интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Частотник для трехфазного электродвигателя своими руками. Схема самодельного частотника для трехфазного асинхронного двигателя


частотный преобразователь своими руками, как сделать

Сегодня асинхронные двигатели являются основными тяговыми приводами для станков, конвейеров, и прочих промышленных агрегатов.

Для того чтобы моторы могли нормально функционировать, им нужен частотный преобразователь. Он позволяет оптимизировать работу агрегата и продлить срок его службы. Покупать устройство необязательно — частотник для трехфазного электродвигателя можно сделать своими руками.

Назначение частотного преобразователя

Асинхронный электродвигатель может работать и без частотника, но в этом случае у него будет постоянная скорость без возможности регулировки. К тому же отсутствие частотного преобразователя приведет к возрастанию пускового тока в 5−7 раз от номинального, что вызовет увеличение ударных нагрузок, повысит потери электроэнергии и приведет к существенному сокращению срока службы агрегата.

Для нивелирования всех вышеперечисленных негативных факторов были изобретены преобразователи частоты для асинхронных двигателей трехфазного и однофазного тока.

Частотник дает возможность в широких пределах регулировать скорость электродвигателя, обеспечивает плавный пуск, позволяет регулировать как скорость запуска, так и скорость торможения, подключать трехфазный мотор к однофазной сети и многое другое. Все эти функции зависят от микроконтроллера, на котором он построен, и могут отличаться у разных моделей.

Принцип работы устройства

Переменный ток поступает из сети на диодный мост, где он выпрямляется и попадает на батарею сглаживающих конденсаторов, где окончательно превращается в постоянный ток, который поступает на стоки мощных IGBT транзисторов, управляемых главным контроллером. Истоки транзисторов, в свою очередь, подключены к двигателю.

Вот упрощенная схема преобразователя частоты для трехфазного асинхронного двигателя.

Теперь рассмотрим, что происходит с транзисторами и как они работают.

Полевой транзистор (он же ключ, мосфет и пр.) — это электронный выключатель, принцип его действия основан на возникновении проводимости между двумя выводами (сток и исток) мосфета, при появлении на управляющем выводе (затворе) напряжения, превышающего напряжение стока.

В отличие от обычных реле, ключи работают на очень высоких частотах (от нескольких герц до сотен килогерц) так что заменить их на реле не получится.

С помощью этих быстродействующих переключателей микроконтроллер получает возможность управления силовыми цепями.

К контроллеру, кроме мосфетов, также подключены датчики тока, органы управления частотником, и другая периферия.

При работе частотного преобразователя микроконтроллер измеряет потребляемую мощность и, в соответствии с установленными на панели управления параметрами, изменяет длительность и частоту периодов, когда транзистор открыт (включен) или закрыт (выключен), тем самым изменяя или поддерживая скорость вращения электродвигателя.

Самостоятельное изготовление прибора

Несмотря на множество агрегатов заводского производства, люди делают преобразователи частоты самостоятельно, благо на сегодняшний день все его компоненты можно купить в любом радиомагазине или заказать из Китая. Такой частотник обойдется вам значительно дешевле покупного, к тому же вы не будете сомневаться в качестве его сборки и надежности.

Делаем трехфазный преобразователь

Собирать наш преобразователь будем на мосфетах G4PH50UD, которыми будет управлять контроллер PIC16F628A посредством оптодрайверов HCPL3120.

Собранный частотник при подключении в однофазную сеть 220 В будет иметь на выходе три полноценные фазы 220 В, со сдвигом 120°, и мощность 3 КВт.

Схема частотника выглядит так:

Так как частотный преобразователь состоит из частей, работающих как на высоком (силовая часть), так и на низком (управление) напряжении, то логично будет разбить его на три платы (основная плата, плата управления, и низковольтный блок питания для неё) для исключения возможности пробоя между дорожками с высоким и низким напряжением и выхода устройства из строя.

Вот так выглядит разводка платы управления:

Для питания платы управления можно использовать любой блок питания на 24 В, с пульсациями не более 1 В в размахе, с задержкой прекращения подачи питания на 2−3 секунды с момента исчезновения питающего напряжения 220 В.

Блок питания можно собрать и самим по этой схеме:

Обратите внимание, что номиналы и названия всех радиокомпонентов на схемах уже подписаны, так что собрать по ним работающее устройство может даже начинающий радиолюбитель.

Перед тем как приступить к сборке преобразователя, убедитесь:

  1. В наличии у вас всех необходимых компонентов;
  2. В правильности разводки платы;
  3. В наличии всех нужных отверстий для установки радиодеталей на плате;
  4. В том, что не забыли залить в микроконтроллер прошивку из этого архива:

Если вы все сделали правильно и ничего не забыли, можете приступать к сборке.

После сборки у вас получится что-то похожее:

Теперь вам осталось проверить устройство: для этого подключаем двигатель к частотнику и подаем на него напряжение. После того как загорится светодиод, сигнализирующий о готовности, нажмите на кнопку «Пуск». Двигатель должен начать медленно вращаться. При удержании кнопки двигатель начинает разгоняться, при отпускании — поддерживает обороты на том уровне, до которого успел разогнаться. При нажатии кнопки «Сброс» двигатель останавливается с выбегом. Кнопка «Реверс» задействуется только при остановленном двигателе.

Если проверка прошла успешно, то можете начинать изготавливать корпус и собирать в нем частотник. Не забудьте сделать в корпусе отверстия для притока холодного и оттока горячего воздуха от радиатора IGBT транзисторов.

Частотник для однофазного двигателя

Преобразователь частоты для однофазного двигателя отличается от трехфазного тем, что имеет на выходе две фазы (ошибки тут нет, двигатель однофазный, при подключении без частотника рабочая обмотка подключается в сеть напрямую, а пусковая — через конденсатор; но при использовании частотника пусковая обмотка подключается через вторую фазу) и одну нейтраль — в отличие от трех фаз у последнего, так что сделать частотник для однофазного электродвигателя, используя в качестве основы схему от трехфазного, не получится, поэтому придется начинать все сначала.

В качестве мозга этого преобразователя мы будем использовать МК ATmega328 с загрузчиком ардуины. В принципе, это и есть Arduino, только без своей обвязки. Так что, если у вас в закромах завалялась ардуинка с таким микроконтроллером, можете смело выпаивать его и использовать для дела, предварительно залив на него скетч (прошивку) из этого архива:

К атмеге будет подключен драйвер IR2132, а уже к нему — мосфеты IRG4BC30, к которым мы подключим двигатель мощностью до 1 КВт включительно.

Схема частотного преобразователя для однофазного двигателя:

Также для питания ардуины (5в) и для питания силового реле (12в), нам понадобятся 2 стабилизатора. Вот их схемы:

Стабилизатор на 12 вольт.

Стабилизатор на 5 вольт.

Внимание! Эта схема не из простых. Возможно, придется настраивать и отлаживать прошивку для достижения полной работоспособности устройства, но это несложно, и мануалов по программированию Arduino в интернете — великое множество. К тому же сам скетч содержит довольно подробные комментарии к каждому действию. Но если для вас это слишком сложно, то вы можете попробовать найти такой частотник в магазине. Пусть они и не так распространены, как частотники для трехфазных двигателей, но купить их можно, пусть и не в каждом магазине.

Еще обратите внимание на то, что включать схему без балласта нельзя — сгорят выходные ключи. Балласт нужно подключать через диод, обращенный анодом к силовому фильтрующему конденсатору. Если подключите балласт без диода — опять выйдут из строя ключи.

Если вас все устраивает, можете приступать к изготовлению платы, а затем — к сборке всей схемы. Перед сборкой убедитесь в правильности разводки платы и отсутствии дефектов в ней, а также — в наличии у вас всех указанных на схеме радиодеталей. Также не забудьте установить IGBT-транзисторы на массивный радиатор и изолировать их от него путем использования термопрокладок и изолирующих шайб.

После сборки частотника можете приступать к его проверке. В идеале у вас должен получиться такой функционал: кнопка «S1» — пуск, каждое последующее нажатие добавляет определенное (изменяется путем редактирования скетча) количество оборотов; «S2» — то же самое, что и «S1», только заставляет двигатель вращаться в противоположном направлении; кнопка «S3» — стоп, при её нажатии двигатель останавливается с выбегом.

Обратите внимание, что реверс осуществляется через полную остановку двигателя, при попытке сменить направление вращения на работающем двигателе произойдет его мгновенная остановка, а силовые ключи сгорят от перегрузки. Если вам не жаль денег, которые придется потратить на замену мосфетов, то можете использовать эту особенность в качестве аварийного тормоза.

Возможные проблемы при проверке

Если при проверке частотника схема не заработала или заработала неправильно, значит, вы где-то допустили ошибку. Отключите частотник от сети и проверьте правильность установки компонентов, их исправность и отсутствие разрывов/замыканий дорожек там, где их быть не должно. После обнаружения неисправности устраните её и проверьте преобразователь снова. Если с этим все в порядке, приступайте к отладке прошивки.

220v.guru

Схема частотного преобразователя асинхронного двигателя

Содержание:
  1. Назначение и принцип работы частотного преобразователя
  2. Общая схема частотного преобразователя
  3. Самодельный частотный преобразователь

В регулируемых приводах различных устройств уже на протяжении длительного времени применяются трехфазные электродвигатели синхронного и асинхронного типа. Чаще всего применяется асинхронный вариант, в котором для регулировки используются полупроводниковые частотные преобразователи.

Для того чтобы обеспечить плавное регулирование и быстроту действия существует специальная схема частотного преобразователя асинхронного двигателя.Таким образом, управляющие устройства осуществляют непрерывную регулировку в быстром режиме.

Назначение и принцип работы частотного преобразователя

Стандартный частотный преобразователь является специальным электротехническим устройством. С его помощью асинхронным двигателям обеспечивается плавный пуск и остановка, а также возможность изменения скорости, крутящего момента и других производственных характеристик. Кроме этого, преобразователь контролирует показатели параметров для всех процессов, происходящих в двигателе. Одновременно контролируются и технологические процессы.

Применение преобразователей позволяет существенно увеличить время непрерывной работы асинхронных двигателей и значительно экономить электроэнергию. Операторы постоянно используют обратную связь при наблюдении за приводами во время работы. За счет этого снижается вероятность возникновения аварийных ситуаций. По сравнению с механическими регулировочными приспособлениями частотный преобразователь позволяет довести КПД до 96-98%.

В некоторых видах частотных преобразователей имеются промежуточные преобразующие звенья. Поэтому вся конструкция прибора может быть одно- или двухступенчатой. Во втором случае преобразование электроэнергии производится дважды. Этот вариант получил более широкое распространение. Здесь происходит преобразование переменного тока в постоянный, после его прохождения через выпрямитель. Затем, преобразованный ток поступает в инвертор, где происходит конвертация в обратную сторону. Таким образом, скорость вращения ротора регулируется за счет изменения частоты и напряжения электрического тока на входе.

Управление электродвигателями осуществляется векторным и скалярным способом. Первый вариант отличается более высокой точностью и эффективностью. Этот способ достаточно дорогой, сложный в обслуживании, требующий от специалистов полного объема знаний и навыков. Во втором случае обслуживание управления гораздо проще, а сам частотный преобразователь значительно дешевле. Он применяется в механизмах, где выходные параметры не требуют точной регулировки. Тем не менее, плавный пуск обеспечивается также качественно, как и при векторном управлении.

Общая схема частотного преобразователя

Конструкция стандартного преобразователя включает в себя неуправляемый силовой диодный выпрямитель, автономный инвертор, система управления и автоматической регулировки, а также дроссель и конденсатор фильтра. Выходная частота и напряжение регулируется с помощью инвертора, в котором применяется широтно-импульсное высокочастотное управление. При этом, возникает определенный период модуляции, во время которого происходит поочередное подключение обмотки статора к положительному или отрицательному полюсу выпрямителя. Продолжительность такого состояния происходит в соответствии с синусоидальным законом.

