Терморегуляторы для дома и не только. Схема терморегулятора
Блог инженера » Портал инженера
Существует большое количество электрических принципиальных схем, которые могут поддерживать желаемую заданную температуру с точностью до 0,0000033 °С. Эти схемы включают коррекцию при отклонении от установленного значения температуры, пропорциональное, интегральное и дифференциальное регулирование.
В регуляторе для электроплиток (рис. 1.1) используется позистор (терморезистор с положительным температурным коэффициентом сопротивления или ТКС) типа К600А фирмы Allied Electronics, встроенный в кухонную плиту, чтобы поддерживать идеальную температуру варки. Потенциометром можно регулировать запуск семисторного регулятора и, соответственно, включение или выключение нагревательного элемента. Устройство предназначено для работы в электрической сети с напряжением 115 В. При включении устройства в сеть напряжением 220 В необходимо использовать другой питающий трансформатор и семистор.
![]() |
Рисунок 1.1 Регулятор температуры электроплиты
Таймер LM122 производства компании National используется как дозирующий терморегулятор с оптической развязкой и синхронизацией при прохождении питающего напряжения через нуль. Установкой резистора R2 (рис. 1.2) задается регулируемая позистором R1 температура. Тиристор Q2 подбирается из расчета подключаемой нагрузки по мощности и напряжению. Диод D3 определен для напряжения 200 В. Резисторы R12, R13 и диод D2 реализуют управление тиристором при прохождении питающего напряжения через нуль.
![]() |
Рисунок 1.2 Дозирующий регулятор мощности нагревателя
Простая схема (рис. 1.3) с переключателем при переходе питающего напряжения через нуль на микросхеме СА3059 позволяет регулировать включение и выключение тиристора, который управляет катушкой нагревательного элемента или реле для управления электро- или газовой печью. Переключение тиристора происходит при малых токах. Измерительное сопротивление NTC SENSOR обладает отрицательным температурным коэффициентом. Резистором Rp устанавливается желаемая температура.
![]() |
Рисунок 1.3 Схема терморегулятора с комутацией нагрузки при переходе питания через ноль.
Устройство (рис. 1.4) обеспечивает пропорциональное регулирование температуры небольшой маломощной печи с точностью до 1 °С относительно температуры, заданной с помощью потенциометра. В схеме используется стабилизатор напряжения 823В, который питается, как и печь, от того же источника напряжением 28 В. Для задания величины температуры должен использоваться 10-оборотный проволочный потенциометр. Мощный транзистор Qi работает в режиме насыщения или близко к этому режиму, однако радиатор для охлаждения транзистора не требуется.
![]() |
Рисунок 1.4 Схема терморегулятора для низковольтного нагревателя
Для управления семистором при переходе питающего напряжения через нуль используется переключатель на микросхеме SN72440 от фирмы Texas Instruments. Эта микросхема переключает симистор TRIAC (рис. 1.5), включающий или выключающий нагревательный элемент, обеспечивая необходимый нагрев. Управляющий импульс в момент перехода напряжения сети через нуль подавляется или пропускается под действием дифференциального усилителя и моста сопротивления в интегральной схеме (ИС). Ширина последовательных выходных импульсов на выводе 10 ИС регулируется потенциометром в цепи запуска R(trigger)? как это показано в таблице на рис. 1.5, и должна изменяться в зависимости от параметров используемого симистора.
![]() |
Рисунок 1.5 Терморегулятор на микросхеме SN72440
Обычный кремниевый диод с температурным коэффициентом 2 мВ/°С служит для поддержания разницы температур до ±10 °F] с точностью примерно 0,3 °F в широком диапазоне температур. Два диода, включенные в мост сопротивлений (рис. 1.6)^ дают напряжение на выводах А и В, которое пропорционально разнице температуры. Потенциометром регулируется ток смещения, который соответствует предварительно устанавливаемой области смещения температуры. Низкое выходное напряжение моста усиливается операционным усилителем MCI741 производства фирмы Motorola до 30 В при изменении напряжения на входе на 0,3 мВ. Буферный транзистор добавлен для подключения нагрузки с помощью реле.
![]() |
Рисунок 1.6 Регулятор температуры с датчиком на диоде
Температура по шкале Фаренгейта. Для перевода температуры из шкалы Фаренгейта в шкалу Цельсия нужно от исходного числа отнять 32 и умножить результат на 5/9/
Позистор RV1 (рис. 1.7) и комбинация из переменного и постоянного резисторов образуют делитель напряжения, поступающего с 10-вольтового диода Зенера (стабилитрона). Напряжение с делителя подается на однопереходный транзистор. Во время положительной полуволны напряжения сети на конденсаторе возникает напряжение пилообразной формы, амплитуда которого зависит от температуры и установки сопротивления на потенциометре номиналом 5 кОм. Когда амплитуда этого напряжения достигает отпирающего напряжения однопереходного транзистора, он включает тиристор, который и подает напряжение на нагрузку. Во время отрицательной полуволны переменного напряжения тиристор выключается. Если температура печи низка, то тиристор открывается в полуволне раньше и производит больший нагрев. Если предварительно установленная температура достигнута, то тиристор открывается позже и производит меньший нагрев. Схема разработана для использования в устройствах с температурой окружающей среды 100 °F.
![]() |
Рисунок 1.7 Терморегулятор для хлебопечки
Простой регулятор (рис. 1.8), содержащий измерительный мост с термистором и два операционных усилителя, регулирует температуру с очень высокой точностью (до 0,001 °С) и большим динамическим диапазоном, что необходимо при быстрых изменениях условий окружающей среды.
![]() |
Рисунок 1.8 Схема терморегулятора повышенной точности
Устройство (рис. 1.9) состоит из симистора и микросхемы, которая включает в себя источник питания постоянного тока, детектор перехода питающего напряжения через нуль, дифференциальный усилитель, генератор пилообразного напряжения и выходной усилитель. Устройство обеспечивает синхронное включение и выключение омической нагрузки. Управляющий сигнал получается при сравнении напряжения, получаемого от чувствительного к температуре измерительного моста из резисторов R4 и R5 и резистора с отрицательным температурным коэффициентом R6, а также резисторов R9 и R10 в другой цепи. Все необходимые функции реализованы в микросхеме ТСА280А фирмы Milliard. Показанные значения действительны для симистора с током управляющего электрода 100 мА, для другого симистора значения номиналов резисторов Rd, Rg и конденсатора С1 должны изменяться. Пределы пропорционального регулирования могут устанавливаться с помощью изменения значения резистора R12. При проходе через нуль напряжения сети симистор будет переключаться. Период колебаний пилообразной формы составляет примерно 30 сек и может устанавливаться изменением емкости конденсатора С2.
![]() |
Представленная простая схема (рис. 1.10) регистрирует разницу температур двух объектов, нуждающихся в использовании регулятора. Например, для включения вентиляторов, выключения нагревателя или для управления клапанами смесителей воды. Два недорогих кремниевых диода 1N4001, установленные в мост сопротивлений, используются как датчики. Температура пропорциональна напряжению между измерительным и опорным диодом, которое подается на выводы 2 и 3 операционного усилителя МС1791. Так как при разнице температур с выхода моста поступает только примерно 2 мВ/°С, то необходим операционный усилитель с высоким усилением. Если для нагрузки требуется более 10 мА, то необходим буферный транзистор.
![]() |
Рисунок 1.10 Схема терморегулятора с измерительным диодом
При падении температуры ниже установленного значения разность напряжений, на измерительном мосте с терморезистором, регистрируется дифференциальным операционным усилителем, который открывает буферный усилитель на транзисторе Q1 (рис. 1.11) и усилитель мощности на транзисторе Q2. Рассеиваемая мощность транзистора Q2 и его нагрузки резистора R11 обогревают термостат. Терморезистор R4 (1D53 или 1D053 от фирмы National Lead) имеет номинальное сопротивление 3600 Ом при 50 °С. Делитель напряжения Rl—R2 уменьшает входной уровень напряжения до необходимого значения и способствует тому, что терморезистор работает при малых токах, обеспечивающих малый разогрев. Все цепи моста, за исключением резистора R7, предназначенного для точной регулировки температуры, находятся в конструкции термостата.
![]() |
Рисунок 1.11 Схема терморегулятора с измерительным мостом
Схема (рис. 1.12) осуществляет линейное регулирование температуры с точностью до 0,001 °С, с высокой мощностью и высокой эффективностью. Источник опорного напряжения на микросхеме AD580 питает мостовую схему преобразователя температуры, в которой платиновый измерительный резистор (PLATINUM SENSOR) работает в качестве датчика. Операционный усилитель AD504 усиливает выходной сигнал моста и управляет транзистором 2N2907, который, в свою очередь, управляет синхронизируемым с частотой 60 Гц генератором на однопереходном транзисторе. Этот генератор питает управляющий электрод тиристора через развязывающий трансформатор. Предварительная установка способствует тому, что тиристор включается в различных точках переменного напряжения, что необходимо для точной регулировки нагревателя. Возможный недостаток — возникновение помех высокой частоты, т. к. тиристор переключается посреди синусоиды.
![]() |
Рисунок 1.12 Тиристорный терморегулятор
Узел управления мощного транзисторного ключа (рис. 1.13) для нагрева инструментов мощностью 150 Вт использует отвод на нагревательном элементе, чтобы принудить переключатель на транзисторе Q3 и усилитель на транзисторе Q2 достичь насыщения и установить малую рассеиваемую мощность. Когда на вход транзистора Qi поступает положительное напряжение, транзистор Qi открывается и приводит транзисторы Q2 и Q3 в открытое состояние. Ток коллектора транзистора Q2 и базовый ток транзистора Q3 определяются резистором R2. Падение напряжения на резисторе R2 пропорционально напряжению питания, так что управляющий ток обладает оптимальным уровнем для транзистора Q3 при большом диапазоне напряжения.
![]() |
Рисунок 1.13 Ключ для низковольтного терморегулятора
Операционный усилитель СА3080А производства фирмы RCA (рис. 1.14) включает вместе термопару с переключателем, срабатывающем при проходе питающего напряжения через нуль и выполненным на микросхеме СА3079, который служит как триггер для симистора с нагрузкой переменного напряжения. Симистор нужно подбирать Под регулируемую нагрузку. Напряжение питания для операционного усилителя некритично.
![]() |
Рисунок 1.14 Терморегулятор на термопаре
При использовании фазового управления симистором ток нагрева сокращается постепенно, если происходит приближение к установленной температуре, что предотвращает большое отклонение от установленного значения. Сопротивление резистора R2 (рис. 1.15) регулируется так, чтобы транзистор Q1 при желаемой температуре был закрыт, тогда генератор коротких импульсов на транзисторе Q2 не функционирует и таким образом симистор больше не открывается. Если температура понижается, то сопротивление датчика RT увеличивается и транзистор Q1 открывается. Конденсатор С1 начинает заряжаться до напряжения открывания транзистора Q2, который лавинообразно открывается, формируя мощный короткий импульс, выполняющий включение симистора. Чем больше открывается транзистор Q1, тем быстрее заряжается емкость С1 и симистор в каждой полуволне переключается раньше и, вместе с тем, в нагрузке возникает большая мощность. Пунктирной линией представлена альтернативная схема для регулирования двигателя с постоянной нагрузкой, например с вентилятором. Для работы схемы в режиме охлаждения резисторы R2 и RT нужно поменять местами.
![]() |
Рисунок 1.15 Терморегулятор для отопления
Пропорциональный терморегулятор (рис. 1.16) использующий микросхему LM3911 от фирмы National, устанавливает постоянную температуру кварцевого термостата на уровне 75 °С с точностью ±0,1 °С и улучшает стабильность кварцевого генератора, который часто используется в синтезаторах и цифровых счетчиках. Отношение импульс/пауза прямоугольного импульса на выходе (отношение времени включения/выключения) изменяется в зависимости от температурного датчика в ИС и напряжения на инверсном входе микросхемы. Изменения продолжительности включения микросхемы изменяют усредненный ток включения нагревательного элемента термостата таким образом, что температура приводится к заданной величине. Частота прямоугольного импульса на выходе ИС определяется резистором R4 и конденсатором С1. Оптрон 4N30 открывает мощный составной транзистор, у которого в цепи коллектора имеется нагревательный элемент. Во время подачи положительного прямоугольного импульса на базу транзисторного ключа последний переходит в режим насыщения и подключает нагрузку, а при окончании импульса отключает ее.
![]() |
Рисунок 1.16 Пропорциональный терморегулятор
Регулятор (рис. 1.17) поддерживает температуру печи или ванны с высокой стабильностью на уровне 37,5 °С. Рассогласование измерительного моста регистрируется измерительным операционным усилителем AD605 с высоким коэффициентом подавления синфазной составляющей, низким дрейфом и симметричными входами. Составной транзистор с объединенными коллекторами (пара Дарлингтона) осуществляет усиление тока нагревательного элемента. Транзисторный ключ (PASS TRANSISTOR) должен принимать всю мощность, которая не подводится к нагревательному элементу. Чтобы справляться с этим, большая схема следящей системы подключается между точками "А” и "В", чтобы установить постоянно 3 В на транзисторе без учета напряжения, требуемого для нагревательного элемента. Выходной сигнал операционного усилителя 741 сравнивается в микросхеме AD301A с напряжением пилообразной формы, синхронным с напряжением сети частотой 400 Гц. Микросхема AD301A работает как широтно-импульсный модулятор, включающий транзисторный ключ 2N2219—2N6246. Ключ предоставляет управляемую мощность конденсатору емкостью 1000 мкФ и транзисторному ключу (PASS TRANSISTOR) терморегулятора.
![]() |
Рисунок 1.17 Высоточный терморегулятор
Принципиальная схема терморегулятора, срабатывающего при проходе напряжения сети через нуль (ZERO-POINT SWITCH) (рис. 1.18), устраняет электромагнитные помехи, которые возникают при фазовом управлении нагрузкой. Для точного регулирования температуры электронагревательного прибора используется пропорциональное включение/выключение семистора. Схема, справа от штриховой линии, представляет собой переключатель, срабатывающий при проходе через нуль питающего напряжения, который включает симистор почти непосредственно после прохода через нуль каждой полуволны напряжения сети. Сопротивление резистора R7 устанавливается таким, чтобы измерительный мост в регуляторе был уравновешен для желаемой температуры. Если температура превышена, то сопротивление позистора RT уменьшается и открывается транзистор Q2, который включает управляющий электрод тиристора Q3. Тиристор Q3 включается и замыкает накоротко сигнал управляющего электрода' симистора Q4 и нагрузка отключается. Если температура понижается, то транзистор Q2 закрывается, тиристор Q3 отключается, а к нагрузке поступает полная мощность. Пропорционального управления достигают подачей пилообразного напряжения, формируемого транзистором Q1, через резистор R3 на цепь измерительного моста, причем период пилообразного сигнала — это сразу 12 циклов частоты сети. От 1 до 12 этих циклов могут вставляться в нагрузку и, таким образом, мощность может модулироваться от 0—100% с шагом 8 %.
![]() |
Рисунок 1.18 Терморегулятор на симисторе
Схема устройства (рис. 1.19) позволяет оператору устанавливать верхние и нижние границы температуры для регулятора, что бывает необходимо при продолжительных тепловых испытаниях свойств материала. Конструкция переключателя дает возможность для выбора способов управления: от ручного до полностью автоматизированных циклов. С помощью контактов реле К3 управляют двигателем. Когда реле включено, двигатель вращается в прямом направлении с целью повышения температуры. Для понижения температуры направление вращения двигателя меняется на противоположное. Условие переключения реле К3 зависит от того, какое из ограничительных реле было включено последним, К\ или К2. Схема управления проверяет выход программатора температуры. Этот входной сигнал постоянного тока будет уменьшен резисторами и R2 максимально на 5 В и усилен повторителем напряжения А3. Сигнал сравнивается в компараторах напряжения Aj и А2 с непрерывно изменяющимся эталонным напряжением от 0 до 5 В. Пороги компараторов предварительно устанавливаются 10-оборотными потенциометрами R3 и R4. Транзистор Qi закрыт, если сигнал на входе ниже опорного сигнала. Если входной сигнал превосходит опорный сигнал, то транзистор Qi отрывается и возбуждает катушку реле К, верхнего предельного значения.
![]() |
Рисунок 1.19
Пара преобразователей температуры LX5700 от фирмы National (рис. 1.20) выдает выходное напряжение, которое пропорционально разнице температуры между обоими преобразователями и используется для измерения градиента температуры в таких процессах, как, например, распознавание отказа вентилятора охлаждения, распознавание движения охлаждающего масла, а также для наблюдения за другими явлениями в охлаждающих системах. С измерительным преобразователем, находящимся в горячей среде (вне охлаждающей жидкости или в покоящемся воздухе более 2 мин), 50-омный потенциометр должен устанавливаться таким образом, чтобы выход выключался. Тогда как с преобразователем в прохладной среде (в жидкости или в подвижном воздухе продолжительностью 30 сек) должно находиться положение, при котором выход включается. Эти установки перекрываются между собой, но окончательная установка между тем дает в итоге достаточно стабильный режим.
![]() |
Рисунок 1.20 Схема детектора температур
В схеме (рис. 1.21) используется высокоскоростной изолированный усилитель AD261K для высокоточного регулирования температуры лабораторной печи. Многодиапазонный мост содержит датчики с сопротивлением от 10 Ом до 1 мОм с делителями Кельвина—Варлея (Kelvin-Varley), которые используются для предварительного выбора точки управления. Выбор точки правления осуществляется с помощью переключателя на 4 положения. Для питания моста допускается применение неинвертирующего стабилизируемого усилителя AD741J, не допускающего синфазной погрешности напряжения. Пассивный фильтр на 60 Гц подавляет помехи на входе усилителя AD261K, который питает транзистор 2N2222A. Далее питание поступает на пару Дарлингтона и подводится 30 В к нагревательному элементу.
![]() |
Измерительный мост (рис. 1.22) образуется позистором (резистором с положительным температурным коэффициентом) и резисторами Rx R4, R5, Re. Сигнал, снимаемый с моста, усиливается микросхемой СА3046, которая в одном корпусе содержит 2 спаренных транзистора и один отдельный выходной транзистор. Положительная обратная связь через резистор R7 предотвращает пульсации, если достигнута точка переключения. Резистором R5 устанавливается точная температура переключения. Если температура опускается ниже установленного значения, то реле RLA включается. Для противоположной функции должны меняться местами только позистор и Rj. Значение резистора Rj выбирается так, чтобы приблизительно достичь желаемой точки регулировки.
![]() |
Рисунок 1.22 Регулятор температуры с позистором
Схема регулятора (рис. 1.23) добавляет множество стадий опережающего сигнала к нормально усиленному выходу температурного датчика LX5700 от фирмы National, чтобы, по меньшей мере, частично компенсировать измерительные задержки. Коэффициент усиления по постоянному напряжению операционного усилителя LM216 будет установлен на значение, равное 10, с помощью резисторов с сопротивлением 10 и 100 мОм, что дает в итоге 1 В/°С на выходе операционного усилителя. Выход операционного усилителя активирует оптрон, который управляет обычным терморегулятором.
![]() |
Рисунок 1.23 Терморегулятор с оптроном
Схема (рис. 1.24) используется для регулирования температуры в установке промышленного отопления, работающей на газе и обладающей высокой тепловой мощностью. Когда операционный усилитель-компаратор AD3H переключается при требуемой температуре, то запускается одновйбратор 555, выходной сигнал которого открывает транзисторный ключ, а следовательно, включает газовый вентиль и зажигает горелку отопительной системы. По истечении одиночного импульса горелка выключается, несмотря на состояние выхода операционного усилителя. Постоянная времени таймера 555 компенсирует задержки в системе, при которой нагрев выключается, прежде чем датчик AD590 достигает точки переключения. Позистор, включенный во времязадающую цепь одновибратора'555, компенсирует изменения постоянной времени таймера из-за изменений температуры окружающей среды. При включении питания во время процесса запуска системы сигнал, формируемый операционным усилителем AD741, минует таймер и включает нагрев отопительной системы, при этом схема имеет одно устойчивое состояние.
![]() |
Рисунок 1.24 Коррекция перегрузки
Все компоненты терморегулятора находятся на корпусе кварцевого резонатора (рис. 1.25), таким образом, максимальная рассеиваемая мощность резисторов 2 Вт служит для того, чтобы поддерживать температуру в кварце. Позистор имеет при комнатной температуре сопротивление около 1 кОм. Типы транзистора некритичны, но должны иметь низкие токи утечки. Ток позистора примерно от 1 мА должен быть гораздо больше, чем ток базы 0,1 мА транзистора Q1. Если в качестве Q2 выбрать кремниевый транзистор, то нужно повысить 150-омное сопротивление до 680 Ом.
![]() |
Рисунок 1.25
В мостовой схеме регулятора (рис. 1.26) используется платиновый датчик. Сигнал с моста снимается операционным усилителем AD301, который включен как дифференциальный усилитель-компаратор. В холодном состоянии сопротивление датчика менее 500 Ом, при этом выход операционного усилителя приходит в насыщение и дает положительный сигнал на выходе, который открывает мощный транзистор и нагревательный элемент начинает греться. По мере нагревания элемента растет и сопротивление датчика, которое возвращает мост в состояние уравновешивания, и нагрев выключается. Точность достигает 0,01 °С.
![]() |
Рисунок 1.26 Регулятор температуры на компараторе
Источник: https://soundbarrel.ru
ingeneryi.info
Схема терморегулятора воды
Регулятор температуры воды своими руками
Несложные терморегулятор может найти хорошее применение на даче, в доме, в котедже для нагрева воды в баке.
Метод регулирования устройства двухпозиционный. Включение и отключение тэнов происходит с помощью контактов реле. Устройство не имеет сетевого трансформатора, снабжено контрольной лампочкой, потенциометром, служащим для установки требуемой температуры и датчиком температуры, роль которого выполняет биполярный транзистор.И своими руками вам нужно только его собрать и пользоватся.
Схема:
Питается устройство от сети переменного тока 220в. Через гасящие конденсаторы С3, С4 и шунтирующие диоды Д5, Д6 переменное напряжение поступает на диодный мост и стабилизируется стабилитроном +24в.
Длина провода до датчика составляет не более 1м. При большей длине следует использовать экранированный провод. Плата с деталями монтируется в подходящем корпусе, на лицевую панель выводятся потенциометр, индикаторная лампочка и выключатель питания. Градуировку шкалы потенциометра необходимо выполнить по образцовому термометру от 20 до 100 градусов.
При необходимости диапазон регулирования можно сместить, сузить или расширить с помощью ограничительных резисторов R1,R3.
Детали регулятора: транзистор КТ315 с любым буквенным индексом. КТ815 заменим на КТ817, КТ805. Стабилитрон подойдёт с напряжением стабилизации 20-30в. Диоды D1-D3 практически любые кремниевые низкочастотные. Д5,Д6 на напряжение не ниже 400в. Конденсаторы C3,C4 ёмкостью от 4,7 до 5,6 мкф на напряжение не ниже 400в от энергосберегающих ламп, малогабаритные. Реле с катушкой на 24в и с контактами 5-10А соответствующими мощности нагрузки.
ВНИМАНИЕ! Будте осторожны регулятор не имеет гальванической развязки с сетью, поэтому при его работе не прикасайтесь к его частям. Датчик V1 необходимо заизолировать!
Печатной платы в формате LAY жалко не осталось,только то что на картинке
radiostroi.ru
Классические схемы терморегуляторов для домашнего инкубатора
Ниже представлена подборка схем терморегуляторов для небольшого домашнего инкубатора, опубликованных в 2000 — 2003 годах в украинских журналах «Радiоаматор-Электрик» и «Радiоаматор-Конструктор». Данные конструкции можно назвать классическими для всех, кто работает с электроникой на постсоветском пространстве, поскольку используются знакомые схемотехнические решения и привычная элементная база.
Эти схемы нужны, ведь часто эксплуатируются промышленно изготовленные домашние инкубаторы с механическими регуляторами, которым необходима замена, в таких случаях помогут схемы электронных терморегуляторов.
Схема из журнала «Радiоаматор-Электрик» №7/2001
Точность поддержания температуры внутри мини-инкубатора данным терморегулятором (полноразмерная схема здесь) 0,2°С, и ее можно регулировать в пределах 37...39°С. Работоспособность сохраняется при колебаниях напряжения сети в пределах ±20% от номинального значения.
Работа предложенной схемы терморегулятора для домашнего мини-инкубатора
Схема состоит из терморезистивного моста R1...R6; двух компараторов на операционных усилителях DA1, DA2; узла индикации “нагрев” на светодиоде HL3, индикации “норма” на светодиоде HL2, индикации “перегрев” на светодиоде HL1, контроля протекания тока через нагревательный элемент на светодиоде HL4, звуковой индикации превышения предельной температуры на транзисторах VT6-VT9, VT11, пьезоэлементе (звонке) BQ1 и ключа, обеспечивающего протекание тока через нагревательный элемент, на транзисторе VT10. Питание схемы выполнено по бестрансформаторной схеме с гасящими конденсаторами С8, С9. Выпрямляется напряжение диодным мостом VD2, фильтруется конденсаторами С6, С7, стабилизируется стабилитроном VD1. Диодный мост VD3-VD6 служит для подачи напряжения необходимой полярности на транзистор VT10. На компараторе DA2 собран пороговый элемент, включающий нагрев элемента ЕК1. Когда температура воздуха внутри инкубатора ниже установленной резистором R2, на выводе 6 DA2 устанавливается напряжение, близкое к напряжению питания схемы.
Усиленный по току сигнал через R11, HL3 поступает в базу транзистора VT10, транзистор открывается, и ток протекает через нагревательный элемент ЕК1. Падения напряжения на резисторе R17 достаточно, чтобы засветился светодиод HL4, контролирующий протекание тока через нагревательный элемент, а светодиод HL3 индицирует включение режима “нагрев”. При достижении заданной температуры напряжение на выводе 6 DA2 снижается настолько, что закрывается транзистор VT10, гаснут светодиоды HL3, HL4, нагревательный элемент ЕК1 обесточивается, и начинает светиться светодиод HL2. При понижении температуры внутри инкубатора включается режим "нагрев”.
Для более четкого переключения между режимами в компараторе введена положительная обратная связь с помощью резистора R8. Режимы “нагрев” и “норма” сменяют друг друга. В результате короткого замыкания транзистора VT10 или по каким-либо другим причинам температура внутри инкубатора может превысить 39,4°С. Перегрев выше этой температуры опасен для развития эмбриона (особенно в последние дни инкубации) и вызывает массовую гибель зародышей. Для предотвращения этого в схему введен еще один компаратор на операционном усилителе DA1. Он переключается при достижении температуры 39°С. При этом начинает светиться светодиод HL1, и открывается ключ на транзисторе VT5. На транзисторах VT6-VT9 собран модифицированный мультивибратор с высокой нагрузочной способностью. Этот низкочастотный релаксационный генератор служит модулирующим для автогенератора высокого тона, выполненного на транзисторе VT11 и пьезозвонке BQ1. В этом режиме излучатель издает прерывистый сигнал тревоги.
Для лучшего визуального контроля за режимами работы терморегулятора, ток через светодиоды HL1-HL3 выбран относительно большим. Так как выходной ток ОУ DA1, DA2 недостаточен для обеспечения яркого свечения HL1-HL3, в схему введены усилители на транзисторах VT1-VT4.
Детали и налаживание терморегулятора для мини-инкубатора
Детали терморегулятора. Резисторы R3-R6 стабильные типа С2-29, терморезистор R1 типа ММТ-1, подстроенный резистор R2 типа СП5-16 0,25 Вт. Остальные - типов МЛТ, С2-23, С2-33. Конденсаторы С1, С2, С7 малогабаритные многослойные керамические, фирмы HITANO, конденсаторы С8, С9 типа К73-17. Конденсаторы С4-С6 фирмы HITANO или типа К50-35. Операционные усилители можно заменить на К140УД6 или КР140УД708, транзисторы VT1-VT11 - на другие кремниевые маломощные соответствующей структуры, транзистор VT10 - на мощный составной высоковольтный. Стабилитрон должен быть рассчитан на напряжение 9... 10 В. Диодный мост VD2 можно заменить на мост из отдельных диодов типа КД209А, этими же диодами можно заменить мост VD3-VD6.
Налаживание терморегулятора. Предварительно собирают тональный генератор (VT11 и BQ1) на макетной плате и уточняют сопротивление резисторов R21, R22 для обеспечения надежной генерации, затем эти элементы устанавливают на печатную плату. Терморезистор монтируют внутри инкубатора. Подключают нагреватель ЕК1 мощностью 30...35 Вт к плате. В качестве нагревателя можно использовать 4 последовательно соединенные 60-ваттные лампы накаливания или ТЭН.
Включают инкубатор в сеть. Контролируя температуру воздуха внутри инкубатора термометром, например, ТЛ-4 (ГОСТ 215-73) с ценой деления 0,1°С, устанавливают порог включения нагревательного элемента резистором R2 при температуре 37,7...38°C. Через полчаса работы инкубатора уточняют порог включения. Затем замыкают выводы коллектор-эмиттер транзистора VT10. При температуре 39°С должна включиться световая и звуковая сигнализации. Порог включения устанавливают подбором резистора R5, а желаемую яркость свечения светодиода HL4 - подбором резистора R17. На этом налаживание терморегулятора можно считать законченным.
Схема терморегулятора из журнала «Радiоаматор-Электрик» №8/2001
Технические данные:
- напряжение питания 220 В, 50 Гц;
- коммутируемая мощность активной нагрузки до 150 Вт;
- точность поддержания температуры ±0,1 °С;
- диапазон регулирования температуры от + 24 до 45°С.
Описание работы схемы терморегулятора
Принципиальная схема устройства показана на рис.1. На микросхеме DA1 собран компаратор. Регулировка заданной температуры производится переменным резистором R4. Термодатчик R5 подключен к схеме экранированным проводом в хлорвиниловой изоляции через фильтр C1R7 для уменьшения наводок. Можно применить двойной тонкий провод, свитый в жгут. Терморезистор необходимо поместить в тонкую полихлорвиниловую трубку.
Конденсатор С2 создает отрицательную обратную связь по переменному току. Питание схемы осуществляется через параметрический стабилизатор, выполненный на стабилитроне VD1 типа Д814А-Д. Конденсатор С3 - фильтр по питанию. Балластный резистор R9 для уменьшения рассеиваемой мощности составлен из двух последовательно соединенных резисторов 22 кОм 2 Вт. С этой же целью транзисторный ключ на VT1 типа КТ605Б, КТ940А подключен не к стабилитрону, а к аноду тиристора VS1.
Выпрямительный мост собран на диодах VD2-VD5 типа КД202К,М,Р, установленных на не-большие П-образные радиаторы из алюминия толщиной 1-2 мм площадью 2-2,5 см2 Тиристор VS1 также установлен на аналогичный радиатор площадью 10-12 см2.
В качестве нагревателя используются осветительные лампы HL1...HL4, включенные последовательно-параллельно для увеличения срока службы и исключения аварийных ситуаций в случае перегорания нити накала одной из ламп.
Работа схемы. Когда температура термодатчика меньше заданного уровня, выставленного потенциометром R4, напряжение на выводе 6 микросхемы DA1 близко к напряжению питания. Ключ на транзисторе VT1 и тиристоре VS1 открыт, обогреватель на HL1...HL4 подключен к сети. Как только температура достигнет заданного уровня, микросхема DA1 переключится, напряжение на ее выходе станет близким к нулю, тиристорный ключ закроется, и обогреватель отключится от сети. При отключении обогревателя температура начнет понижаться, и когда она станет ниже заданного уровня, снова включатся ключ и обогреватель.
Детали и их замена. В качества DA1 можно применить К140УД7, К140УД8, К153УД2 (подойдет практически любой операционный усилитель или компаратор). Конденсаторы любого типа на соответствующее рабочее напряжение. Терморезистор R5 типа ММТ-4 (или другой с отрицательным ТКС). Его номинал может быть от 10 до 50 кОм. При этом номинал R4 должен быть таким же.
Устройство, выполненное из исправных деталей, начинает работать сразу. При испытании и работе следует соблюдать правила техники безопасности, так как устройство имеет гальваническую связь с сетью.
Печатная плата при используемой микросхеме DA1 типа КР140УД6 показана на рис.2.
Совет практика. КТ605Б для этой схемы не годятся! Ставьте BU807!
Схема терморегулятора из журнала «Радiоаматор-Электрик» №8/2000
Данный термостабилизатор (увеличенная схема здесь) предлагается для замены в мини-инкубаторе «Квочка». Точность поддержания температуры в инкубаторе "Квочка" 0,2°С. Температуру можно устанавливать в пределах 37...38,5°С. Термостабилизатор содержит терморезисторный мост RK1, R1...R8, два компаратора на операционных усилителях DA1, DA2, узел индикации температуры "норма", "перегрев", узел звуковой индикации превышения верхнего порога температуры на пьезозвонке BQ1 и цепь управления симистором VS1.
В термостабилизаторе применен блок питания с гасящим конденсатором С7, однополупериодный выпрямитель на диодах VD4, VD5. Напряжение питания схемы стабилизировано стабилитроном VD6, сглажено и отфильтровано конденсаторами С5 и С6. Так как симистор VS1 можно включить при любой полярности между анодами А1 и А2 отрицательным импульсом напряжения на управляющим электроде по отношению к аноду А1, то питание схемы выбрано отрицательным напряжением. На компараторе DA2 собран пороговый элемент, включающий нагрев инкубатора. Когда температура воздуха внутри инкубатора ниже установленной резистором R2, сопротивление терморезистора RK1 большое, напряжение на выводе 2 DA2 выше чем на выводе 3 DA2, заданное делителем R7R8, тогда на выводе 6 DA2 устанавливается низкий потенциал, разрешающий работу генератора импульсов на DD1.3, DD1.4. Светодиод HL3 индуцирует режим "нагрев". Так как нагревательным элементом в инкубаторе "Квочка" служат четыре последовательно соединенные 60-ваттные лампы накаливания, то в индикации протекания тока через нагрузку нет необходимости.
Генератор на DD1.3, DD1.4 вырабатывает импульсы высокой скважности с периодом следования 0,7 мс. Усиленные по току транзистором VT4 импульсы отрицательной полярности поступают через ограничивающий резистор R24 на управляющий электрод симистора VS1, и он включается. Как только температура в инкубаторе достигает заданной, сопротивление терморезистора RK1 понижается настолько, что на выводе 2 DA2 напряжение становится ниже, чем на выводе 3 DA2. В это время на выводе 6 DA2 напряжение низкого уровня изменяется на высокое. Генератор импульсов выключается, следовательно, прекращается нагрев. Светодиод HL3 гаснет, а светодиод HL2 "норма" зажигается. Гистерезис между режимами "нагрев" и "норма" составляет 0,2°С.
Для яиц всех видов сельскохозяйственной птицы во все периоды инкубации наиболее благоприятная температура воздуха около яиц в диапазоне 37,7...38,3°С. Перегрев выше 39,4°С опасен для развития эмбриона. Перегрев в последние дни инкубации вызывает массовую гибель зародышей [1]. Для предотвращения перегрева инкубационного материала предназначен узел на DA1. Когда температура воздуха внутри инкубатора превысит пороговое значение, установленное резистором R5, на выводе 6 DA1 появится напряжение высокого уровня, засветится светодиод HL1 "перегрев".
Проинвертированное транзистором VT1 напряжение разрешает работу низкочастотного генератора на DD1.1, DD1.2. Этот генератор модулирует по амплитуде тональный генератор на VT2 и BQ1. Прерывистый акустический сигнал оповещает о том, что температура вышла за верхнюю допустимую границу и необходимо дополнительно открыть вентиляционные отверстия или выключить инкубатор.
Схема терморегулятора расположена на печатной плате размерами 115 мм х 45 мм из одностороннего фольгированного стеклотекстолита толщиной 1,5 мм. Расположение токопроводящих дорожек и радиоэлементов показано на рис.2. Плата рассчитана на установку постоянных резисторов типа МЛТ. Резисторы R1...R8 моста необходимо использовать стабильные с малым ТКС типа С2-29 с допуском, не хуже 5%. Терморезистор RK1 типа ММТ-1. Подстроенные резисторы проволочные типа СП5-16, ВА-0,25Вт. Конденсаторы С1-С4, С6 типа К10-17, конденсаторы С7 типа К73-17, электролитический типа К50-35.
Операционные усилители DA1, DA2 рекомендуется заменить на К140УД6, микросхему DD1 - на К561ЛА7. Транзисторы VT1-VT4 возможно заменить на другие соответствующей структуры. Симистор VS1 фирмы "Филлипс" заменить подходящим не представляется возможным. Стабилитрон VD6 можно использовать с напряжением стабилизации 8...10 В.
Полноразмерная печатная плата терморегулятора здесь.
Налаживание термостабилизатора
Предварительно собирают тональный генератор на VT2 и BQ1 на макетной плате и уточняют сопротивления резисторов R21, R23 по надежной генерации, затем эти элементы запаивают в плату. Терморезистор монтируют в трубке из диэлектрика на расстоянии 125 мм от верхнего края крышки мини-инкубатора на место механического узла терморегулирования. Трубка должна иметь возможность протока воздуха снизу вверх и до 8 отверстий 0,2 мм на боковой поверхности в нижней части, где расположен терморезистор. Подсоединив нагрузку к плате терморегулятора, включают инкубатор в сеть. Контролируя температуру воздуха внутри инкубатора термометром, например ТЛ-4 (ГОСТ 215-73) с ценой деления 0,1°С, на расстоянии 125 мм от верхнего края крышки устанавливают порог включения нагревателя резистором R2 при температуре 37,7...38°С. Через полчаса работы инкубатора уточняют порог включения. Затем, замкнув выводы симистора А1 и А2, наблюдают повышение температуры. При температуре 39°С регулировкой резистор R5 включают световую и звуковую индикацию "перегрев". На этом налаживание термостабилизатора можно считать законченным.
Опытная эксплуатация разработанного терморегулятора при выведении нескольких закладок куриных, гусиных, утиных яиц показала полное превосходство над механическим терморегулятором. Данный терморегулятор можно использовать в других самодельных инкубаторах с мощностью нагревателя до 200 Вт.
Схема терморегулятора из журнала «Радiоаматор-Конструктор» №1/2003
Здесь приводится схема (увеличенная схема), которая позволяет использовать в качестве термочувствительного элемента кремниевые диоды, чтобы произвести замену механического терморегулятора на электронный в мини-инкубаторе типа “КВОЧКА”. Терморегулятор состоит из моста, образованного резисторами R1-R5 и диодов VD1, VD2. Питание моста стабилизировано с помощью диода Зенера VD3. Как известно, с повышением температуры падение напряжения на диоде изменяется на 2 мВ/1С. При двух последовательно включенных диодах падение напряжения удваивается. Это напряжение подается на инвертирующий вход операционного усилителя, на неинвертирующий вход подается напряжение, соответствующее установленной температуре. При температуре внутри инкубатора ниже установленной на выходе ОУ появляется напряжение, близкое к напряжению питания. Это напряжение инвертируется элементом DD1.1, разрешает работу схемы привязки включения тиристора к моменту перехода сетевого напряжения через ноль.
Указанная выше схема выполнена на резисторах R8-R11 и конденсаторе С3. Как только сетевое напряжение превысит значение ноля менее, чем на 10 В, на управляющий электрод триака подастся короткий импульс тока, открывающий прибор, и через нагреватель ЕК потечет ток. Схема питается выпрямленным напряжением с помощью диодного моста VD6-VD9 и гасящих резисторов R3, R10. Для стабилизации напряжения предназначен стабилитрон VD4, для сглаживания выпрямленного напряжения - конденсатор С2. Так как в качестве термочувствительных элементов применены диоды, а в качестве компаратора - ОУ широкого применения типа К140УД1208, то точность поддержания температуры внутри инкубатора составляет 0,5 С. Если применить более качественный ОУ типа К140УД17, то точность поддержания составит 0,2 С.
Детали. В термочувствительном мосту применены резисторы R2, R4, R5 типа С2-29. Резисторы R1, R2 многооборотные типа СП5-2, остальные типов МЛТ, С2-33. Конденсаторы С1, С3 керамические, С2 электролитический типа К50-35. Стабилитроны можно применить любого типа на соответствующее напряжение стабилизации. Микросхему можно применить типа К176ЛЕ5. В качестве электронного ключа применен триак фирмы “Philips” из соображения высоких электрических характеристик и малых габаритов, его можно заменить на КУ201. В качестве диодов моста можно использовать диоды, подходящие по току и напряжению.
При налаживании необходимо помнить, что электронная схема гальванически не развязана с сетью, поэтому необходимо быть осторожным, чтобы не получить поражение электрическим током.
radiofishka.in.ua
Терморегулятор своими руками | all-he
Схема терморегулятора на основе термистора довольно часто встречается в интернете. Схема позволяет осуществить терморегулировку вентилятора.
В качестве силового элемента использован мощный N-канальный силовой транзистор. Полевой ключ можно любой — с током не менее 10-15 Ампер (желательно больше 40 Ампер) и с напряжением 20-60 Вольт. При маломощных нагрузках полевому транзистору теплоотвод не нужен, а если вздумали подключить нагрузки 30 и более ватт, то теплоотвод необходим.
Термистор играет роль термодатчика, чувствительность устройства настраивается с помощью переменного резистора. Переменной резистор в целях более точной настройки устройства желательно брать многооборотный, сопротивление этого резистора 10кОм.
Благодаря простоте конструкции и минимальному количеству деталей, собрать такой терморегулятор своими руками может даже начинающий радиолюбитель.
Работает схема терморегулятора довольно просто. Термистор, при комнатной температуре имеет сопротивление порядка 200-300 Ом (у разных термисторов, оно разное), работает в качестве затворного ограничителя, при нагревании сопротивление резко возрастает и прекращается подача питания на управляющий вывод ключа — на затвор, таким образом, переход транзистора закрывается, следовательно, прекращается подача питания на нагрузку.
Если использовать термисторы с положительной температурной зависимостью, то устройство будет выключать нагрузку при перегреве термистора, поскольку сопротивление указанных термисторов резко возрастает при перегреве. При использовании термисторов с отрицательной температурной зависимостью, происходит обратный процесс — нагрузка включается при перегреве термистора.
Область применения такого простого терморегулятора безгранична — от датчика температуры до теплового активатора того или иного прибора (устройства, которые реагируют на тепло человеческого тела).
На основе такого простого датчика можно управлять и сетевыми нагрузками, достаточно вместо кулера подключить обмотку электромагнитного реле (в этом случае транзистору теплоотвод не нужен).
На видео демонстрируется, как работает самодельный терморегулятор. В моем случае был использован термистор с положительной зависимостью температуры.
all-he.ru
Терморегулятор для инкубатора своими руками. Схема
В наше время многие сельчане приобретают домашние инкубаторы в связи с тем, что молодняк домашней птицы на рынках слишком дорог. Обычно, используются конструкции изготовленные своими руками, представляющая собой термически изолированную коробку с обогревателем, снабженную лотками для яиц.
Для успешного вывода молодняка температура внутри инкубатора должна составлять +/- 0.1 градуса. Для этого используют самодельный терморегулятор для инкубатора, схема одного из которых представлена ниже.
Терморегулятор для инкубатора своими руками - описание конструкции
Нагреватель подключается в цепь тиристора VD5. Схема термореле питается от стабилизированного источника питания (VD7, С1, R1). В результате охлаждения терморезистора R6, его сопротивление увеличивается, в результате чего, потенциал на базе транзистора VT3 уменьшается до тех пор, пока транзисторы VT2, VT3 не закроются.
После того как транзисторы VT2 и VT3 закроются током, протекающим через резисторы R2, R4, откроется транзистор VT1 и связанный с ним тиристор VD5. Нагревательный элемент будет греть до тех пор, покуда температура в зоне местоположения терморезистора не достигнет такого значения, при котором сопротивление терморезистора R6 уменьшится, и вновь не откроются транзисторы V2 и V3.
Транзистор VT1 и тиристор VD5 закроются, и процесс повторится до установления состояния равновесия. Терморезистор R6 с отрицательным ТКС.
Детали устройства
В схеме терморегулятора можно применить любые биполярные транзисторы с коэффициентом усиления не менее 50. Диоды можно заменить на другие с прямым ток 3А и обратным напряжением 400...600 В. Тиристор необходимо выбрать в расчете на прямое напряжение не менее 400 В.
Схема не требует настройки, за исключением установки необходимой температуры внутри инкубатора. Температура устанавливается резистором R7.
Внимание! Так как элементы схемы находятся под напряжением электросети, то следует соблюдать меры электробезопасности при наладке прибора.
www.joyta.ru
СХЕМА ТЕРМОРЕГУЛЯТОРА
Терморегулятор обеспечивает высокий КПД системы обогрева, а также простоту обслуживания и автоматизацию в поддержании заданной температуры. В данном случае устройство проектировалось для использования в теплице. Эффективность теплицы можно заметно повысить, если сделать подогрев почвы, подобие тёплых полов. И поддержание температуры воздуха. Данный терморегулятор сделан для обогрева теплицы, где применен электрокотел на 5 киловатт.
Устройство обогревает теплицу, а микроконтроллерный блок управления отслеживает пять точек и управляет тремя контурами. В меню прибора можно установить для каждого контура свою температуру. Электронный терморегулятор предусматривает контроль температуры теплоносителя для аварийного отключения котла при перегреве, а также возможность подключения датчика температуры для наблюдения за дополнительным параметром. Принипиальная схема на рисунке - клик для увеличения.
Работа с терморегулятором
Кнопка MENU по кругу листает страницы меню. В меню настроек (Установка) параметр, доступный для установки, мигает.
Часы на DS1307. Время выводится в формате чч:мм:сс. Формат отображения 24-х часовый. Доступ к часам через меню. На странице доступны установки времени – по очереди: секунды (кнопки PLUS/MINUS обнуляют значение секунд), минуты, часы. Выставляется время включения дневного режима – день и ночного – ночь. Для режимов формат вывода чч:мм. Настройки часов заносятся в память DS1307.Переход от одного параметра к другому кнопками UP/DOWN. Кнопки работают по одиночному нажатию, независящему от длительности. Через 10 секунд от последнего нажатия настройки запишутся в память. Дисплей перейдет в основной режим.
При нажатии на любую кнопку, а также при подаче питания включается подсветка. Подсветка отключится через 30 сек от последнего нажатия на кнопки.
При подаче питания на устройство контроллер опрашивает датчики, считывает информацию с часов реального времени. Контроллер сравнивает текущее время с заданными для дневного и ночного режимов и выбирает соответствующие настройки для работы терморегуляторов. Примерно через 5 секунд устройство активируется и начинает управлять котлом.
Если температура с датчиков Пол-1, Пол-2 или Офис становится ниже заданной, то включается в работу насос, нагреватель и подается напряжение на соответствующий исполнительный механизм подачи теплоносителя в данный контур. Когда температура повысится выше заданной на величину гистерезиса, то нагреватель отключается, насос остается в работе на время 30 сек для обеспечения охлаждения нагревательного элемента до безопасной температуры. Для обеспечения протока воды через контур котла подача теплоносителя остается открытой в данный контур на время работы насоса. Если работа котла необходима для другого контура, то теплоноситель перекрывается на уже ненужный контур сразу.
el-shema.ru
Терморегуляторы для дома и не только. - 24 Октября 2012 - Портфель
Существуют различные мнения по поводу применения терморегуляторов. Некоторые аквариумисты считают, что применение терморегулятора, стабилизирующего температурный режим, нарушает естественное суточное колебание температуры в водоеме. Известно, что днем температура воды повышается за счет нагрева ее солнцем, а в ночное время вода остывает. В тропиках эти колебания обычно не превышают 1 - 2° С. В аквариуме, где применяется терморегулятор, температура воды днем и ночью примерно одинакова. Но, как показывает практика, рыбы и растения чувствуют себя в аквариуме с терморегулятором не только не хуже, а даже значительно лучше, чем без него. Кроме того, исключается случайный перегрев воды.Купить
Pадиолюбительские наборы "MАСТЕР КИТ", "E-KIT","Radio-KIT","КITLAB", "Чип Набор"
Для аквариума с растениями применение терморегулятора очень желательно, так как большинство гидрофитов является выходцами из тропиков, где вода, как правило, постоянно имеет высокую температуру. Размещение терморегулятора относительно нагревателя в аквариуме имеет существенное значение для равномерного нагрева воды. Терморегулятор целесообразно размещать не далее чем в 3 - 5 см от нагревателя, так как в этом случае термодатчик, быстро нагреваясь до установленной температуры, включает нагреватель на короткое время и включает его при притоке более холодной воды, тем самым удлиняя срок службы нагревателя и обеспечивая более равномерное (но и более медленное) прогревание воды н аквариуме. В аквариуме, находящемся в теплом помещении, нагреватель можно разместить у боковой стенки или в углу. А в холодном помещении, где без обогрева температура воды опускается ниже 20° С, желательно расположить грелку у дна аквариума, или, еще лучше, в грунте. Идеальным вариантов для такого водоема считается подогрев со дна. При этом равно мерно прогревается вся толща воды и, самое главное, прогревается грунт, что очень важно для хорошего роста тропических растений. Какие обогреватели для этого использовать, существенного значения не имеет, главное - их доступность и надежность.
Терморегулятор можно сделать в домашних условиях. Ниже приведены несколько вариантов терморегуляторов.
Пример №1
Предлагается простой регулятор температуры прогрева воды, выполненный на интегральном компараторе К554САЗ. Как известно, выходное напряжение компаратора может находиться лишь, на стандартных уровнях логической 1 или 0 в зависимости от соотношения напряжений сигнала Uсигн опорного напряжения Uoп. Выходная мощность К554САЗ достаточна для управления исполнительным реле. Таким образом, не требуется мощного дополнительного выходного транзистора.

Пределы регулирования температуры воды для аквариума можно ограничить пределом от 16 до 30° С. Точность регулирования в основном определяется градуировкой регулятора и составляет t = 0,5° С. Схема регулятора представлена, на рис. Резисторы R1 - R4 включены по мостовой схеме. Диагональ моста подключена к компаратору DА1. При превышении напряжением сигнала Uсигн опорного напряжения Uoп на выходе DА1 появляется логический 0. Реле К1 включается и своими контактами К1.1 и К1.2 подключает нагревательный элемент ЕК к напряжению ~220В, при этом включается контрольная лампочка НL2 "Нагрев”. При нагревании воды сопротивление терморезистора R4 уменьшается, и при достижении Uсигн < U oп компаратор переключается. Реле отключается, и нагрев воды прекращается. Для получения более высокой температуры нагрева воды надо уменьшить Uoп, т. е. уменьшить сопротивление резистора R2. Для градуировки устанавливают рядом термосопротивление R4 и термометр в емкости с водой. Замерив температуру воды и при необходимости подогревая ее до нужной температуры (например, 20° С), устанавливают движок резистора R2 в положение, когда дальнейший его поворот включает реле К1 (контроль по светодиоду НL2). Точность градуировки ± 0,5° С. Детали. Реле К1 - типа РЭС-9, паспорт РС4.524.200. Ее контакты могут управлять тринистором, включенным в диагональ диодного моста в цепи нагревателя Rн, или симистором (см. риса , б ). Если удастся приобрести оптрон АОУ103В, можно вообще обойтись без реле. Примеры использования этого оптрона для коммутации цепи питания электронагревателя показаны, на (рис в и г ). Терморезистор R4 - типа КМТ1, КМТ2. Применены неоновые лампы ТН-0,2-1. Трансформатор Т1 - на напряжение 220В/27В, вторичная обмотка рассчитана на силу тока 200...300 мА.

В качестве нагревательного элемента использованы четыре сопротивления типа ПЭВ-20 по 1500 Ом каждый, включенные параллельно. Это дает мощность нагревателя 100 Вт. Нагревательный элемент помещен в стеклянную трубку диаметром 20 мм и длиной 200...250 мм. Для лучшего теплообмена со средой свободное пространство в трубке засыпано кварцевым. песком. Пробка залита эпоксидной смолой. Терморезистор помещен в стеклянную трубку диаметром 7 мм. Один конец трубки оплавлен, второй залит эпоксидной смолой. Следует обратить особое внимание, на тщательность изготовления нагревателя с точки зрения электробезопасности. Нагреватель рассчитан, на аквариум емкостью 50...100 л, При этом нагреватель помещают в зону аэрации для снижения градиента температур по объему аквариума. Можно избежать изготовления самодельного нагревательного элемента, если использовать, например, выпускаемый промышленностью электрокипятильник мощностью не более 200 В А или какой-либо другой готовый прибор с подходящей мощностью.
Пример №2
Этот терморегулятор разрабатывался для поддержания необходимой температуры в аквариуме с тропическими рыбками, но благодаря своей универсальности его можно использовать в других случаях когда требуется поддерживать температуру воды или воздуха в пределах 10 - 60° С и управлять нагревателем мощностью до 2 кВт. Терморегулятор имеет полную развязку от электросети и исключает попадание сетевого напряжение в емкость с водой, температура которой контролируется. Точность поддержания температуры достаточно высока - отклонение допускается в пределах одного градуса. Еще одно достоинство - использование в конструкции широкодоступной элементной базы. Принципиальная схема терморегулятора показана, на рисунке. Она содержит измерительный узел построенный на транзисторах VT1 и VT2 по схеме триггера Шмитта, исполнительное устройство на транзисторах VT3 и VT4 и на электромагнитном реле Р1, а также гальванически развязанный от сети источник питания на трансформаторе Т1. Триггер Шмитта следит за сопротивлением терморезистора R1, а именно за напряжением, образованным делителем из резисторов R1, R3 и R2. Когда сопротивление резистора R1, уменьшаясь под действием температуры, проходит через нижний порог срабатывания триггера. Триггер своим выходным сигналом при помощи коммутирующего устройства выключает нагревательный элемент и нагрев

воды прекращается. Вода начинает остывать, и вместе с этим увеличивается сопротивление R1. Как только напряжение на R1, R3 превысит верхний порог срабатывания триггера, он переключится в противоположное состояние и при помощи коммутирующего устройства подаст питание на нагреватель. Затем, при нагревании воды весь процесс повторится. Таким образом, регулятор будет, периодически включая нагреватель поддерживать температуру воды, на заданном уровне. А этот уровень можно задать, изменяя сопротивление R3 включенное последовательно с терморезистором. В эмиттерную цепь транзисторов VT1 и VT2, на которых построен триггер Шмитта, включен два диод VD2 который служит, для сужения петли гистерезиса триггера и способствуют более точному поддержанию температуры. Связь между транзисторами непосредственная, по этому открывание первого из них приводит к закрыванию второго и наоборот. В то время когда открыт VT1 на его коллекторе небольшое напряжение и VT2 закрывается, а в результате по цепи R6 R9 напряжение поступает на базу транзистора VT3, который открывается и открывает транзистор VT4, на реле Р1 поступает ток и его контакты замыкаются подавая сетевое напряжение на нагреватель. При закрывании VT1 через цепь R4 R5 открывается транзистор VT2 и шунтирует базовую цепь VT3 на столько, что этот транзистор закрывается, а вслед за ним и VT4.
Купить
Pадиолюбительские наборы "MАСТЕР КИТ", "E-KIT","Radio-KIT","КITLAB", "Чип Набор"
Ток через обмотку реле прекращается, и оно размыкает свои контакты, выключая нагреватель. Питается устройство от источника нестабилизированного напряжения 10 - 12В на трансформаторе Т1. В качестве трансформатора используется кадровый трансформатор ТВК110Л от старого черно-белого лампового телевизора (УЛППТ-61). При помощи омметра находят высокоомную обмотку, которая будет сетевой, а низкоомную используют как вторичную. Реле Р1 - автомобильное реле 3747.10 от переднеприводных "Жигулей”. Вместо него можно использовать любое другое реле, с обмоткой на 10 - 12В и с контактами, соответствующими мощности нагрузки. Автомобильное реле без подгорания контактов коммутирует нагрузку до 2 кВт. Контакты Р1 могут управлять тринистором, включенным в диагональ диодного моста в цепи нагревателя Rн, или симистором ( рис а, б ). Если удастся приобрести оптрон АОУ103В, можно вообще обойтись без реле. Примеры использования этого оптрона для коммутации цепи питания электронагревателя показаны, на (рис в и г ).

В процессе настройки нужно подобрать номинал R9 так чтобы реле надежно срабатывало и отпускало. В редких случаях требуется подбор и R4. Температурный диапазон устанавливается резистором R2, а температура, которую нужно поддерживать - резистором R3. В авторском варианте роль нагревательного элемента играет паяльник, на 100 Вт, погруженный в бутылку с широким горлышком (молочную на поллитра), заполненную речным песком. Горлышко бутылки должно возвышаться, на поверхностью воды, так чтобы вода в нее не попадала. К резистору R1 подпаяны провода, и затем он залит эпоксидной смолой (включая и места пайки) так чтобы он не имел электрического контакта с водой.
Пример №3
Технические данные терморегулятора:
напряжение питания - 220 вольт, 50 герц;коммутируемая мощность активной нагрузки — 100 ватт;дифференциал (время между включением и отключением нагрузки) — не более 0,5 секунды.

Терморегуляторы далеко не всегда бывают в продаже, да и стоят они довольно дорого. Предлагаю сделать прибор самому. Схема его очень проста и надежна в работе. Все мои терморегуляторы собраны по такой схеме и работают уже в течение долгих лет. Главным элементом схемы является микросхема DA1 — операционный усилитель, включенный в режим компаратора. Регулировка заданной температуры производится переменным резистором R2. Термодатчик R5 подключен к схеме через фильтр С1, R7 — для уменьшения наводок (он вынесен из схемы на 1 - 1,5 метра). Конденсатор С2 создает отрицательную обратную связь по переменному току. Сопротивление R9 выравнивает потенциалы катода и управляющего вывода при выключенном тиристоре. Питание схемы осуществляется через параметрический стабилизатор на стабилитроне Д1. Конденсатор СЗ — фильтр по питанию. В связи с тем, что на балансном резисторе R10, выделяется некоторая мощность, желательно собрать его из двух-трех включенных параллельно резисторов соответствующих номиналов. Общее сопротивление R10 может быть от 20 до 30 кОм. Большое достоинство данной схемы — отсутствие сетевого трансформатора, самого ненадежного элемента. Ведь терморегулятор подключен к сети круглосуточно, и перегрев или возгорание трансформатора чреваты большими неприятностями. Нагрузку включают в гнезда RH. Неоновая лампочка служит сигнализатором включения. Работа схемы. Когда температура воды, а следовательно, и термодатчика, находящегося в ней, меньше заданного уровня (выставляется R2), напряжение на выводе 6 микросхемы DA1 близко к напряжению питания, тиристор Д2 открыт и обогреватель подключен к сети через диодный мостик ДЗ - Д6.
Купить
Pадиолюбительские наборы "MАСТЕР КИТ", "E-KIT","Radio-KIT","КITLAB", "Чип Набор"
Лампа Л1 горит. В процессе нагрева температура воды увеличивается, и как только она достигнет заданного уровня, микросхема переключится, и напряжение на ее выходе будет близко к нулю. Тиристор Д2 закрывается и отключает обогреватель от сети. Конечно, желательно обогреватель помещать близко от распылителя. Термодатчик подключают к схеме экранированным проводом, помещенным в хлорвиниловую трубку. Экран подключают к общему проводу схемы. Если нет экранированного провода, то монтаж ведут двумя тонкими проводами, свитыми в жгут и помещенными в хлорвиниловую трубку Длина провода может быть 1 - 1,5 метра. На сам терморезистор, натягивают более толстую трубку и герметизируют с обоих концов герметиком (КЛТ-30, ВГО-1, КЛ-4, "Спрут”, "Стык”). Можно применять и эпоксидный клей. При повторении схемы, возможно, придется подобрать резистор R8 для надежного открытия и закрытия тиристора Д2, так как все тиристоры имеют большой разброс по току включения. Детали и их замена. В качестве микросхемы DA1 подойдет К140КД7, К140УД8, К153УД2. Электролитические конденсаторы — любого типа Их номинал не критичен и может отличаться от указанного на схеме на 40 - 50 процентов Главное, чтобы напряжение их было выше напряжения питания (которое при использовании стабилитрона Д1 - Д814Д составляет около 12 вольт) в 1,5 — 2 раза. Терморезистор R5 — типа ММТ-4 (допустима замена на любой другой с отрицательным ТКС), номинал его также не критичен и может быть от 10 до 50 кОм Главное, чтобы выполнялось условие R4 = R5, резисторы R6 и R7 могут быть от 4,7 до 47 кОм. Стабилитрон Д814 с любым буквенным индексом. Тиристор Д2 можно заменить на КУ201Л, КУ202Л. Диоды ДЗ - Д6 - подойдут Д226Б, Д226В или диодный блок типа КЦ402, КЦ404, КЦ405 с буквенным индексом А, Б, В, Г, Ж, И. Неоновая лампочка — любого типа Постоянные резисторы — тоже любого типа Мощность рассеивания R10 — 2 ватта. Если предполагается использовать обогреватель мощностью более 100 ватт, необходимо применить более мощные диоды ДЗ - Д6. При этом тиристор и диоды придется установить на небольшие радиаторы.

Пример №4
Терморегулятор предназначен для поддержания заданной температуры жидкости (например, фотораствора, воды в аквариуме, воды в системе электрического водяного отопления), воздуха в теплице, в жилом помещении и пр. Основой терморегулятора является триггер Шмитта, выполненный на логических элементах D1.1, D1.2 и резисторах R4, R5 (с его работой вы знакомы). На вход триггера, поступает напряжение с делителя R1, R2, RЗ. Датчиком температуры служит терморезистор RЗ. При увеличении температуры его сопротивление уменьшается и поданное на вход триггера, напряжение также уменьшается, что приводит к переключению триггера. При этом на его выходе (вывод 4 микросхемы) устанавливается напряжение низкого уровня, транзистор V2 и тринистор VЗ закрываются, нагреватель, подключенный к разъему Х1, обесточивается. Температура воздуха или жидкости начинает уменьшаться, и при некотором ее значении триггер вновь переключается, включается нагреватель. В процессе работы такие включения и выключения периодически повторяются. Температуру, при которой происходит переключение триггера, устанавливают переменным резистором R1. Точность поддержания заданной температуры определяется в основном сопротивлением резистора R4. Дело в том, что с увеличением его сопротивления увеличивается разница между порогами переключения триггера, следовательно, уменьшается точность поддержания температуры. Однако использовать резистор меньше 10 кОм не следует.
Мощность нагревателя не должна, превышать 200 Вт. Если мощность необходимо увеличить, следует подобрать тринистор VЗ и соответственно мощность выпрямителя V4. Так; для мощности нагревателя 2000 Вт потребуются тринистор КУ202М и диоды Д246 (4 шт.), которые включают по схеме выпрямительного моста. Тринистор и диоды придется установить на радиаторах с поверхностью охлаждения-300 см 2 (для тринистора) и 70 см 2 (для каждого диода). Терморезистор RЗ может быть любого типа, например КМТ-1, КМТ-4, КМТ-12, МТ-6 и др.
Пример №5
Он разработан группой ребят под руководством Сергея Овсенева и позволяет поддерживать заданную температуру в небольшом аквариуме с точностью до 2°. Чувствительным элементом термерегулятора - датчиком температуры, является терморезнстор R 2. Он включен в делитель напряжения R1 - R З. Снимаемое с терморезистора постоянное напряжение поступает на усилитель постоянного тока, выполненный на транзисторах VI, V 2. Нагрузка усилителя - электромагнитное реле К1, контакты которого включены в цепь электрического нагревателя (на схеме для простоты не показан). Пока температура не достигла заданной, через обмотку реле протекает ток и нагреватель включен. При повышении температуры воды до определенного значений сопротивление датчика R 2 уменьшается настолько, что реле отпускает и своими контактами отключает нагреватель. Температуру срабатывания автомата устанавливают подстроечным резистором R З.

ПРОСТОЙ ТЕРМОСТАТ
Сейчас в литературе есть множество описаний термостатов и терморегуляторов на микросхемах, логических микросхемах, микроконтроллерах. Но бывает необходимость и в предельно простых схемах, по которым можно сделать термостат практически из того что есть дома, и в короткий срок. Описываемый здесь термостат можно использовать для поддержания температуры устанавливаемой в довольно широких пределах. Его можно использовать для поддержания положительной температуры зимой в овощехранилищах, или в сауне, или для поддержания комфортной температуры в жилом помещении. Все зависит от величины сопротивления резистора R3. которое, устанавливают при налаживании (пределы от нуля до 2 мегаом).Сопротивление R-R2 вместе с сопротивлением терморезистора R1 образует делитель напряжения на базе транзистора VT1. Схема на транзисторах VT1 и VT2 образует триггер Шмитта, а база VT1 является его входом. Когда температура ниже установленной величины, которую нужно поддерживать, сопротивление R1 велико, и ток базы транзистора VT1 низок на столько что он закрывается. Напряжение на его коллекторе при этом растет и приводит к открыванию транзистора VT2 В результате симистор VS1 открывается и включает питание нагревателя. А за счет тока через транзистор VT2 напряжение на эмиттере VT1 немного увеличивается, что фиксирует триггер а таком состоянии, создавая гистерезис. Когда температура повышается вследствие работы нагревателя сопротивление R1 уменьшается и ток базы VT1 растет. В некий закрывается и нагреватель выключается.
Купить
Pадиолюбительские наборы "MАСТЕР КИТ", "E-KIT","Radio-KIT","КITLAB", "Чип Набор"
Далее все повторяется снова и снова. Температура поддерживается периодическим включением и выключением нагревателя. Питается схема транзисторного термореле от бестрансформаторного источника. Сетевое напряжение на него поступает через конденсатор СЗ реактивное сопротивление которого берет на себя большую часть сетевого напряжения. Затем идет выпрямитель на диодах VD2-VD3 и стабилитрон VD1.Практически получается параметрический стабилизатор из этого стабилитрона и реактивного сопротивления СЗ. Пульсации сглаживает конденсатор С2. В схеме используются постоянные резисторы типа МЛТ 0,125. Терморезистор КМТ-4 с отрицательным ТКС
и номинальным сопротивлением 220 К (при температуре 25°С). Можно использовать терморезистор другого номинала, соответственно изменив R2 и R3. Конденсатор СЗ - на напряжение не ниже 300V. Транзисторы КТ315Г можно заменить на КТ315Е или КТ3102Г. КТ3102Е. Диоды КД209 можно заменить на КД105. Все кроме терморезистора и симистора расположено на печатной плате разводка и монтажная схема которой показана на рисунке под принципиальной схемой. Симистор КУ208Г в металлическом корпусе с крепежным винтом. Его нужно укрепить на металлическом уголке 50x60, которой будет работать и как небольшой радиатор. При таком радиаторе мощность до 1000W.Налаживание.
Нужен термометр. Поместить терморезистор в стеклянную пробирку, засыпать песком и заткнуть герметично резиновой пробкой, выпустив через неё провода, и поместить его в эту воду. Нагреть воду до нужной температуры включения нагревателя (следя по термометру). Подобрать сопротивление R3 таким, чтобы при этой температуре нагреватель включался, а при превышении её выключался. Разницу между температурами включения и выключения (гистерезис) можно установить подбором R5 в небольших пределах. Работая с термостатом учтите, что он питается непосредственно от электросети, и все его детали под потенциалом сети, поэтому необходимо соблюдать правила техники безопасности при работе с электроустановками.
Кувшинов А.Н.
Продолжение обзора
www.junradio.com
- Схема терморегулятора
- Схема домофона
- Схема домофона
- Схема подключения теплого водяного пола к системе отопления
- Как расположить грядки на участке по сторонам света схема
- Схема подключения теплого водяного пола к системе отопления
- Как расположить грядки на участке по сторонам света схема
- Схема соединения треугольник звезда
- Схема подключения гидроаккумулятора к насосу и системе водоснабжения
- Схема подключения гидроаккумулятора к насосу и системе водоснабжения
- Схема водоснабжения частного дома из колодца с погружным насосом
Поделиться с друзьями: