интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

LM317 и светодиоды. Схема стабилизатор тока на lm317


Изготовление стабилизатора на LM-317 для светодиода своими руками

Источники света на светодиодах получают все большее распространение, вытесняя остальных конкурентах, как в области применения индикации, так и в качестве мощных осветительных приборов. Для стабильной и долговечной работы источников на светоизлучающих диодах требуется соблюдение ряда требований.

ИМС LM317

Источник тока или напряжения?

Большинству знакомо понятие стабилизатора напряжения, то есть устройства, которое обеспечивает выдачу стабильного напряжения, вне зависимости от условий: мощности нагрузки, температуры, величины входного напряжения. Для питания источников освещения на светодиодах необходимо обеспечить подачу стабильного тока через диод. Это связано с тем, что полупроводниковые элементы обладают нелинейной зависимостью тока через p-n переход. Изменение внешних условий влияет на величину протекающего тока, который может выйти за допустимые пределы. Поэтому понятие стабилизатора напряжения для светодиодов не имеет смысла. Особенно важно обеспечить стабилизацию тока для светодиодов в авто, где напряжение не отличается стабильностью, а диапазон изменения температуры очень широк.

Именно перечисленные условия требуют применения источника тока. В простейшем случае можно довольствоваться простым ограничением максимального значения при помощи ограничительного резистора, но это не обеспечивает стабильной яркости и неэффективно с энергетической точки зрения.

На заметку. Более рациональным будет питание стабилизированным значением с использованием схемотехнических решений источников тока на малогабаритных электронных компонентах.

Схемотехническое решение

Развитие современной микроэлектроники позволяет создавать устройства с требуемыми параметрами с использованием минимума элементов. Довольно хорошо зарекомендовали себя устройства токовых генераторов на  интегральной микросхеме LM317. Вообще данная микросхема представляет собой интегральный стабилизатор напряжения, но некоторые изменения в стандартной схеме включения, кстати, оговоренные в технической документации, позволяют использовать данную ИМС в качестве источника тока, в том числе для питания светодиодов.

Параметры микросхемы следующие:

  • Напряжение – 1.2-37В;
  • Ток через ИМС – до 2А в случае использования LM317T.

Различными производителями выпускается множество разновидностей данного стабилизатора, но разница в стоимости и габаритах для минимальной и максимальной мощностей ничтожна, поэтому есть смысл использовать максимально доступную мощность, запас которой никогда не помешает.

Важно! При использовании мощного стабилизатора тока для светодиодов при нагрузке, близкой к максимальной, обязательно использование радиатора, который позволит отбирать выделяемое интегральной микросхемой тепло.

Итак, самый простой, но надежно работающий стабилизатор тока на микросхеме lm317 для светодиодов представлен ниже.

Простейший стабилизатор

В данной схеме микросхема имеет лишь один резистор во внешней обвязке. Именно при помощи его задается значение выходного параметра. Делается это по формуле:

R=1.25/I.

Данный вариант стабилизатора работает в диапазоне значений от 0.01 до 1.5А.  Верхний предел ограничивается мощностью микросхемы. Мощность, которая рассеивается на резисторе, может составлять несколько ватт при максимальном токе. Более точно она определяется из выражения:

P=I2R.

Важно! При значениях более 0.3А применение радиатора охлаждения для микросхемы обязательно!

Добавив в схему всего два элемента: мощный транзистор и резистор, можно поднять выходной ток до 10А.

Мощный стабилизатор

В приведенной схеме применяется мощный составной транзистор КТ825 с любой буквой. Резистор R2 выполняет ту же функцию, что и в предыдущей схеме, и рассчитывается точно так же. Поскольку по нему протекает высокий ток, а значение сопротивления малое, то следует использовать проволочный. Резистор R1 задает смещение на базе транзистора и должен иметь рассеиваемую мощность 0.25-0.5Вт.

В обеих схемах напряжение питания источника (входное напряжение) может составлять от 3 до 38В. Для поддержания необходимого тока во всем диапазоне нагрузок напряжение питания следует обеспечивать приближенное к максимальному значению.

Пример. Пусть задано 20мА. Тогда при одном подключенном диоде напряжение на выходе будет составлять около 2-3В (в зависимости от типа светодиода). Если включить два последовательных светодиода, то для обеспечения необходимого тока 20мА схема выдаст уже ровно в два раза большее напряжение. Аналогичные подсчеты можно произвести для любого количества элементов.

Необходимое входное напряжение можно получить при помощи понижающего трансформатора с мостовым выпрямителем и конденсатором фильтра.

Выпрямитель

Диоды должны быть рассчитаны на необходимый ток, а емкость конденсатора нужно брать порядка нескольких тысяч микрофарад.

Важно! Рабочее напряжение конденсатора должно превышать напряжение питания примерно в полтора раза, то есть в данном случае оно должно быть не менее 50В.

Автомобиль имеет напряжение бортовой сети не более 14В. Поскольку частота пульсаций здесь выше, чем в домашней сети, а амплитуда невысока, то емкость конденсатора может быть меньше. Также и рабочее напряжение может составлять 25В. Разумеется, выпрямительный мост здесь не нужен.

Как видно, сделать стабилизатор тока для светодиодов своими руками – задача несложная. Важны аккуратность, внимательность и минимальные навыки работы с электроникой.

Видео

Оцените статью:

elquanta.ru

LM317 и светодиоды | Catcatcat electronics

LM317 и светодиоды

LM317статья с переработанная с сайта http://invent-systems.narod.ru/LM317.htm

Долговечность светодиодов определяется качеством изготовления кристалла, а для белых светодиодов еще и качествомled люминофора. В процессе эксплуатации скорость деградации кристалла зависит от рабочей температуры. Если предотвратить перегрев кристалла, то срок службы может быть очень велик до 10 и более лет.

От чего может быть вызван перегрев кристалла? Он может быть вызван только чрезмерным увеличением тока. Даже короткие импульсы тока перегрузки сокращают срок жизни светодиода, например, если в первый момент, после скачка тока визуально это воздействие не заметно и кажется, что светодиод не пострадал.

Статья в pdf 

Повышение тока может быть вызвано нестабильностью напряжения или электромагнитными (электростатическими) наводками на цепи питания светодиода.

Дело в том, что главным параметром для долговечности светодиода является не напряжение его питания, а ток, который по нему течет. Например, красные светодиоды по напряжению питания могут иметь разброс от 1,8 до 2,6 V, белые от 3,0 до 3,7 V. Даже в одной партии одного производителя могут встречаться светодиоды с разным рабочим напряжением. Нюанс заключается в том, что светодиоды изготовленные на основе AlInGaP/GaAs (красные, желтые, зеленые – классические) довольно хорошо выдерживают перегрузку по току, а светодиоды на основе GaInN/GaN (синие, зеленые (сине-зеленые), белые) при перегрузке по току, например, в 2 раза живут … 2-3 часов!!! Так что, если Вы желаете, чтобы светодиод горел и не сгорел в течение хотя бы 5 лет позаботесь о его питании.

Если мы устанавливаем светодиоды в цепочку (последовательное соединение) или подключаем параллельно, то добиться одинаковой светимости можно только если протекающий ток через них будет одинаков.

LM317_01Также опасно для светодиодов высокое обратное напряжение. У светодиодов обычно порог обратного напряжения не превышает 5-6 V. Для зашиты светодиода от импульсов обратного напряжения рекомендуется устанавливать выпрямительный диод в обратном направлении.

Как построить своими руками самый простой стабилизатор тока? И желательно из недорогих комплектующих.

 Обратим внимание на стабилизатор напряжения LM317, который легко превратить в стабилизатор тока при помощи только одного резистора, если нужно стабилизировать ток в пределах до 1 A или LM317L, если необходима стабилизация тока до 0,1 А.

 Так выглядят стабилизаторы LM317 с рабочим током до 3 А.

LM317_02 LM317_03

Так выглядят  стабилизаторы LM317L с рабочим током до 100 мА.

LM317_04

На Vin (input) подается напряжение, с Vout (output) – снимается напряжение, а Adjust – вход регулировки. Таким образом, LM317 – стабилизатор с регулируемым выходным напряжением. Минимальное выходное напряжение 1,25 V (если Adjust “посадить” прямо на землю) и максимальное – до входного напряжения минус 1,25 V. Т.К. максимальное входное напряжение составляет 37 вольт, то можно делать стабилизаторы тока до 37 вольт соответственно.

Для того чтобы LM317 превратить в стабилизатор тока нужен всего 1 резистор!

Схема включения выглядит следующим образом:

LM317_05

По формуле внизу рисунка очень просто рассчитать величину сопротивления резистора для необходимого тока. Т.е сопротивление резистора равно – 1,25 деленное на требуемый ток.  Для стабилизаторов до 0,1 A подходит мощность резистора 0,25 W. На токи от 350 мА до 1 А рекомендуется 2 W. Ниже  привожу таблицу резисторов на токи для широко распространенных светодиодов.

Ток (уточненный ток для резистора стандартного ряда) Сопротивление резистора Примечание
20 мА 62 Ом стандартный светодиод
30 мА (29) 43 Ом “суперфлюкс” и ему подобные
40 мА (38) 33 Ом
80 мА (78) 16 Ом четырех-кристальные
350 мА (321) 3,9 Ом 1 W
750 мА (694) 1,8 Ом 3 W
1000 мА (962) 1,3 Ом 5 W

Вот пример с учетом всего выше сказанного. Сделаем стабилизатор тока для белых светодиодов с рабочим током 20 мА, условия эксплуатации автомобиль (сейчас так моден световой тюннинг….).

Для белых светодиодов  рабочее напряжение в среднем равно 3,2 V. В  легковой автомашине бортовое напряжение колеблется в среднем от 11,6 V в режиме работы от аккумулятора и до 14,2 V при работающем двигателе. Для российских машин учтем выбросы в “обратке” и в прямом направлении до 100 ! вольт.

Включить последовательно можно только 3 светодиода – 3,2*3 = 9,6 вольта, плюс 1,25 падение на стабилизаторе = 10,85. Плюс диод от обратного напряжения 0,6 вольта = 11,45 вольта.

Полученное значение 11,45 вольта ниже самого низкого напряжения в автомобиле – это хорошо! Это значит на выходе будет всегда наши 20 мА независимо от напряжения в бортовой сети автомобиля. Для защиты от выбросов положительной полярности поставим после диода супрессор на 24 вольта.

P.S. Подбирайте количество светодиодов так, чтобы на стабилизаторе оставалось как можно меньше напряжения (но не меньше 1,3 вольта), это необходимо для уменьшения рассеиваемой мощности на самом стабилизаторе. Это особенно важно для больших токов. И не забудьте, что на токи от 350 мА и выше LMка потребуется радиатор.

Вот и все!

Cхема. РИСУНОК 1

LM317.6

Z1 супрессор или стабилитрон для дешевых светодиодов можно и не ставить, но диод в автомобиле обязателен! Рекомендую его ставить даже, если вы просто подключаете светодиоды с гасящим резистором. Как рассчитывать сопротивление резистора для светодиодов я думаю описывать излишне, но если надо пишите на форуме.

Краткое описание к схеме рис.1

Количество светодиодов в цепочке надо выбирать с учетом вашего рабочего напряжения минус падение напряжения на стабилизаторе и минус на диоде.

Например: Вам необходимо в автомобиле подключить белые светодиоды с рабочим током в 20 мАм. Обратите внимание, что 20 мА – это рабочий ток для ФИРМЕННЫХ дорогих светодиодов!!! Только фирма гарантирует такой ток. Если вы не знаете точного происхождения, то выбирайте ток в пределах 14-15 мА. Это для того, что бы потом не удивляться, почему так быстро упала яркость или,  вообще, почему они так быстро перегорели. Это тоже актуально и для мощных светодиодов. Потому что к нам завозят не всегда то, что маркировано на изделии.

Вопрос 1. Сколько можно включить их последовательно? Для белых светодиодов рабочее напряжение 3,0-3,2 вольта. Примем 3,1. Напряжение минимальное рабочее на стабилизаторе (исходя из его опорного 1,25) приблизительно 3 V. Падение на диоде 0,6 V. Отсюда суммируем все напряжения и получаем минимальное рабочее напряжение выше которого наступает режим стабилизации тока на заданном уровне (если ниже, соответственно ток будет ниже) = 3,1*3 +3,0+0,6 = 12,9 V. Для автомобиля минимальное напряжение в сети 12,6 – это нормально.

Для белых светодиодов на 20 мА можно включать 3 шт, для сети 12,6 V. Учитывая, что при включенном двигателе нормальное рабочее напряжение сети 13,6 V (это номинальное, в других вариантах может быть и выше!!!), а рабочее LM317 до 37 V

Вопрос 2 – как рассчитать сопротивление резистора задающего ток! Хотя выше и было описано, вопрос задают постоянно.

 R1 = 1,25/Ist.

где     R1 – сопротивление токозадающего резистора в Омах.

1,25 – опорное (минимальное напряжение стабилизации) LM317

Ist – ток стабилизации в Амперах.

 

Нам нужен ток в 20 мА – переводим в амперы = 0,02 А.

Вычисляем R1 = 1,25 / 0,02 = 62,5 Ом. Принимаем ближайшее значение 62 Ома.

 

Еще пару слов о групповом включении светодиодов.

Идеально – это последовательное включение со стабилизацией тока.

LM317.2

Светодиоды – это в принципе стабилитроны с очень малым обратным рабочим напряжениям. Если есть возможность наводок высокого напряжения от близ лежащих высоковольтных проводов, то необходимо каждый светодиод зашунтировать защитным диодом. (для справки многие производители особенно для мощных диодов это уже делают вмонтируя в изделие защитный диод).

LM317.3

если необходимо подключить массив из светодиодов, то рекомендую такую схему включения.

LM317.4

Резисторы необходимы для выравнивания токов по цепям и являются балластными нагрузками при повреждениях светодиодов в массиве.

Как рассчитать значение гасящего резистора для светодиода? Расчет проводиться по закону Ома.

LM317.5

Ток в цепи равен напряжению делённому на сопротивление цепи.

I led = V pit / на сопротивление диода и резистора.

Сопротивление резистора и диода мы не знаем, но знаем наш рабочий ток и падение напряжения на светодиоде.

Для маломощных светодиодов с током 20 мАм необходимо принимать:

Тип светодиода Рабочее напряжение (падение на светодиоде)
Инфракрасный 1,6-1,8
Красный 1,8-2,0
Желтый (зеленый) 2,0-2,2
Зеленый 3,0-3,2
Синий 3,0-3,2
Ультрафиолетовый 3,1-3,2
Белый 3,0-3,1

Зная падение напряжения на светодиоде можно вычислить остаток – напряжение на резисторе.

Например, питающее напряжение V pit = 9 V. Мы подключаем 1 белый светодиод, падение на нем 3,1 V. Напряжение на резисторе будет = 9 – 3,1  = 5,9 V.

Вычисляем сопротивление резистора:

R1 = 5.9 / 0.02 = 295 Ом.

Берем резистор с близким более высоким сопротивлением 300 ом.

PS. Не всегда характеристики на рабочий ток светодиода соответствуют истине, это актуально особенно для светодиодов изготовленных “не знаю где”,  для светодиодов (любых) надо большое внимание уделить отводу тепла, а так как это условие не всегда выполнимо, то по этому рекомендую для “20 мА” светодиодов выбирать ток в районе 13-15 мА. Если это SMD на 50 мА, нагружать током 25-30 мА. Эта рекомендация особенно актуальна для светодиодов с рабочим напряжением в районе 3,0 вольт (белые, синие и истинно зеленые) и светодиодов в SMD исполнении. Т.е. не задавайте максимальный ток по описанию, сделаете его на 10-25%  меньше, срок службы будет в 10 дольше :)…

Рекомендую обратить внимание на драйверы, правда цена на них еще кусается

NSI45015W, NSI45020, NSI45020A, NSI45020J, NSI45025, NSI45025A, NSI45025AZ, NSI45025Z, NSI45030, NSI45030A,NSI45030AZ, NSI45030Z, SI45035J, NSI45060JD, NSI45090JD, NSI50010YT1G, NSI50350AD, NSI50350AS

 

catcatcat.d-lan.dp.ua

Alex_EXE » Драйвер тока светодиода на LM317

Светодиоды питаются не напряжением, а током, поэтому важной задачей является ограничение тока проходящего через диод. Где то можно обойтись простым резистором, но если напряжение не очень стабильно, или диод потребляет большой ток – то лучше применить что-нибудь посерьезнее. Стабилизаторы тока бывают линейные и импульсные, в этой статье речь пойдёт о самом простом ограничителе тока на LM317.

10Вт RGB светодиод в работе (2% мощности)

Эта микросхема очень универсальна, на ней можно строить как всевозможные линейные стабилизаторы напряжении, так и ограничители тока, зарядные устройства… Но остановимся на ограничители тока. Микросхема ограничивает ток, а напряжение диод берёт столько, сколько ему нужно. Схема очень проста, состоит всего из двух деталей: самой микросхемы и задающий ток резистора:

Схема драйвера (из datasheet)

Схема включения драйвера тока

Минимальное напряжение должно быть минимум на 2-4В больше чем напряжение питания кристалла светодиода. Схема позволяет ограничивать ток от 10мА до 1,5А с максимальным входным напряжением 35В. При большом перепаде напряжений и(или) больших токах микросхему нужно посадить на радиатор. Если же требуются большие входные напряжения или ток, или нужно уменьшить потери, или тепловыделение то уже стоит использовать импульсный драйвер (будет рассмотрен позже).

Резистор рассчитывается по следующей формуле:

R1=1.25В/Iout

где ток взят в Амперах, а сопротивление в Омах.

Небольшая рассчитанная таблица:

Платой из трёх таких драйверов запитал 10Вт трехцветный светодиод.

Драйвер RGB светодиода на LM317

Драйвер разместился на втором радиаторе с обратной стороны 10Вт светодиода, на момент написания статьи надёжно прикручен к радиатору и прикрыт алюминиевой пластиной.

Кристаллы светодиода потребляют до 350мА, напряжения: Красный 8-9В, Синий и Зелёный 10-11В. Напряжение на входе драйвера 13-14В, максимальный потребляемый ток 9,6А.

Статья обновлена 18.1.2012

alex-exe.ru


Каталог товаров
    .