Во время регулировки скорости, скольжение асинхронного двигателя не увеличивается. За счет этого удается избежать потерь мощности. Подводимое напряжение подвергается изменениям совместно с частотой. Поэтому удается получить высокий коэффициент мощности, КПД, способность к перегрузкам и другие энергетические показатели, характерные для асинхронных двигателей.

Чаще всего схема частотного преобразователя асинхронного двигателя построена на принципе двойного преобразования. Для выпрямления входного синусоидального напряжения используется звено постоянного тока. После этого происходит сглаживание фильтром, включающим в себя конденсатор и дроссель. Затем, при помощи инвертора, производится еще одно преобразование, после которого постоянная амплитуда и частота напряжения становится изменяемой, с необходимыми параметрами.

Необходимые параметры частоты и напряжения на выходе регулируются широтно-импульсным управлением высокой частоты. В это время происходит модуляция продолжительности поочередного подключения обмоток к каждому из полюсов выпрямителя. В средней части полупериода ширина импульсов становится максимальной, а в начале и конце каждого полупериода наступает их уменьшение. Именно таким путем и обеспечивается регулировка напряжения, поступающего на обмотки асинхронного двигателя. Для изменяемой амплитуды и частоты на выходе устанавливаются все необходимые параметры.

Самодельный частотный преобразователь

electric-220.ru

какой частотник лучше выбрать и подключить

Трёхфазный асинхронный двигатель был создан в конце XIX столетия и на данном этапе развития человечества является одним из незаменимых элементов в современном промышленном производстве. Для обеспечения плавного пуска и остановки такого двигателя используется специальное устройство.

Называется оно — преобразователь частоты или частотник, если попроще. Для крупных двигателей с большой мощностью наличие такого преобразователя особенно актуально. С помощью частотников можно регулировать пусковые токи, что подразумевает осуществление таких манипуляций, как контроль и ограничение их величины.

Принцип работы частотного преобразователя

Исключительно механическое управление током приводит к энергетическим потерям и уменьшению срока службы оборудования. Показатели этого тока будут в несколько раз больше номинальных, что крайне отрицательно скажется на нормальной работе оборудования.

Принцип работы частотного преобразователя заключается в том, что управление током осуществляется электронным путём. Это обеспечивает мягкий пуск, плавное регулирование работы привода, путём соблюдения соотношения между частотой и направления по специальной заданной формуле.

У частотного преобразователя существует целый ряд преимуществ, которые очень положительно характеризуют работу этого устройства. Одним из таких преимуществ является тот факт, что частотник помогает экономить потребляемую энергию. Экономия составляет примерно 50%, что само по себе является весьма большим плюсом. Кстати, с учётом потребности конкретного производства существует возможность регулирования энергии, которая потребляется в процессе работы оборудования.

Суть работы данного устройства заключается в принципе двойного преобразования напряжения. Сама суть может быть описана посредством расписывания всего двух пунктов, что позволит проследить и осознать весь принцип:

  1. Напряжение сети подвергается выпрямлению и фильтрации системой конденсаторов.
  2. После этого в работу вступает непосредственно электронное управление, что заключается в образовании тока с частотой, которая была заранее запрограммирована.

На выходе выдаются прямоугольные импульсы, которые поддаются воздействию обмотки статора двигателя, после чего они становятся близкими к синусоиде.

Выбор частотника

Производители таких приборов делают упор на стоимость частотных преобразователей. Из этого следует, что многие опции, которые имеются у более дорогих моделей, на дешёвых моделях преобразователей уже не будут присутствовать. Перед выбором нужного прибора следует обратить внимание на технические характеристики всех имеющихся моделей, представленных в ассортименте, а также на основные требования для конкретного использования.

  • Управления может осуществляться двумя способами: векторным и скалярным. Векторное управление предоставляет возможность точной регулировки. Принцип работы скалярного управления заключается в поддержании одного соотношения между напряжением и частотой на выходе, заданного пользователем. Скалярное управление не подходит для сложных устройств и используется на более простых устройствах вроде вентилятора.
  • Чем выше указанная в характеристиках мощность, тем выше универсальность преобразователя. Это означает, что это обеспечит взаимозаменяемость. К тому же обслуживание такого устройства будет проще.
  • Непременно следует обратить внимание на указанный диапазон напряжения сети. Он должен быть максимально широким, что обеспечит безопасность при перепадах его норм. И нельзя не упомянуть тот факт, что повышение намного опаснее, чем понижение. При повышении могут взорваться сетевые конденсаторы.
  • Указанная частота обязательно должна соответствовать всем производственным потребностям. На диапазон регулирования скорости привода указывает нижний предел. При надобности в более широком следует прибегнуть к векторному управлению. Практическое применение предусматривает применение таких частот, как: от 10 до 60 Гц. Редко, но встречаются и до 100 Гц.
  • Осуществление управление предусматривает использование различных входов и выходов. Чем их больше, тем, конечно же, лучше. Но нужно брать вниманию, что при большем количестве входов и выходов, значительно увеличивается стоимость частотного преобразователя, а также усложняется его настройка.
  • Внимание также следует обратить и на шину управления подключаемого оборудования. Она должна совпадать с возможностью схемы частотника по количеству входов и выходов. Также не стоит забывать о том, что лучше иметь в наличии небольшой запах для возможной модернизации.
  • Не стоит забывать и о перегрузочных возможностях устройства. Рекомендуется выбирать частотный преобразователь, обладающий мощность, которая будет на 15 % больше мощности используемого двигателя. Настоятельно рекомендуется прочесть инструкции, прилагающуюся к частотнику в комплекте. Производители непременно указывают в документации к устройству все его основные параметры. В том случае, если важны пиковые нагрузки, то следует обратить при выборе устройства внимание на реальные показатели тока и величины, указанные в качестве пиковых. В этом случае нужно выбрать преобразователь с показателями пикового тока, которые будут на 10% выше, чем указанные в документации.

Подключение частотного преобразователя к электродвигателю

  • Для однофазной проводки (220 В), то есть для использования в домашних условиях, подключение должно осуществляться пользователем путём выполнения схемы «треугольник». Ток на выходе ни в коем случае не должен превышать 50% от номинального! Это очень важно!
  • Для промышленного использования (трёхфазная проводка на 380В) рекомендуется осуществление подключения частотного преобразователя к двигателю по схеме «звезда».

Клеммы

Частотный преобразователь имеет определённое количество клемм, которые обозначены разными буквами, и которые нужны для разных подключений:

  • R, S, T — к этим клеммам подключаются провода сети, притом очерёдность не имеет значения
  • U, V, W — к этим клеммам производится включение асинхронного двигателя. В том случае, если двигатель вращается в обратную сторону, необходимо просто поменять любой из проводов, подключённых к этим клеммам
  • Предусмотрено наличие одной клеммы для заземления

Рекомендации по эксплуатации и обслуживанию частотного преобразователя для асинхронного двигателя.

Для того чтобы продлить срок эксплуатации преобразователя, следует выполнять ряд требований и следовать советам, которые помогут продлить жизнь устройству:

  1. Настоятельно рекомендуется очищать внутренности преобразователя от пыли. Можно делать это и пылесосом, но тут следует учесть, что такая чистка будет неполной и недостаточной, так как пыль имеет свойство уплотняться, что создаст дополнительные трудности пылесосу, с которыми он не всегда сможет справиться. Поэтому лучше воспользоваться компрессором. Для очистки такого рода он подходит лучше.
  2. Следует периодически заменять узлы. Очень важно делать это в срок. Работа электролитических конденсаторов рассчитана на срок в пять лет, в то время как предохранители имеют срок эксплуатации в два раза больше — целых десять лет. Вентиляторы охлаждения должны быть заменены пользователем после двух — трёх лет эксплуатации. Внутренние шлейфы так же должны меняться через определённый срок, их срок работы рассчитан на шесть лет использования.
  3. Необходимо осуществлять контроль за внутренней температурой и напряжением на шине постоянного тока. Повышение температуры влечёт за собой очень неприятные последствия. Это и засыхание термопроводящей пасты, и разрушение конденсаторов. Термопроводящую пасту следует менять регулярно — примерно один раз в три года и ни в коем случае не реже.
  4. Обязательно нужно придерживаться всех прописанных условий эксплуатации. Температура среды окружающей не должна быть выше 40 градусов. Высокая влажность и запылённость воздуха недопустимы.

Управление асинхронным двигателем — процесс совсем не лёгкий. Требуется обладать определёнными знаниями, чтобы успешно осуществлять все манипуляции, предполагающие как подключения, так и мероприятия по эксплуатации.

Преобразователи, которые были произведены кустарно, вполне могут быть использованы в домашних условиях и в бытовых целях. К тому же стоят такие частотники существенно меньше, чем промышленные аналоги. Но на для работы на производстве крайне не рекомендуется использовать такие преобразователи. Для таких условий следует выбирать частотники, которые были собраны на заводах. Работу на таких устройствах и их обслуживание следует доверить персоналу, который хорошо разбирается в данных устройствах и обладает достаточными знаниями для того, чтобы работать с частотниками.

Выводы

Асинхронные электродвигатели по многим параметрам превосходят двигатели постоянного тока. Превосходство это касается и устройства и надёжности. Поэтому во многих случаях пользователи выбирают именно асинхронные двигатели, руководствуясь именно соображениями насчёт их превосходства над другими устройствами.

Механическое управление током вызывает некоторые негативные последствия, так как при использовании этого варианта управления нельзя быть уверенным в стопроцентной и качественной работе оборудования. Использование частотных преобразователей для асинхронных двигателей имеет свои очень важные преимущества, которые немаловажны во многих аспектах работы с двигателями. Одним из самых главных плюсов использования электронного управления и частотников является тот факт, что эти устройства позволяют экономить расход потребляемой электроэнергии. К тому же и мощность будет больше.

Частотники следует выбирать, беря во внимание множество характеристик, которые прописываются в документации, приложенной к устройству. Частотные преобразователи, сделанные кустарно, могут пригодиться в бытовых условиях, но на производстве их использовать не стоит.

Эксплуатация преобразователей должна проводиться грамотно, в соответствии со всеми рекомендациями и правилами. Это позволит улучшить качество работы оборудования. К тому же многие советы позволят продлить работу двигателю и преобразователю. Крайне рекомендуется следить за напряжением. В случае критического повышения напряжения могут взорваться конденсаторы. Частотники должны быть использованы с оглядкой на все основные правила безопасности. Рекомендуется не браться за работу с ними в отсутствие всех необходимых знаний в этой области.

Оцените статью: Поделитесь с друзьями!

elektro.guru

Включение трехфазного двигателя в однофазную сеть без потерь энергии

Частотнный преобразователь для асинхронного двигателя

Электродвигатели асинхронного типа отличатся от всех других подобных конструкций значительными преимуществами.

Они имеют самое простое устройство, не используют при работе сложный узел коллекторно-щеточного механизма и за счет этого обладают меньшим весом, габаритами.

Благодаря этим качествам они не теряют свою работоспособность даже после отработки всего моторесурса промышленными станками и механизмами, а после их списания на производстве попадают в частные руки умельцев.

В статье мы кратко объясняем принцип работы асинхронного двигателя, даем советы домашнему мастеру по оптимальному подключению его в однофазную сеть своими руками за счет использования бюджетного частотного преобразователя напряжения.

Другие методы включения электродвигателя, основанные на способах использования фазосдвигающих цепочек тока за счет применения конденсаторов, здесь не указываем. Они уже описаны отдельной статьей, рассматривающей схемы включения обмоток по принципам звезды и треугольника.

Содержание статьи

Как работает трехфазный асинхронный двигатель

На статоре электродвигателя размещены три отдельных обмотки с изолированным проводом, уложенные в специальные пазы. Их выводы могут быть собраны по схеме звезды или треугольника. Более подробно этот вопрос описан в статье о возможных способах подключения в однофазную сеть 220.

Однако, рассмотренные там методы основаны на сдвиге вектора питающего напряжения однофазной сети для каждой фазы двигателя на угол 90 градусов. А в реальной трехфазной схеме вектора токов отстоят между собой на 120 градусов. Таким же образом формируются рабочие токи.

Формы синусоид векторов напряжений и токов в асинхронном двигателе

Показанные на картинке синусоидальные величины принято представлять векторной формой. Она более наглядно показывает симметричное приложение напряжений и создаваемые ими токи внутри каждой рабочей обмотке.

Виды векторных диаграмм у трехфазного двигателяИспользование же емкостных нагрузок или индуктивностей не обеспечивает симметричный сдвиг между питающим напряжением сети 220 и током в соседней обмотке. Угол недобора поворота вектора тока достигает 30 градусов или одну четвертую часть от требуемого значения.

За счет этого двигатель не может развить номинальную мощность, для которой он создан в трёхфазной схеме и потребляет дополнительную энергию, расходуемую на торможение. Недостатки такого подключения очевидны:

  • перерасход электроэнергии;
  • недостаточная мощность крутящего момента на валу.

Векторные диаграммы тока и напряжения

Как работает частотный преобразователь

Принцип создания синусоидальной гармоничной формы тока основан на использовании широтно-импульсной модуляции (ШИМ) пакетов напряжения. Для этого на вход обмотки подаются высокочастотные импульсы постоянного тока строго определенной протяженности, оформленные пакетами противоположной полярности от частотного преобразователя.

Ширина (длительность протекания) каждого импульса различна. Она больше в центре полугармоники и уменьшается к ее краям. Такое пилообразное, зубчатое напряжение подается на обмотку электродвигателя, которая, как известно, обладает активно-индуктивным сопротивлением и создает индуктивную нагрузку и ЭДС.

Графики напряжений и токов в обмотке асинхронного двигателя с частотным преобразователемЗа счет ее энергии в обмотке происходит сглаживание высокочастотных пульсаций до формы синусоиды тока.

Характеристики чередования импульсов и пауз между ними обеспечиваются работой электронной схемы управления. Она занимается всем процессом преобразования по заданному алгоритму, учитывает условия технологии.

Всем циклом управления частотного преобразователя занимается микропроцессорное устройство, которое может иметь разные настройки и способы построения.

Принцип работы схемы частотного преобразователя демонстрирует рисунок.

Принцип работы частотного преобразователяДвухфазное напряжение сети 220 вольт или трехфазное 380, как показано на картинке, выпрямляется мощным диодным мостом и поступает на блок стабилизации, где производится сглаживание пульсаций мощными конденсаторами.

Это стабилизированное напряжение поступает на инвертор, где работают мощные биполярные IGBT транзисторы с изолированным затвором. Они для каждой обмотки двигателя создают поток импульсов напряжения по строго заданному блоком управления закону.

В очень сложных промышленных преобразователях частоты, когда мощности транзисторов недостаточно для работы инвертора, устанавливают специальные тиристоры.

Преимущества частотного преобразования электроэнергии

В схемах преобразователей, работающих по принципу ШИМ модулирования напряжения, создаются наиболее благоприятные условия для управлением электродвигателем.

Включение в работу и останов

При запуске любого асинхронного двигателя обычным методом возникают апериодические составляющие токов, которые перегружают бытовую сеть и создают сверх нагрузку для электропроводки, влияют на работу точной электронной аппаратуры домашней сети.

Графики токов запуска асинхронного двигателяЗапуск двигателя с помощью частотного преобразователя может избавить домашнего мастера от подобных неприятностей. В большинстве их моделей специально реализована такая функция.

Реверс привода

За счет функций микропроцессорного управления можно не только влиять на характеристики запуска и останова, но изменять направление вращения двигателя.

Реверс вращенияВ обычных моделях приводов для этих целей используются целые блоки на магнитных пускателях и реле с блок-контактами и концевыми выключателями, которые потребляют часть электрической энергии сети питания.

Регулирование скорости вращения

Это основное преимущество частотного преобразователя позволяет значительно экономить электрическую энергию, забирая ее столько, сколько необходимо потребить для обеспечения усилия крутящего момента на валу.

Устройство управления отслеживает его величину по току нагрузки и в результате этой обратной связи управляет работой транзисторов инвертора.

Принцип частотного регулирования скорости вращения асинхронного двигателяПеречисленные три преимущества являются не единственными положительными чертами работы частотного регулирования. Но, экономное потребление электрической энергии сети при обеспечении максимально возможного крутящего момента считается наиболее привлекательной и полезной характеристикой для домашнего мастера.

Поэтому рекомендуем обратить внимание на работу частотных преобразователей, использовать их для подключения трехфазных асинхронных двигателей в однофазную сеть и обращать внимание на выходные характеристики и способы регулирования. Они у каждой модели могут иметь значительные отличия.

В заключение рекомендуем посмотреть видеоролик владельца Николая Черняк «Частотный преобразователь». Только критически отнеситесь к его информации о защитах.

Сейчас вам удобно задать вопрос в комментариях или поделиться материалом статьи с друзьями в соц сетях.

Полезные товары

housediz.ru

Задающий генератор для трехфазного инвертора, Инвертор для асинхронного двигателя, Преобразователь частоты для асинхронного электродвигателя на PIC контроллере

PIC С USB В УПРАВЛЕНИИ ТИРИСТОРНЫМ ПРЕОБРАЗОВАТЕЛЕМ.

Использование микроконтроллеров для создания систем импульсного управления силовыми выпрямительными мостами на основе тиристоров позволяет уменьшить размеры устройств управления, сделать их компактными и надежными. В статье представлено описание блока управления тиристорным преобразователем БУТП, выполненного на микроконтроллерах PIC фирмы Microchip PIC16F628A и PIC18F2550.
схема || продолжить

ЗАДАЮЩИЙ ГЕНЕРАТОР ДЛЯ ТРЕХФАЗНОГО ИНВЕРТОРА.

Темa питания трехфазного электродвигателя от однофазной сети не нова, но по-прежнему остается актуальной. Сегодня мы предлагаем вниманию читателей еще одно техническое решение проблемы. Для упрощения задающего генератора — основы трехфазного инвертора, обеспечивающего питание такого двигателя, — автор статьи предлагает использовать микроконтроллер.
схема || продолжить

ИНВЕРТОР ДЛЯ АСИНХРОННОГО ДВИГАТЕЛЯ.

Хотя сегодня для управления трехфазным электроприводом имеются специализированные микросхемы с большими функциональными возможностями, простой инвертор для питания асинхронного трехфазного двигателя от однофазной сети может быть построен на базе обычного микроконтроллера. Предлагаемый инвертор состоит из микроконтроллера, узла защиты от превышения допустимого тока нагрузки и мощных коммутаторов напряжения IGBT.
схема || продолжить

ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ ДЛЯ АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ.

В электроприводах технологических установок получили широкое применение асинхронные трёхфазные двигатели. Если необходимо изменять частоту вращения ротора такого двигателя, его следует питать трёхфазным током с регулируемыми частотой и эффективным значением напряжения. В статье рассказывается о преобразователе, формирующем регулируемое по частоте и амплитуде трёхфазное напряжение из однофазного, поступающего от сети 220 В.
схема || продолжить

СВАРОЧНЫЙ ИНВЕРТОР.

Устройство предназначено для электродуговой сварки штучными электродами. В мостовых инверторах падающая характеристика обеспечивается достаточно сложной электроникой. С точки зрения простоты управления наиболее привлекателен именно резонансный мост. В нем падающая характеристика источника сварочного тока обеспечивается параметрическими свойствами резонансной цепочки в первичной цепи инвертора. Особенностью инвертора является не только использование полного резонансного моста, но и управление им с помощью мк PIC16F628.
схема || продолжить

СИСТЕМА УПРАВЛЕНИЯ АСИНХРОННЫМ ТРЕХФАЗНЫМ ДВИГАТЕЛЕМ.

Схема СИСТЕМА УПРАВЛЕНИЯ АСИНХРОННЫМ ТРЕХФАЗНЫМ ДВИГАТЕЛЕМ В настоящее время фактически 60% всей вырабатываемой электроэнергии потребляется электродвигателями. Поэтому достаточно остро стоит задача экономии электроэнергии и уменьшения стоимости электродвигателей. Трехфазные асинхронные двигатели считаются достаточно универсальными и наиболее дешевыми.
схема || продолжить

mimik.esy.es


Каталог товаров
    .