трансформатора на П — образном сердечнике состоит в том, что витки первичной и вторичной обмотки, разделены пополам и наматываются на двух каркасах. На каждом каркасе мотается половина первичной и половина вторичной обмотки. Оба каркаса мотаются совершенно одинаково с отводами на щечках. На одном каркасе наматывается ½ первичной обмотки – 528 витков, проводом диаметром 0,5 мм. с обозначением концов а и б. Затем наносим слой межобмоточной изоляции и ½ вторичной обмотки – 90 витков, проводом диаметром 1,1 мм. с обозначением концов А и Б. На втором каркасе наматываются вторые половины первичной (528 витков, концы а1 и б1) и вторичной (90 витков, концы А1 и Б1) обмоток. После сборки трансформатора соединяем концы первичной и вторичной обмоток.Обратите особое внимание при соединении двух половинок первичной обмотки, они должны быть включены синфазно. Собираем простую схему для проверки правильного включения обмоток. От другого трансформатора на 220 вольт возьмем любое напряжение U равное или меньше 110 вольт и подключим его к одной половинке первичной обмотки (концы а и б). На другом каркасе, на другой половинке первичной обмотки (концы а1 и б1) должно быть такое же напряжение U, как на первом каркасе между а и б. Теперь конец обмотки б соединим с концом а1 и измерим напряжение между точками а и б1. Напряжение должно быть равно 2 U.Если этого не произошло, то разъединим точки б и а1 и соединим, точки б и б1. Измерим напряжение между точками а и а1. Оно должно быть равно 2 U. К этим точкам обмоток и будет подключаться входное переменное напряжение 220 вольт. Разумеется, все переключения проводятся при выключенном питании из сети 220 вольт. Допустим, последний случай соединения был успешным и напряжение между точками а и а1 удвоилось, т.е. равно 2 U. Далее, через предохранитель на 1 ампер, подсоединяем полностью первичную обмотку к сети 220 вольт. Трансформатор должен заработать. Вторичное напряжение на концах А — Б и А1 — Б1 должно быть по 18 вольт. Две половинки вторичных обмоток так же фазируются.Общее напряжение, при соединении двух половинок вторичных обмоток. должно быть 36 вольт.Подключим нагрузку в виде лампочки на соответствующее, в нашем случае 36 вольт, напряжение. Если все соединения произведены правильно — лампочка загорится. Таковы особенности изготовления трансформатора на П — образном сердечнике. domasniyelektromaster.ruСиловые трансформаторы 10(6)/0,4 кв области применения разных схем соединения обмоток. Схема трансформатора силового
Силовые трансформаторы 10(6)/0,4 кв области применения разных схем соединения обмоток
Ключевое отличие технических характеристик трансформаторов с разными схемами соединений обмоток - различная реакция на несимметричные токи, которые содержат составляющую нулевой последовательности. В основном это однофазные сквозные короткие замыкания и рабочие режимы с неравномерной загрузкой фаз.Изучение конструкции силовых трансформаторов.
Краткая характеристика силовых трансформаторов 35-220 кВ
Введение
Назначение и принцип работы силового трансформатора
Применяемые стандарты, классификация и рекомендации при изготовлении и эксплуатации силовых трансформаторов
Устройство реечного переключателя обмоток ПБВ трансформатора
Схема силового трансформатора
Краткое описание принципа работы
Электрическая схема силового трансформатора
Регулирование выходного напряжения
Как изготовить трансформатор на П - образном сердечнике
Поделиться с друзьями: