Наверняка в хозяйстве многих радиолюбителей валяются подобные мелкие платки преобразователей напряжения. Стоят они копейки и часто их продают на вес десятками. Платка мелкая, но очень полезная, но она позволяет работать только в режиме стабилизации напряжения, которое выставляется подстроечным резистором. Также иногда бывают ситуации, когда надо сделать стабилизатор тока буквально "из палок и веревок", например для питания светодиодов, заряда аккумуляторов и прочего.В этом может помочь простой индикатор тока потребления, о котором я подробно рассказывал в отдельном видео. Собран он по простейшей схеме.При прохождении тока через данную схему на резисторе R1 падает некоторое напряжение, которое зависит от силы тока.Напряжение которое падает на резисторе R1 открывает транзистор когда для этого будет достаточно тока. Обычно транзистор открывается когда на резисторе R1 падает около 0.6-0.7 Вольта. Открывшись, транзистор подает ток в цепь светодиода, засвечивая его. Изменяя номинал резистора R1 можно менять ток, при котором будет светиться светодиод. Например при номинале в 1 Ом этот ток составляет около 0.6-0.7 Ампера. Если поставить резистор в два раза меньше сопротивлением, то соответственно ток будет уже 1.2-1.4 Ампера, т.е. изменение пропорционально изменению сопротивления.Транзистор, используемый в данной схеме - BC557B, хотя на самом деле выбор очень большой, например банальный КТ361, а если сделать схему "наизнанку", то и КТ315. В качестве примера я попробую сделать стабилизатор тока для питания вот такой светодиодной сборки. На ней светодиоды включены параллельно-последовательно, т.е. общее падение около 7 Вольт при токе в 700мА. Можно конечно было сделать стабилизатор тока на привычной LM317, но это линейный стабилизатор, потому греться он будет ощутимо.Но мы пойдет другим путем. Слева синим цветом выделена упрощенная схема понижающего стабилизатора напряжения, который я показал в самом начале. Микросхема контролирует выходное напряжение через вывод FB (FeedBack)Красным цветом выделена показанная выше платка. Чтобы правильно все подключить, надо найти где у микросхемы вход обратной связи, на схемах он также обозначается как FB либо Feedback.На мой плате установлена LM2596, находим описание и выясняем что это вывод номер 4. Припаиваем проводок прямо к выводу микросхемы, обычно выводы луженые и паяются очень легко. Подключаем этот провод к коллектору транзистора платы контроля тока, попутно соединяем выход платы преобразователя со входом платы контроля.На вход преобразователя подаем наше входное напряжение, в моем случае я подал около 17 Вольт. На выходе выставляем напряжение выше, чем надо диодной сборке, например 10-12 Вольт и подключаем сборку к выходу платы контроля тока. Отлично, ток в цепи получился 650 мА, все работает отлично. В некоторых ситуациях может потребоваться установка диода между выходом нашей платы и преобразователем, это необходимо чтобы наша схема не оказывала влияния на установку выходного напряжения преобразователя (зависит от примененного ШИМ контроллера).А если мы хотим чтобы еще и светодиод светился в режиме ограничения тока, то желательно установить еще и резистор, как показано на схеме (R6), номиналом около 56-470 Ом. Выше я писал насчет аккумуляторов.Если верхний резистор делителя переключить с выхода преобразователя на выход платы контроля тока, как это показано на схеме, то плата вполне будет способна заряжать и аккумуляторы. Без этого резистора также можно заряжать, но падение напряжения на резисторе R1 будет оказывать некоторое влияние на напряжение окончания заряда. В качестве дополнения я снял видео, возможно будет полезно. На этом у меня все, как всегда буду рад вопросам. Кстати, есть вариант такой же доработки, но уже не преобразователя, а блока питания.
Эту страницу нашли, когда искали: стабилизатор тока своими руками, cnf,bkbpfnjh njrf, стабилизатор для светодиодов, импульсный стабилизатор тока, сделай сам стабилизатор бытового напряжения, дешевый стабилизатор переменого тока на 5w 220v собрать своими руками c[tvf, собрать стабилизатор тока на 200 ма, стабилизатор тока yf 300vf c[tvf, как из стабилизатора напряжения сделать стабилизатор тока, как работает стабилизатор тока для светодиода своими руками, стабилизатор тока, шим стабилизатор тока для светодиода, ad стабилизатор тока, rfr cltkfnm 5 в стабилизатор, как самому сделать понижающий преобразователь на лм 317, как сделать стабилизатор тока на шим для зарядного устройства, самодельные стабилизаторы напряжения и тока, ограничитель тока o AHh4, стабилизаторы тока для светодиодов, как сделать стабилизатор напряжения, стабилизатор напряжения и тока своими руками, как из импульсного стабилизатора напряжения сделать стабилизатор тока, стабилизатор тока и напряжения своими руками, как сделать простой стабилизатор тока, 7812 стабилизатор схема включения регулируемый, стабилизатор тока схема, для начинающих радиолюбителей, простой стабилизатор www.kirich.blog В литературе нечасто можно встретить стабилизаторы тока на 100-200 А, но в некоторых процессах они необходимы (гальваника, сварка). На такие токи, как правило, нужны сверхмощные транзисторы. Я предлагаю схему на 150 А с плавной регулировкой тока от 0 до 150 А на обычных транзисторах КТ827. На рис.1 показана управляющая часть стабилизатора, на рис.2 - силовая часть. Как видно из рис.2, нагрузка включена несколько необычно: в разрыв отрицательного вывода диодного моста и земляного провода. Все мощные транзисторы (а их 16) включены по схеме с общим коллектором, но каждый из них нагружен на свою нагрузку. Все нагрузочные резисторы вторым выводом также соединены с землей. Таким образом, через выводы Rн протекает суммарный ток всех 16 транзисторов. Ток через один транзистор выбран около 9,4 А, что вполне допускают транзисторы КТ827. При падении напряжения на транзисторе 10-11 В мощность рассеяния одного транзистора составит около 100 Вт. Разброс параметров транзисторов VT1...VT16 и сопротивлений резисторов R2...R17 не имеет значения, так как каждый транзистор стабилизатора управляется своим операционным усилителем (рис.1). Выход каждого сдвоенного ОУ DA1...DA8 через транзисторы VT1...VT16 (рис.1) соединен с базами транзисторов VT1...VT16 (рис.2), а обратная связь подана на инвертирующий вход ОУ с эмиттера соответствующего ему транзистора. ОУ поддерживает на инвертирующем входе (и соответственно на эмиттере) такое же напряжение, какое у него на неинвертирующем входе. На все 16 неинвертирующих входов через резисторы R1...R16 (рис.1) подано стабильное управляющее напряжение со стабилизатора DA9 и резисторов R17, R18. При изменении управляющего напряжения изменяется ток через каждый из резисторов R2...R17 (рис.2) и соответственно через общую нагрузку R ОУ DA1...DA8 питаются от стабилизатора, выполненного на элементах DA1, DA2, VT17 (рис.2). Для ОУ можно применить любой другой источник питания с напряжением ±12...15 В. Конструкция. Печатная плата управляющих ОУ приведена на рис.3. На ней расположены все элементы с рис.1. Силовые транзисторы располагают на радиаторах, способных рассеять не менее 100 Вт. Я использовал ребристые радиаторы размером 10х20 см. Все 16 радиаторов были собраны в батарею и обдувались 4 вентиляторами (типа ВВФ-112М или подобными). Это позволило включить стабилизатор тока на долговременную постоянную нагрузку. Если нагрузка кратковременная или импульсная, возможно потребуются радиаторы меньшей площади. Резисторы R2...R17 (рис.2) изготавливают из высокоомного провода (манганина или константа- на) диаметром 1-2 мм и крепят на радиаторах соответствующих им транзисторов. Конденсатор С3 (рис.2) набирают из нескольких конденсаторов емкостью 1000015000 мкФ. Нельзя использовать один конденсатор большой емкости, так как он начинает сильно перегреваться (его выводы имеют недостаточное сечение и не рассчитаны на такие большие токи). При использовании набора конденсаторов меньшей емкости ток распределяется по выводам, и они остаются холодными. Диоды VD5...VD8 располагают на стандартных радиаторах, рассчитанных на установку диодов Д200. При использовании диодов Д200 обдув их вентилятором не требуется. Микросхему DA1 и транзистор VT17 (рис.2) располагают на небольших пластинчатых радиаторах. При монтаже стабилизатора тока нужно не забывать, что через некоторые цепи будет течь ток 150 А, поэтому их необходимо выполнить проводом соответствующего сечения. В качестве трансформатора TR2 используют трансформатор с вторичной обмоткой, способной выдержать ток 150 А, и напряжением около 14 В. Для этой цели хорошо подходит сварочный трансформатор. Падение напряжения на сопротивлении нагрузки стабилизатора тока при напряжении питания 14 В должно быть не более 10 В, так как нужно учитывать падение напряжения на каждом транзисторе и резисторах R2...R17 (рис.2). При большом падении напряжения на Rн допускается увеличение напряжения вторичной обмотки трансформатора TR2, необходимо только следить, чтобы мощность рассеяния каждого из транзисторов не превышала максимально допустимую для транзистора. При необходимости увеличить или уменьшить максимальный ток, отдаваемый в нагрузку, можно соответственно увеличив или уменьшив количество силовых транзисторов и соответствующих им ОУ. Таким образом, на основе данного стабилизатора тока можно создать более мощный источник тока. Детали. Составные транзисторы КТ827А можно заменить транзисторами с другой буквой или составить их из двух транзисторов (например, КТ815 + КТ819 с любым буквенным индексом). Сдвоенные ОУ КР140УД20 можно заменить К157УД2 или одинарными ОУ КР140УД6, К140УД7, К140УД14 и др. Стабилизатор 78L05 можно заменить КР142ЕН5А, Б или 78L09. Транзисторы КТ315Е заменимы КТ3102, КТ603 и др. Диоды Д200 можно заменить диодами Д160. Трансформатор TR1 типа ТПП232 заменяется ТПП234, ТПП253 или любым другим с вторичными обмотками с напряжением 16-20 В. Все резисторы, кроме R17, R18, любого типа. Резистор R17 желательно взять стабильный (например, С2-29). Переменный резистор R18 я использовал типа СП5-35А с возможностью точной подстройки, но можно применить и любой другой. Конденсатор С3 (рис.2) набран из 10 конденсаторов типа К50-32А, конденсаторы С2, С4 (рис.1) типа К50-35, остальные любого типа. Наладка. Собранный из исправных деталей стабилизатор тока сразу же работоспособен. Необходимо только выставить максимальный стабилизируемый ток при помощи резистора R17. Это удобно сделать, поставив вместо последнего подстроечный резистор сопротивлением 1,5-2 кОм. Установив его в положение максимального сопротивления, а движок резистора R18 - в верхнее по схеме положение и подсоединив последовательно с нагрузкой амперметр на ток 150-200 А (или замкнув выводы подключения нагрузки накоротко через амперметр), включают стабилизатор в сеть и, уменьшая сопротивление резистора R17, устанавливают стрелку амперметра на необходимый максимальный ток. Затем, измерив сопротивление подстроечного резистора, впаивают вместо него постоянный. При максимальном токе 150 А напряжение на эмиттерах мощных транзисторов должно быть около 1,88 В. Поэтому наладку можно проводить и по напряжению на эмиттере какого-либо из транзисторов, хотя точность установки тока при этом будет небольшой из-за разброса сопротивлений проволочных резисторов. На этом наладка заканчивается. На основе подобного стабилизатора тока можно собрать зарядное устройство для автомобильного аккумулятора, применив только один силовой транзистор и один ОУ. Схема зарядного устройства для автомобильного аккумулятора показана на рис.4. Она позволяет плавно регулировать ток зарядки аккумулятора от 0 до 9 А. В процессе зарядки ток остается неизменным. Напряжение обмотки 4 трансформатора TR1 (рис.4) должно быть 22-25 В, так как к силовому транзистору прикладывается напряжение обмотки трансформатора TR1 минус напряжение аккумулятора. При подключении нагрузки к вышеописанным стабилизаторам тока не следует забывать, что на "земляном" проводе находится плюсовой выход стабилизатора. ingeneryi.info Стабилизатор тока, схема которого изображена на рисунке 1, предназначен для гальванопластики и гальваностегии. – электрохимический способ копирования. Этим способом изготавливают ювелирные изделия, копии гравюр, скульптур, детали сложной конфигурации. – электрохимический процесс покрытия одного металла другим. Данный блок с такими радиаторами и вентилятором от компьютера (смотрим Фото 1) способен обеспечить ток от 1,5 до 8А. Вентилятор питается тем же стабилизированным напряжением, что и операционный усилитель DA2. Величина максимального тока устанавливается резистором R3, а регулируется ток резистором R2. Минимальный ток можно установить резистором R4, чем меньше величина этого резистора, тем меньше ток стабилизации. В принципе эта схема идентична схеме описанной в статье «Зарядное устройство с токовой стабилизацией », только вместо одного управляющего транзистора, в схеме применены три. Рисунок печатной платы с установкой транзисторов на одном радиаторе можно скачать здесь. Скачать “Стабилизатор тока для гальваники” Stabilizator_I.rar – Загружено 489 раз – 18 KB Можно использовать рисунок печатной платы, как сделал я, приведенный в вышеупомянутой статье. Данные о трансформаторе и о шунте описаны там же. Транзисторы VT2, VT3, VT4 должны быть из одной серии или подобраны по основным параметрам. Разброс параметров полупроводников очень большой и никакие уравнивающие резисторы, устанавливаемые в эмиттерные цепи транзисторов, не помогут. Если применить радиатор больших размеров и так же с обдувом, то можно вместо трех транзисторов КТ819, можно применить один транзистор КТ827 в металлическом корпусе, способным выдерживать ток до 20А и мощность 125 ватт. Но будьте осторожны, если вы установите ток стабилизации, например 10А и случайно произойдет короткое замыкание, то при напряжении питания 18В, на транзисторе мгновенно выделится мощность 18 ? 10 = 180Вт. Транзистор такой мощности вряд ли выдержит. Просмотров:27 462 www.kondratev-v.ruСтабилизатор тока для гальваники. Схема стабилизатор тока
Как из простого преобразователя сделать стабилизатор тока
Я уже как-то рассказывал про схему, позволяющую сделать индикацию тока нагрузки выше определенного порога. Сегодня расскажу про то, как при помощи этой схемы доработать простой преобразователь напряжения и получить в итоге стабилизатор тока.СТАБИЛИЗАТОР ТОКА ОТ 0 ДО 150 А » Портал инженера
Обсудить на форуме Стабилизатор тока для гальваники | Все своими руками
Опубликовал admin | Дата 19 сентября, 2013 Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".
Поделиться с друзьями: