интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Простая схема детектора мобильного сигнала. Схема простая


Просто схема | Поделки своими руками для авто, дачи и дома

8 565

На этой странице будут собраны полезные схемы, применяемые в автомобилях или для них. 

1.СХЕМА ПОДКЛЮЧЕНИЯ СТАБИЛИЗАТОРА!

Стабилизатор на L7812cv или наш аналог простая КРЕНка на 12 вольт.

2. Простой регулятор напряжения 1.2 — 37В на ИМС LM317 (аналог КР142ЕН12А)

3. Схема подключения электровентилятора

4. Плавный розжиг светодиодов

5. Схема для гудка

6. Схема розжига (например для приборной панели)

7. Простой способ удаления ржавчины

8. Схема переходника GM12 — OBD2

За переходник в магазинах просят непомерные деньги. На самом деле нужно всего три проводка.

9.

10.

11. Бегущий поворотник на микроконтроллере

Бегущий поворотник на pic12f675/629 5 каналов. Включается при подачи напряжения, имеет 2 прошивки:-бегущий столбик-бегущая точкаФайлы для повторения; скачать…

12.         Вот простейшая и эффективная схема электронного предохранителя, обеспечивающего защиту от КЗ и переполюсовки при заряде батарей. Схема успешно опробована и работает без танцев с бубном.

 схема электронного предохранителя

Схема работает так, включать БП нужно без нагрузки, с нагрузкой будет бросок тока и в защиту сразу.

13. Проверка свечей зажиганияДавно сделал и решил выложить для повторения кому понравится. Схема как видите простая и сделать под неё печатку не представляет трудностей. Поверка осуществляется без вывертывания свечей из блока авто. Если свеча «живая» то засветится зеленый СД.

Проверка свечей зажигания

14. Простой 

 Простой плавный розжиг светодиодов

Схема данного розжига была сделана на основе распространённой схемы, выкинуто всё лишнее, работает отлично и без нареканий. Резистор R2 отвечает за скорость розжига поставил регулируемый (R2* — номинал 100 кОм). Плата очень компактная и универсальная воткнуть можно куда хочешь. (R2* — номинал 100 кОм).

15. Cтабилизатор тока и напряжения под светодиоды.

Остается только рассчитать резисторы под свои нужды.

Сделано из:Конденсатор 330 мкФ 16ВКонденсатор 100 мкФ 16ВВыпрямительный диод 1N4007Регулятор L7812CVРегулятор LM317TРезистор по расчету

Стабилизатор напряжения

Готовый стабилизатор напряжения и тока под резистор

Сама схема и печатка

16. Самая простая цветомузыка на светодиодах

и далее…

  • Как просто замерить и найти ток утечки в авто
  • Как подключить автомагнитолу, назначение проводов.
  • Как проверить массу автомобиля или почему не заводится двигатель.
  • Схема для восстановления автомобильного аккумулятора
  • Преобразователь напряжения с 12 на 220 вольт из блока розжига ксенона.
  • Почему мигает светодиод в авто и что надо сделать?
  • Три простые схемы регулятора тока для зарядных устройств
  • Универсальное ЗУ или понижающий и повышающий преобразователь сразу, схема
  • Простой пробник для авто своими руками
  • Приставка к зарядному или как восстановить аккумулятор
  • Простое электронное реле поворотников для ламп или светодиодов, схема
  • Отличная приставка для зарядного устройства, схема
  • Простая зарядка для авто из старого лампового телевизора
  • Автоотключение любого ЗУ автомобиля при завершении зарядки, схема
  • Схема зарядного устройства для восстановления АКБ реверсивным током
  • Нагрузочная вилка для проверки аккумуляторов своими руками
  • Как сделать зарядное устройство из компьютерного блока питания
  • Схема ограничителя тока к любому зарядному устройству
  • Усилитель для сабвуфера в авто, полная версия
  • Как самому сделать стробоскоп в авто 
  • Самодельный тестер для проверки системы зажигания
  • Как сделать простой преобразователь с 12 на 220 из компьютерного БП
  • Стабилизатор напряжения с регулируемой нагрузкой для ЗУ
  • Преобразователь для авто 12-220 на основе бесперебойника
  • Простой электрический обогреватель в автомобиль своими руками
  • Линейный стабилизатор для светодиодных ламп на авто
  • Приставка к зарядному устройству или как восстановить АКБ
  • Вежливая подсветка противотуманок или ДХО, схема
  • Видеорегистратор в дополнение к авто сигнализации
  • Как изготовить обходчик иммобилайзера своими руками
  • Что сделать, чтобы аккумулятор авто служил долго
  • Электронное реле поворотов
  • Простейший стабилизатор напряжения для ДХО на базе L7812
  • Делаем схему автомобильного датчика температуры радиатора
  • Как собрать схему автомобильного ионизатора воздуха
  • Схема электронного предохранителя для авто
  • Тринисторная схема блокировки зажигания
  • Как вычислить замыкание в проводке автомобиля
  • Простой автомобильный пробник из обыкновенного шприца
  • Как восстановить обмотку генератора
  • Плавный розжиг фар или светодиодов на микроконтроллере
  • Мощный DC-DC преобразователь
  • Защита зарядного устройства от короткого замыкания и переполюсовки
  • Импульсное зарядное устройство для авто, схема, описание
  • Плавное включение и затухание ДХО
  • Задержка включения ближнего света или ДХО на 8-10 секунд, схема
  • Как измерить ток утечки мультиметром
  • Как сделать доводчик стёкол в автомобиле
  • Делаем схему контроля зарядки аккумулятора для авто
  • Полностью автоматическое зарядное устройство для аккумуляторов
  • Динамические поворотники на микроконтроллере своими руками
  • Схема простого зарядного для АКБ с автовыключением
  • Делаем подсветку около дверного пространства автомобиля
  • Дополнительный мигающий стоп-сигнал
  • Автоэлектрика, стетоскоп для авто своими руками
  • Зарядное устройство из советских деталей для АКБ
  • Простая схема подключения ДХО через 5 контактное реле
  • Простой регулятор напряжения на LM317, схема
  • Простая схема шим регулятора на NE555
  • Простые «американские поворотники» на любой авто
  • Простой инвертор 12-220 до 400 ватт, схема
  • Автомобильный, простой пробник для автолюбителя
  • Контроллер для зарядки АКБ своими руками, схема
  • Усилитель для сабвуфера своими руками
  • Паяльник для выпаивания светодиодов своими руками
  • Простой регулятор напряжения для светодиодов или ДХО
  • Повышающий преобразователь, схема своими руками
  • Пробник-ручка для авто на 12 вольт своими руками
  • Динамические поворотники своими руками
  • Подсветка дверных карт и вежливая подсветка открытие дверей
  • Зарядное устройство из адаптера ноутбуков
  • Говорилка в автомобиль своими руками
  • Простой преобразователь напряжение 12 — 220 схема
  • Зарядное устройство из компьютерного блока питания
  • Переделка поворотника на светодиодный
  • Схема защиты от переполюсовки и КЗ для зарядного устройства АКБ
  • Простой стабилизатор для светодиодов навесным монтажом
  • Как зарядить аккумулятор без зарядного устройства, схемы
  • Мощный преобразователь с 12В на 5В 5 ампер
  • Стабилизатор напряжения в автомобиль
  • Плазменная электродуговая зажигалка своими руками
  • Автоматический регулятор заслонки карбюратора („автоподсос”)
  • Как сделать чтобы магнитола не сбрасывала настройки
  • Зарядное устройство для авто из БП от светодиодной ленты
  • Контролька для авто своими руками
  • Делаем отсечку оборотов на карбюраторном двигателе
  • Зарядное устройство из БП от компьютера
  • Делаем ШИМ для светодиодов своими руками
  • Схема простого зарядного устройства для АКБ
  • Самодельный тестер для проверок катушек авто
  • Пищалка для дверей авто своими руками
  • Схема ограничителя света в багажнике или в салоне авто
  • Индикатор АКБ на светодиодах схема для начинающих
  • Зарядное устройство из БП светодиодных лент.
  • Мини усилитель своими руками
  • Преобразователь для зарядки конденсаторов
  • Прибор для проверки стабилитронов, схема
  • Схема сигнализатора не выключенных габаритов на транзисторах
  • Индикатор аудио сигнала, простая схема
  • Несложный электрошокер своими руками
  • Как устранить просадки напряжения в авто
  • Обогреватель для авто своими руками
  • Светодиодный стробоскоп, делаем сами
  • Плавный розжиг и затухание светодиодов, схема
  • Автомобильный стробоскоп простая схема для сборки своими руками
  • Заменяем электромеханическое реле на электронное
  • Автоэлектрика. Как не забыть выключить свет на авто
  • Кодовая сигнализация или кодовый замок
  • Собираем преобразователь на 300 ватт напряжением 12 – 220 вольт
  • Простой стабилизатор напряжения к зарядному устройству
  • Реле поворотников на микроконтроллере, схема, печатка
  • Зарядка для ноутбука от прикуривателя в авто, схема
  • Простой блок управления для зарядного устройства
  • Сигнализатор открытых дверей типа «колокольчик», схема
  • Схема плавного розжига светодиодов
  • Простая схема для чистки форсунок своими руками
  • Не забывайте выключить габаритные огни своего ВАЗ 2110
  • Схема преобразователя для подключения сигналки к концевикам
  • Как поменять лампочки в салоне на светодиодные
  • Автовключение любой нагрузки после завода двигателя авто
  • Схема задержки выключения камеры заднего вида
  • Мощное зарядное устройства для любых аккумуляторов
  • Мигающий стоп-сигнал, схема
  • Токовая электронная нагрузка
  • Стабилизатор напряжения для светодиодов в авто своими руками
  • Компактное ЗУ для автомобильного аккумулятора
  • Простой способ увеличения срока службы светодиодной лампочки
  • Установка доводчиков стеклоподъемников, на примере Лады Приоры
  • Подключение мобильного телефона к магнитоле
  • Как убрать парковочные полосы с камеры заднего вида
  • Блок питания из эконом-лампы
  • Ремонт и диагностика своими руками
  • Плавное вкл/выключение света в авто, схема
  • Ремонт автомобильного усилителя GTA260
  • Инвертор из ИБП 12 в 220 и наоборот
  • Фильтр от помех своими руками
  • Переделываем реле для дворников от Лады
  • Боремся с просадками в напряжении бортсети авто
  • Изготавливаем устройство для добычи электричества
  • Обогрев дворников на лобовом своими руками
  • Простой драйвер для светодиодов
  • Турбо таймер своими руками
  • Автоэлектрика. Терморегулятор для автовентилятора
  • Индикатор для проверки и контроля уровня зарядки АКБ
  • Простой блок питания для гаража
  • Защищаем турбокомпрессор от поломок
  • Автоэлектрика. Отключаем свет фар, о котором забыли
  • Хороший адаптер для ноутбука от 12 Вольт
  • Простая схема плавного вкл/выкл салонного света
  • Делаем зажигание «Божья Искра»
  • Светодиод вместо лампочки на импульсном драйвере
  • Автоэлектрика. Подключение оборудования без вмешательства в проводку
  • Стабилизатор тока для светодиодов
  • Схема от перемены полюсов и коротких замыканий
  • Зарядное устройство для АКБ очень высокого качества
  • Индикатор заряда и разряда аккумулятора авто
  • Ангельские глазки своими руками
  • Автомобильный инвертор своими руками
  • Пусковое устройство для автомобиля своими руками
  • Зарядное устройство из эконом лампы

xn--100--j4dau4ec0ao.xn--p1ai

Простая схема детектора мобильного сигнала

Детектор сигнала мобильного телефона может обнаружить присутствие активированного сотового телефона на расстоянии около полтора метра. Таким образом, детектор можно использовать для предотвращения использования мобильных телефонов на экзаменах, в секретных помещениях и т. Д. Также это устройство может быть полезно для обнаружения мобильного телефона при шпионаже и несанкционированной передачи видео.Схема регистрирует любую передачу с телефона, будь то SMS, голосовой вызов или подключение к интернету. Как только несущий радиосигнал обнаружен, в схеме начинает гореть светодиод, сигнализирующий о высокочастотных колебаниях.

Схема детектора

Обычный RF-детектор с использованием контура LC не подходит для обнаружения сигналов в полосе частот ГГц, используемой в мобильных телефонах. Частота передачи мобильных телефонов составляет от 0,9 до 3 ГГц с длиной волны от 3,3 до 10 см. Здесь схема использует дисковый конденсатор емкостью 22p (C3) для захвата радиосигналов с мобильного телефона. Длина антенного провода конденсатора фиксируется как 18 мм с шагом 8 мм между выводами для получения желаемой частоты. Конденсатор вместе с антенной действует как небольшая гигагерцавоя гамма-антенна с для сбора радиосигналов с мобильного телефона.Усилитель CA3130 используется в схеме как преобразователь тока в напряжение с конденсатором C3, соединенным между его входами. Это версия CMOS, использующая защищенные транзисторами транзисторы с P-каналом на затворе на входе, обеспечивающие очень высокий входной импеданс, очень низкий входной ток и очень высокую скорость работы. Выходной КМОП-транзистор усиливает сигнал и включает светодиод.

Сборка детектора сигнала сотового телефона

Я собрал детектор на печатной плате. Предварительно начертил, протравил, залудил и просверлил. В общем все как полагается.В принципе, правильно собранный детектор в настройке не нуждается и начинает работать сразу после включение.Единственное, можно поиграться с выходной антенной, для получение большей чувствительности схемы к сигналу сотового телефона.В конце я решил добавить зуммер, запаяв его параллельно светодиоду.

Видео

Original article in English

sdelaysam-svoimirukami.ru

Простая схема радиоприемника: описание. Старые радиоприемники

Долгое время радиоприёмники возглавляли список самых значимых изобретений человечества. Первые такие устройства сейчас реконструированы и изменены под современный лад, однако в схеме их сборки мало что поменялось - та же антенна, то же заземление и колебательный контур для отсеивания ненужного сигнала. Бесспорно, схемы сильно усложнились со времён создателя радио - Попова. Его последователями были разработаны транзисторы и микросхемы для воспроизведения более качественного и энергозатратного сигнала.

Почему лучше начинать с простых схем?

Если вам понятна простая схема радиоприёмника, то можете быть уверены, что большая часть пути достижения успеха в сфере сборки и эксплуатации уже осилена. В этой статье мы разберём несколько схем таких приборов, историю их возникновения и основные характеристики: частоту, диапазон и т. д.

Историческая справка

7 мая 1895 года считается днём рождения радиоприёмника. В этот день российский учёный А. С. Попов продемонстрировал свой аппарат на заседании Русского физико-химического общества.

В 1899 году была построена первая линия радиосвязи длиной 45 км между островом Гогланд и городом Котка. Во время Первой мировой войны получили распространение приёмник прямого усиления и электронные лампы. Во время военных действий наличие радио оказалось стратегически необходимым.

простая схема радиоприемника

В 1918 году одновременно во Франции, Германии и США учёными Л. Левви, Л. Шоттки и Э. Армстронгом был разработан метод супергетеродинного приёма, но из-за слабых электронных ламп широкое распространение этот принцип получил только в 1930-х годах.

Транзисторные устройства появились и развивались в 50-х и 60-х годах. Первый широко используемый радиоприёмник на четырёх транзисторах Regency TR-1 был создан немецким физиком Гербертом Матаре при поддержке промышленника Якоба Михаэля. Он поступил в продажу в США в 1954 году. Все старые радиоприёмники работали на транзисторах.

В 70-х начинается изучение и внедрение интегральных микросхем. Сейчас приёмники развиваются с помощью большой интеграции узлов и цифровой обработки сигналов.

Характеристики приборов

Как старые радиоприёмники, так и современные обладают определёнными характеристиками:

  1. Чувствительность - способность принимать слабые сигналы.
  2. Динамический диапазон - измеряется в Герцах.
  3. Помехоустойчивость.
  4. Селективность (избирательность) - способность подавлять посторонние сигналы.
  5. Уровень собственных шумов.
  6. Стабильность.

Эти характеристики не меняются в новых поколениях приёмников и определяют их работоспособность и удобство эксплуатации.

Принцип работы радиоприёмников

В самом общем виде радиоприёмники СССР работали по следующей схеме:

  1. Из-за колебаний электромагнитного поля в антенне появляется переменный ток.
  2. Колебания фильтруются (селективность) для отделения информации от помех, т. е. из сигнала выделяется его важная составляющая.
  3. Полученный сигнал преобразуется в звук (в случае радиоприёмников).

По схожему принципу появляется изображение на телевизоре, передаются цифровые данные, работает радиоуправляемая техника (детские вертолёты, машинки).

старые радиоприемники

Первый приёмник был больше похож на стеклянную трубку с двумя электродами и опилками внутри. Работа осуществлялась по принципу действия зарядов на металлический порошок. Приёмник обладал огромным по современным меркам сопротивлением (до 1000 Ом) из-за того, что опилки плохо контактировали между собой, и часть заряда проскакивала в воздушное пространство, где рассеивалась. Со временем эти опилки были заменены колебательным контуром и транзисторами для сохранения и передачи энергии.

В зависимости от индивидуальной схемы приёмника сигнал в нём может проходить дополнительную фильтрацию по амплитуде и частоте, усиление, оцифровку для дальнейшей программной обработки и т. д. Простая схема радиоприёмника предусматривает единичную обработку сигнала.

Терминология

Колебательным контуром в простейшем виде называются катушка и конденсатор, замкнутые в цепь. С помощью них из всех поступающих сигналов можно выделить нужный за счёт собственной частоты колебаний контура. Радиоприемники СССР, как, впрочем, и современные устройства, основаны на этом сегменте. Как все это функционирует?

Как правило, питание радиоприёмников происходит за счёт батареек, количество которых варьируется от 1 до 9. Для транзисторных аппаратов широко используются батареи 7Д-0.1 и типа "Крона" напряжением до 9 В. Чем больше батареек требует простая схема радиоприёмника, тем дольше он будет работать.

По частоте принимаемых сигналов устройства делятся на следующие типы:

  1. Длинноволновые (ДВ) - от 150 до 450 кГц (легко рассеиваются в ионосфере). Значение имеют приземлённые волны, интенсивность которых уменьшается с расстоянием.
  2. Средневолновые (СВ) - от 500 до 1500 кГц (легко рассеиваются в ионосфере днём, но ночью отражаются). В светлое время суток радиус действия определяется приземлёнными волнами, ночью - отражёнными.
  3. Коротковолновые (КВ) - от 3 до 30 МГц (не приземляются, исключительно отражаются ионосферой, поэтому вокруг приёмника существует зона радиомолчания). При малой мощности передатчика короткие волны могут распространяться на большие расстояния.
  4. Ультракоротковолновые (УКВ) - от 30 до 300 МГц (имеют высокую приникающую способность, как правило, отражаются ионосферой и легко огибают препятствия).
  5. Высокочастотные (ВЧ) - от 300 МГц до 3 ГГц (используются в сотовой связи и Wi-Fi, действуют в пределах видимости, не огибают препятствия и распространяются прямолинейно).
  6. Крайневысокочастотные (КВЧ) - от 3 до 30 ГГц (используются для спутниковой связи, отражаются от препятствий и действуют в пределах прямой видимости).
  7. Гипервысокочастотные (ГВЧ) - от 30 ГГц до 300 ГГц (не огибают препятствий и отражаются как свет, используются крайне ограниченно).

радиоприемники ссср

При использовании КВ, СВ и ДВ радиовещание можно вести, находясь далеко от станции. УКВ-диапазон принимает сигналы более специфично, но если станция поддерживает только его, то слушать на других частотах не получится. В приёмник можно внедрить плейер для прослушивания музыки, проектор для отображения на удалённые поверхности, часы и будильник. Описание схемы радиоприёмника с подобными дополнениями усложнится.

Внедрение в радиоприёмники микросхемы позволило значительно увеличить радиус приёма и частоту сигналов. Их главное преимущество в сравнительно малом потреблении энергии и маленьком размере, что удобно для переноса. Микросхема содержит все необходимые параметры для понижения дискретизации сигнала и удобства чтения выходных данных. Цифровая обработка сигнала доминирует в современных устройствах. Радиоприёмники СССР были предназначены только для передачи аудиосигнала, лишь в последние десятилетия устройство приёмников развилось и усложнилось.

Схемы простейших приёмников

Схема простейшего радиоприёмника для сборки дома была разработана ещё во времена СССР. Тогда, как и сейчас, устройства разделялись на детекторные, прямого усиления, прямого преобразования, супергетеродинного типа, рефлексные, регенеративные и сверхрегенеративные. Наиболее простыми в восприятии и сборке считаются детекторные приёмники, с которых, можно считать, началось развитие радио в начале 20-ог века. Наиболее сложными в построении стали устройства на микросхемах и нескольких транзисторах. Однако если вы разберетесь в одной схеме, другие уже не будут представлять проблемы.

Простой детекторный приёмник

Схема простейшего радиоприёмника содержит в себе две детали: германиевый диод (подойдут Д8 и Д9) и главный телефон с высоким сопротивлением (ТОН1 или ТОН2). Так как в цепи не присутствует колебательный контур, ловить сигналы определённой радиостанции, транслирующиеся в данной местности, он не сможет, но со своей основной задачей справиться.

схема простейшего радиоприемника

Для работы понадобится хорошая антенна, которую можно закинуть на дерево, и провод заземления. Для верности его достаточно присоединить к массивному металлическому обломку (например, к ведру) и закопать на несколько сантиметров в землю.

Вариант с колебательным контуром

В прошлую схему для внедрения избирательности можно добавить катушку индуктивности и конденсатор, создав колебательный контур. Теперь при желании можно поймать сигнал конкретной радиостанции и даже усилить его.

Ламповый регенеративный коротковолновой приёмник

Ламповые радиоприёмники, схема которых довольно проста, изготавливаются для приёма сигналов любительских станций на небольших расстояниях - на диапазоны от УКВ (ультракоротковолнового) до ДВ (длинноволнового). На этой схеме работают пальчиковые батарейные лампы. Они лучше всего генерируют на УКВ. А сопротивление анодной нагрузки снимает низкая частота. Все детали приведены на схеме, самодельными можно считать только катушки и дроссель. Если вы хотите принимать телевизионный сигналы, то катушка L2 (EBF11) составляется из 7 витков диаметром 15 мм и провода на 1,5 мм. Для любительского приемника подойдет 5 витков.

Радиоприёмник прямого усиления на двух транзисторах

Схема содержит магнитную антенну и двухкаскадный усилитель НЧ - это настраиваемый входной колебательный контур радиоприёмника. Первый каскад - детектор ВЧ модулированного сигнала. Катушка индуктивности намотана в 80 витков проводом ПЭВ-0,25 (от шестого витка идёт отвод снизу по схеме) на ферритовом стержне диаметром 10 мм и длиной 40.

описание схемы радиоприемника

Подобная простая схема радиоприёмника рассчитана на распознавание мощных сигналов от недалёких станций.

Сверхгенеративное устройство на FM-диапазоны

FM-приёмник, собранный по модели Е. Солодовникова, несложен в сборке, но обладает высокой чувствительностью (до 1 мкВ). Такие устройства используют для высокочастотных сигналов (более 1МГЦ) с амплитудной модуляцией. Благодаря сильной положительной обратной связи коэффициент усиления каскада возрастает до бесконечности, и схема переходит в режим генерации. По этой причине происходит самовозбуждение. Чтобы его избежать и использовать приёмник как высокочастотный усилитель, установите уровень коэффициента и, когда дойдет до этого значения, резко снизьте до минимума. Для постоянного мониторинга усиления можно использовать генератор пилообразных импульсов, а можно сделать проще.

ламповые радиоприемники схема

На практике нередко в качестве генератора выступает сам усилитель. С помощью фильтров (R6C7), выделяющих сигналы низких частот, ограничивается проход ультразвуковых колебаний на вход последующего каскада УНЧ. Для FM-сигналов 100-108 МГц катушка L1 преобразуется в полувиток с сечением 30 мм и линейной частью 20 мм при диаметре провода 1 мм. А катушка L2 содержит 2-3 витка диаметром 15 мм и провод с сечением 0,7 мм внутри полувитка. Возможно усиление приёмника для сигналов от 87,5 МГц.

Устройство на микросхеме

КВ-радиоприёмник, схема которого была разработана в 70-е годы, сейчас считают прототипом Интернета. Коротковолновые сигналы (3-30 МГц) путешествуют на огромные расстояния. Нетрудно настроить приёмник для прослушивания трансляции в другой стране. За это прототип получил название мирового радио.

fm приемник

Простой КВ-приёмник

Более простая схема радиоприёмника лишена микросхемы. Перекрывает диапазон от 4 до 13 МГц по частоте и до 75 метров по длине. Питание - 9 В от батареи "Крона". В качестве антенны может служить монтажный провод. Приёмник работает на наушники от плейера. Высокочастотный трактат построен на транзисторах VT1 и VT2. За счёт конденсатора С3 возникает положительный обратный заряд, регулируемый резистором R5.

Современные радиоприёмники

Современные аппараты очень похожи на радиоприёмники СССР: они используют ту же антенну, на которой возникают слабые электромагнитные колебания. В антенне появляются высокочастотные колебания от разных радиостанций. Они не используются непосредственно для передачи сигнала, но осуществляют работу последующей цепи. Сейчас такой эффект достигается с помощью полупроводниковых приборов.

контур радиоприемника

Широкое развитие приёмники получили в середине 20-го века и с тех пор непрерывно улучшаются, несмотря на замену их мобильными телефонами, планшетами и телевизорами.

Общее устройство радиоприёмников со времён Попова изменилось незначительно. Можно сказать, что схемы сильно усложнились, добавились микросхемы и транзисторы, стало возможным принимать не только аудиосигнал, но и встраивать проектор. Так приёмники эволюционировали в телевизоры. Сейчас при желании в аппарат можно встроить всё, что душе угодно.

fb.ru

Для начинающих

Для начинающих

 музыкальный стробоскоп

На рисунке показана схема устройства, управляющего частотой вспышек импульсной лампы. Такое управление осуществляется в зависимости от положения переключателя SW2. В режиме А частота вспышек регулируется с помощью переменного резистора R7

Подробнее...

Для начинающих

Эта простая схема термореле, выполненная всего на двух транзисторах, может быть использована как сигнализатор повышения температуры или как регулятор температуры ( например, включать вентилятор для охлаждения какого-либо контролируемого объекта).

Подробнее...

Для начинающих

 

Миниатюрный источник высокого напряжения представляет собой высокочастотный преобразователь, который позволяет зажечьфлуоресцентные трубки, неоновые лампы и газоразрядные лампы, осущесивить их питание без проводов! Устройство представляет собой простой симметричный мультивибратор на двух транзисторах, нагрузками которых являются первичные обмотки трансформатора.

Подробнее...

Для начинающих

 

Схема простого сенсорного звонка приведена на рис. 1. В нем всего одна интегральная микросхема. На ее элементах DD1.1 и DD1.2 выполнен мультивибратор, а на DD1.3 и DD1.4 — усилитель мощности.

Подробнее...

Для начинающих

Электронная сирена состоит из двух генераторов прямоугольных импульсов. Первый генератор собран на элементах DD1.1 и DD1.2. Он генерирует импульсы фиксированной частоты следования (около 0,5 Гц), которая определяется номиналами деталей C1R2. Резистор R1 защищает входы элемента DD1.1 от перегрузки.

Подробнее...

Для начинающих

Генератор переменной частоты.Обычно мультивибратор вырабатывает сигнал определенной частоты, зависящей от параметров времязадающих цепочек. При необходимости изменить частоту такого генератора резистор одной из цепочек должен быть переменный. Предлагаемый же генератор, собранный по схеме симметричного мультивибратора, изменяет частоту автоматически, причем скорость изменения ее можно задать заранее подстроенным резистором.

Подробнее...

Для начинающих

Металлоискатель, схема которого приведена на рисунке, можно собрать всего за несколько минут. Он состоит из двух практически идентичных LC-генераторов, выполненных на элементах DD1.1 --DD1.4,

Подробнее...

Для начинающих

ЕМКОСТНОЕ РЕЛЕ — это электронное реле, срабатывающее при изменении (как правило, увеличении) емкости между его датчиком и общим проводом.

Подробнее...

radiopolyus.ru

Восемь простых схем на транзисторах для начинающих радиолюбителей

Приведены несколько схем простых устройств и узлов, которые могут быть изготовлены начинающими радиолюбителями.

Однокаскадный усилитель ЗЧ

Это простейшая конструкция, которая позволяет продемонстрировать усилительные способности транзистора Правда, коэффициент усиления по напряжению невелик — он не превышает 6, поэтому сфера применения такого устройства ограничена.

Тем не менее его можно подключить, скажем, к детекторному радиоприемнику (он должен быть нагружен на резистор 10 кОм) и с помощью головного телефона BF1 прослушивать передачи местной радиостанции.

Усиливаемый сигнал поступает на входные гнезда X1, Х2, а напряжение питания (как и во всех остальных конструкциях этого автора, оно составляет 6 В — четыре гальванических элемента напряжением по 1,5 В, соединенных последовательно) подается на гнезда ХЗ, Х4.

Делитель R1R2 задает напряжение смещения на базе транзистора, а резистор R3 обеспечивает обратную связь по току, что способствует температурной стабилизации работы усилителя.

Рис. 1. Схема однокаскадного усилителя ЗЧ на транзисторе.

Рис. 1. Схема однокаскадного усилителя ЗЧ на транзисторе.

Как происходит стабилизация? Предположим, что под воздействием температуры увеличился ток коллектора транзистора Соответственно увеличится падение напряжения на резисторе R3. В итоге уменьшится ток эмиттера, а значит, и ток коллектора — он достигнет первоначального значения.

Нагрузка усилительного каскада — головной телефон сопротивлением 60.. 100 Ом. Проверить работу усилителя несложно, нужно коснуться входного гнезда Х1 например, пинцетом в телефоне должно прослушиваться слабое жужжание, как результат наводки переменного тока. Ток коллектора транзистора составляет около 3 мА.

Двухкаскадный УЗЧ на транзисторах разной структуры

Он выполнен с непосредственной связью между каскадами и глубокой отрицательной обратной связью по постоянному току, что делает его режим независящим от температуры окружающей среды. Основа температурной стабилизации — резистор R4, работающий аналогично резистору R3 в предыдущей конструкции

Усилитель более «чувствительный” по сравнению с однокаскадным — коэффициент усиления по напряжению достигает 20. На входные гнезда можно подавать переменное напряжение амплитудой не более 30 мВ, иначе возникнут искажения, прослушиваемые в головном телефоне.

Проверяют усилитель, прикоснувшись пинцетом (или просто пальцем) входного гнезда Х1 — в телефоне раздастся громкий звук. Усилитель потребляет ток около 8 мА.

Рис. 2. Схема двухкаскадного усилителя ЗЧ на транзисторах разной структуры.

Рис. 2. Схема двухкаскадного усилителя ЗЧ на транзисторах разной структуры.

Эту конструкцию можно использовать для усиления слабых сигналов например, от микрофона. И конечно он позволит значительно усилить сигнал 34, снимаемый с нагрузки детекторного приемника.

Двухкаскадный УЗЧ на транзисторах одинаковой структуры

Здесь также использована непосредственная связь между каскадами, но стабилизация режима работы несколько отличается от предыдущих конструкций.

Допустим, что ток коллектора транзистора VТ1 уменьшился Падение напряжения на этом транзисторе увеличится что приведет к увеличению напряжения на резисторе R3, включенном в цепи эмиттера транзистора VТ2.

Благодаря связи транзисторов через резистор R2, увеличится ток базы входного транзистора, что приведет к увеличению его тока коллектора. В итоге первоначальное изменение тока коллектора этого транзистора будет скомпенсировано.

Рис. 3. Схема двухкаскадного усилителя ЗЧ на транзисторах одинаковой структуры.

Рис. 3. Схема двухкаскадного усилителя ЗЧ на транзисторах одинаковой структуры.

Чувствительность усилителя весьма высока — коэффициент усиления достигает 100. Усиление в сильной степени зависит от емкости конденсатора С2 — если его отключить, усиление снизится. Входное напряжение должно быть не более 2 мВ.

Усилитель хорошо работает с детекторным приемником, с электретным микрофоном и другими источниками слабого сигнала. Ток, потребляемый усилителем — около 2 мА.

Двухтактный усилитель мощности ЗЧ на транзисторах

Он выполнен на транзисторах разной структуры и обладает усилением по напряжению около 10. Наибольшее входное напряжение может быть 0,1 В.

Усилитель двухкаскадный первый собран на транзисторе VТ1 второй — на VТ2 и VТЗ разной структуры. Первый каскад усиливает сигнал 34 по напряжению причем обе полуволны одинаково. Второй — усиливает сигнал по току но каскад на транзисторе VТ2 “работает” при положительных полуволнах, а на транзисторе VТЗ — при отрицательных.

Рис. 4. Двухтактный усилитель мощности ЗЧ на транзисторах.

Рис. 4. Двухтактный усилитель мощности ЗЧ на транзисторах.

Режим по постоянному току выбран таким что напряжение в точке соединения эмиттеров транзисторов второго каскада равно примерно половине напряжения источника питания.

Это достигается включением резистора R2 обратной связи Ток коллектора входного транзистора, протекая через диод VD1, приводит к падению на нем напряжения. которое является напряжением смещения на базах выходных транзисторов (относительно их эмиттеров), — оно позволяет уменьшить искажения усиливаемого сигнала.

Нагрузка (несколько параллельно включенных головных телефонов либо динамическая головка) подключена к усилителю через оксидный конденсатор С2.

Если усилитель будет работать на динамическую головку (сопротивлением 8 -.10 Ом), емкость этого конденсатора должна бы ь минимум вдвое больше Обратите внимание на подключение нагрузки первого каскада — резистора R4 Его верхний по схеме вывод соединен не с плюсом питания, как это обычно делается, а с нижним выводом нагрузки.

Это так называемая цепь вольтодобавки, при которой в базовую цепь выходных транзисторов поступает небольшое напряжение ЗЧ положительной обратной связи, выравнивающее условия работы транзисторов.

Двухуровневый индикатор напряжения

Такое устройство можно использовать. например, для индикации “истощения” батареи питания либо индикации уровня воспроизводимого сигнала в бытовом магнитофоне. Макет индикатора позволит продемонстрировать принцип его работы.

Рис. 5. Схема двухуровневого индикатора напряжения.

Рис. 5. Схема двухуровневого индикатора напряжения.

В нижнем по схеме положении движка переменного резистора R1 оба транзистора закрыты, светодиоды HL1, HL2 погашены. При перемещении движка резистора вверх, напряжение на нем увеличивается. Когда оно достигнет напряжения открывания транзистора VТ1 вспыхнет светодиод HL1

Если продолжать перемещать движок. наступит момент, когда вслед за диодом VD1 откроется транзистор VТ2. Вспыхнет и светодиод HL2. Иными словами, малое напряжение на входе индикатора вызывает свечение только светодиода HL1 а большее обоих светодиодов.

Плавно уменьшая входное напряжение переменным резистором, заметим что вначале гаснет светодиод HL2, а затем — HL1. Яркость светодиодов зависит от ограничительных резисторов R3 и R6 при увеличении их сопротивлений яркость падает.

Чтобы подключить индикатор к реальному устройству, нужно отсоединить верхний по схеме вывод переменного резистора от плюсового провода источника питания и подать контролируемое напряжение на крайние выводы этого резистора. Перемещением его движка подбирают порог срабатывания индикатора.

При контроле только напряжения источника питания допустимо установить на месте HL2 светодиод зеленого свечения АЛ307Г.

Трехуровневый индикатор напряжения

Он выдает световые сигналы по принципу меньше нормы — норма — больше нормы. Для этого в индикаторе использованы два светодиода красно го свечения и один — зеленого.

Рис. 6. Трехуровневый индикатор напряжения.

Рис. 6. Трехуровневый индикатор напряжения.

При некотором напряжении на движке переменного резистора R1 (напряжение в норме) оба транзистора закрыты и (работает) только зеленый светодиод HL3. Перемещение движка резистора вверх по схеме приводит к увеличению напряжения (больше нормы) на нем открывается транзистор VТ1.

Светодиод HL3 гаснет, а HL1 зажигается. Если движок перемещать вниз и уменьшать таким образом напряжение на нем (‘меньше нормы”) транзистор VТ1 закроется, а VТ2 откроется. Будет наблюдаться такая картина: вначале погаснет светодиод HL1, затем зажжется и вскоре погаснет HL3 и в заключение вспыхнет HL2.

Из-за низкой чувствительности индикатора получается плавный переход от погасания одного светодиода к зажиганию другого еще не погас полностью например, HL1, а уже зажигается HL3.

Триггер Шмитта

Как известно это устройство используется обычно для преобразования медленно изменяющегося напряжения в сигнал прямоугольной формы. Когда движок переменного резистора R1 находится в нижнем по схеме положении транзистор VТ1 закрыт.

Напряжение на его коллекторе высокое, в результате транзистор VТ2 оказывается открытым а значит, светодиод HL1 зажжен На резисторе R3 образуется падение напряжения.

Рис. 7. Простой триггер Шмитта на двух транзисторах.

Рис. 7. Простой триггер Шмитта на двух транзисторах.

Медленно перемещая движок переменного резистора вверх по схеме, удастся достичь момента когда произойдет скачкообразное открывание транзистора VТ1 и закрывание VТ2 Это случится при превышении напряжения на базе VТ1 падения напряжения на резисторе R3.

Светодиод погаснет. Если после этого перемещать движок вниз триггер возвратится в первоначальное положение — вспыхнет светодиод Это произойдет при напряжении на движке меньшем чем напряжение выключения светодиода.

Ждущий мультивибратор

Такое устройство обладает одним устойчивым состоянием и переходит в другое только при подаче входного сигнала При этом мультивибратор формирует импульс своей длительности независимо от длительности входного. Убедимся в этом проведя эксперимент с макетом предлагаемого устройства.

Рис. 8. Принципиальная схема ждущего мультивибратора.

Рис. 8. Принципиальная схема ждущего мультивибратора.

В исходном состоянии транзистор VТ2 открыт, светодиод HL1 светится. Достаточно теперь кратковременно замкнуть гнезда Х1 и Х2 чтобы импульс тока через конденсатор С1 открыл транзистор VТ1. Напряжение на его коллекторе снизится и конденсатор С2 окажется подключенным к базе транзистора VТ2 в такой полярности, что тот закроется. Светодиод погаснет.

Конденсатор начнет разряжаться ток разрядки потечет через резистор R5, удерживая транзистор VТ2 в закрытом состоянии Как только конденсатор разрядится, транзистор VТ2 вновь откроется и мультивибратор перейдет снова в режим ожидания.

Длительность формируемого мультивибратором импульса (продолжительность нахождения в неустойчивом состоянии) не зависит от длительности запускающего, а определяется сопротивлением резистора R5 и емкостью конденсатора С2.

Если подключить параллельно С2 конденсатор такой же емкости, светодиод вдвое дольше будет оставаться в погашенном состоянии.

Автор: И. Бокомчев. Р-06-2000.

    Схемы для начинающих

  • Приемник 2-V-0 на двух транзисторах
  • Простейшие детекторные приемники
  • Приемник на одном транзисторе
  • Сетевой блок питания (0-12В)
  • Усилитель НЧ повышеной мощности для приемника (150-200 мВт)
  • Приемники прямого усиления, две схемы
  • Автомат-таймер (561ИЕ16)
  • Как быстро сделать простое фотореле, схемы не сложных фотореле
  • Простые имитаторы звуков, световые эффекты, игрушки (одиннадцать схем)
  • Простые электронные устройства на КМОП-микросхемах
  • Простые выпрямители, фильтры, стабилизаторы
  • Схемы имитаторов звуковых эффектов, изменение голоса
  • Схема эмулятора электронной рулетки
  • Схема простого универсального трансформатора — блока питания
  • Электромузыкальный инструмент начинающего радиолюбителя
  • Схема простого универсального усилителя НЧ
  • Схема радиоприемника прямого усиления на логической микросхеме К176ЛЕ5
  • Схема мелодичного звонка для дискового телефона (К176ЛА7)
  • Схемы простых сенсорных устройств на транзисторах
  • Сенсорные устройства с использованием микросхем
  • Схема простейших устройств управляемых светом (двигатель, реле)
  • Простейшая однокомандная схема радиоуправления моделями (3 транзистора)
  • Модель управляемая звуком (140УД12, 176ЛА7)
  • Карманный фонарик на аккумуляторах
  • Схема сигнализатора уровня воды в металлической посудине
  • Схема сигнализатора уровня воды в пластмассовой эмкости
  • Схема сигнализатора полива растений на одном транзисторе
  • Схема простого реле времени на транзисторе КТ814
  • Схема простейшего сторожевого устройства с проволочным датчиком
  • Схема простого охранного устройства с контактными датчиками
  • Схема электронного камертона
  • Схема имитатора соловьиных трелей
  • Схема простого однотранзисторного приемника на диапазоны СВ и ДВ
  • Электронная схема простого КВ приемника на одном транзисторе
  • Принципиальная схема передатчика УКВ-ЧМ на одном транзисторе.
  • Схема УКВ ЧМ передатчика на одном транзисторе (КТ315)
  • Схема экономичного импульсного фонарика на мультивибраторе
  • Схема пробника цепей со световой (мыгающей) сигнализацией
  • Схема простого мелодичного звонока для квартиры
  • Схема простой электронной сирены
  • Схема электромузыкального инструмента (К140УД1Б)
  • Схема простого радиоприемника на микросхеме К140УД1А
  • Схема приемника для начинающих на микросхеме К157УД2
  • Мелодичный звонок на двух микросхемах
  • Двухтональный звонок на двух микросхемах К155ЛА3
  • Электрический звонок канарейка
  • Электронный соловей
  • Музыкальный тренажер для пения
  • Имитатор звука выстрела
  • Схемы простых переговорных устройств
  • Простой мелодичный звонок на микросхеме 4093 и транзисторах
  • Музыкальная шкатулка и дверной звонок на 12 мелодий (UM3482A)
  • Электронный дверной звонок DING-DONG на микросхеме HT2828D
  • Звуковой сигнализатор на три тона (НТ2823)
  • Генератор звуковых эффектов на микросхемах UCY7400
  • Цифровой имитатор эхо (НТ8955А)
  • Двухцветная мигалка на светодиодах (NE555)
  • Мигающая праздничная елочка на микросхеме NE555 (ULY7855)
  • Мигалка в виде шарика на светодиодах
  • Эффект мигающей звезды на светодиодах
  • Звездные лучики на светодиодах
  • Мигающее сердечко на светодиодах
  • Имитатор игрового кубика (случайные комбинации)
  • Электронный игровой автомат на светодиодах
  • Простые мигалки со светодиодами на основе мультивибратора (КТ315)
  • Самодельная цветомузыкальная (ЦМУ) приставка на светодиодах
  • Электронная игрушка с пропорциональным индуктивным управлением
  • Простой самодельный усилитель для телефона или плеера на TDA2005
  • Простой домофон из запчастей от радиоаппаратуры
  • Задний сигнальный фонарь для велосипеда на светодиодах (К561ЛА7, CD4001)
  • Напоминалка с периодическим звуковым оповещением (К176ИЕ12)
  • Восемь простых схем на транзисторах для начинающих радиолюбителей
  • Схемы простых УНЧ, АМ-радиоприемника и ИК сигнализации на микросхеме 4069
  • Самодельный усилитель с темброблоком для смартфона или плеера (TDA2003)
  • Простая двухцветная светодиодная мигалка (NE555, 4017)
  • Автоматическое управление аквариумным компрессором
  • Схема охранного устройства на микросхеме К561ЛЕ10
  • Шесть схем экспериментальных приемников на одном транзисторе (СВ, УКВ)
  • КВ-УКВ радиоприемники на одном транзисторе (регенераторы, супергетеродин)

Интересные схемы:

radioslon.chernykh.net

Для умелых рук - Подборка простых схем

Поиск на сайте
Разделы

Каталог файлов

Мультивибратор. Первая схема - простейший мультивибратор. Не смотря не его простоту, область применения его очень широка. Ни одно электронное устройство не обходится без него. На первом рисунке изображена его принципиальная схема.

В качестве нагрузки используются светодиоды. Когда мультивибратор работает - светодиоды переключаются. Для сборки потребуется минимум деталей. Вот список:

1. Резисторы 500 Ом - 2 штуки 2. Резисторы 10 кОм - 2 штуки 3. Конденсатор электролитический 1 мкФ на 16 вольт - 2 штуки 4. Транзистор КТ972А - 2 штуки 5. Светодиод - 2 штуки

Транзисторы КТ972А являются составными транзисторами, то есть в их корпусе имеется два транзистора, и он обладает высокой чувствительностью и выдерживает значительный ток без теплоотвода. Когда вы приобретёте все детали, вооружайтесь паяльником и принимайтесь за сборку. Для проведения опытов не стоит делать печатную плату, можно собрать всё навесным монтажём. Спаивайте так, как показано на рисунках.

Рисунки специально сделаны в разных ракурсах и можно подробно рассмотреть все детали монтажа. А уж как применить собранное устройство, пусть подскажет ваша фантазия! Например, вместо светодиодов можно поставить реле, а этим реле коммутировать более мощную нагрузку. Если изменить номиналы резисторов или конденсаторов – изменится частота переключения. Изменением частоты можно добиться очень интересных эффектов, от писка в динамике, до паузы на много секунд. А это схема простого фотореле. Это устройство с успехом можно применить где Вам угодно, для автоматической подсветки лотка DVD, для включения света или для сигнализации от проникновения в тёмный шкаф Предоставлены два варианта схемы. В одном варианте схема активируется светом, а другом его отсутствием.

Работает это так: когда свет от светодиода попадает на фотодиод, транзистор откроется и начнёт светиться светодиод-2. Подстроечным резистором регулируется чувствительность устройства. В качестве фотодиода можно применить фотодиод от старой шариковой мышки. Светодиод - любой инфракрасный светодиод. Применение инфракрасного фотодиода и светодиода позволит избежать помех от видимого света. В качестве светодиода-2 подойдёт любой светодиод или цепочка из нескольких светодиодов. Можно применить и лампу накаливания. А если вместо светодиода поставить электромагнитное реле, то можно будет управлять мощными лампами накаливания, или какими-то механизмами. На рисунках предоставлены обе схемы, цоколёвка(расположение ножек) транзистора и светодиода, а так же монтажная схема.

При отсутствии фотодиода, можно взять старый транзистор МП39 или МП42 и спилить у него корпус напротив коллектора, вот так:

Вместо фотодиода в схему надо будет включить p-n переход транзистора. Какой именно будет работать лучше – Вам предстоит определить экспериментально.

Усилитель мощности на микросхеме TDA1558Q.

Этот усилитель имеет выходную мощность 2 Х 22 ватта и достаточно прост для повторения начинающими радиолюбителями. Такая схема пригодится Вам для самодельных колонок, или для самодельного музыкального центра, который можно сделать из старого MP3 плеера.

Для его сборки понадобится всего пять деталей. Вот их список:

1. Микросхема - TDA1558Q 2. Конденсатор 0.22 мкФ 3. Конденсатор 0.33 мкФ – 2 штуки 4. Электролитический конденсатор 6800 мкФ на 16 вольт

Микросхема имеет довольно высокую выходную мощность и для её охлаждения понадобится радиатор. Можно применить радиатор от процессора. Всю сборку можно произвести навесным монтажом без применения печатной платы. Сначала у микросхемы надо удалить выводы 4, 9 и 15. Они не используются. Отсчёт выводов идёт слева направо, если держать её выводами к себе и маркировкой вверх. Потом аккуратно распрямите выводы. Далее отогните выводы 5, 13 и 14 вверх, все эти выводы подключаются к плюсу питания. Следующим шагом отогните выводы 3, 7 и 11 вниз – это минус питания, или «земля». После этих манипуляций прикрутите микросхему к теплоотводу, используя теплопроводную пасту. На рисунках виден монтаж с разных ракурсов, но я всё же поясню. Выводы 1 и 2 спаиваются вместе – это вход правого канала, к ним надо припаять конденсатор 0.33 мкФ. Точно так же надо поступить с выводами 16 и 17. Общий провод для входа это минус питания или «земля». К выводам 5, 13 и 14 припаяйте провод плюса питания. Этот же провод припаивается к плюсу конденсатора 6800 мкФ. Отогнутые вниз выводы 3, 7 и 11 так же спаиваются вместе проводом, и этот провод припаивается к минусу конденсатора 6800 мкФ. Далее от конденсатора провода идут к источнику питания. Выводы 6 и 8 – это выход правого канала, 6 вывод припаивается к плюсу динамика, а вывод 8 к минусу. Выводы 10 и 12 – это выход левого канала, вывод 10 припаивается к плюсу динамика, а вывод 12 к минусу. Конденсатор 0.22 мкФ надо припаять параллельно выводам конденсатора 6800 мкФ. Прежде чем подавать питание, внимательно проверьте правильность монтажа. На входе усилителя надо поставить сдвоенный переменный резистор 100 килоом для регулировки громкости.

Вот ещё одна схема для усилителя

TDA7386 она даёт 4х30.Вт. материал взят с сайта www.casemods.ru

Дорогой посетитель. Если Вам нравятся страничка, поделитесь ею с друзьями

Случайные материалы сайта

Это интересно
Неуместное рвение часто убивает рьяного.
Цитаты
– Облако не знает, почему оно движется в этом направлении и с такой скоростью. Оно чувствует побуждение: «Вот сейчас нужно лететь туда». Но небо знает причины и траектории, по которым движутся все облака, и ты тоже будешь знать, когда поднимешься достаточно высоко, чтобы заглянуть за горизонт.Ричард Бах

Чтобы прочитать новую цитату обновите страницу,или перейдите на любую другую

Статистика

Онлайн всего: 1

Гостей: 1

Пользователей: 0

Не жми кнопку

ymelie-ryki.ru

Схема простейшего радиоприемника

Подробности Категория: Радиоприемники

Представленная схема простейшего радиоприемника собиралась многими начинающими радиолюбителями. Принцип действия такого приемника основан на преобразовании радиоволн в электрические сигналы. Эти электрические сигналы улавливаются радиоприемником и далее преобразуются в звуковые. Конечно, качество звука и стабильность сигнала будут не лучшего уровня, но для того чтобы понять азы радиоэлектроники ее имеет смысл собрать. 

Схема радиоприемника

Простейший радиоприемник.

Схема имеет минимум деталей

  1. транзистора, необходимого для усиления звуковой частоты;
  2. динамика;
  3. катушки индуктивности, необходимой для колебательного контура;
  4. переменной емкости для настройки на определенную радиостанцию;
  5. резистора или сопротивления, необходимого для выбора рабочей точки транзистора (говоря простым языком для того чтобы наш транзистор работал правильно и хорошо и не перегревался)
  6. антенны;
  7. источника питания;

Антенна радиоприемника

Для антенны отлично подойдет медная проволока длиной порядка 4 метров. В свое время когда собирал свой первый радиоприемник я натягивал проволку у себя в комнате. Антенна должна крепиться на изоляторах, и не в коем случае иметь контакт с землей.

Радиоволны разных частот, наводят в антенне электрические сигналы разных частот и с многих радиостанций. Величина этих электрических сигналов очень мала порядка микровольт. Естественно такой слабый сигнал не способен вызвать колебания диафрагмы динамика. Поэтому его необходимо значительно усилить.

Колебательный контур приемника

Но прежде чем подать его на усиление  необходимо выбрать какой именно сигнал нам нужен.  Эту функцию берет на себя колебательный контур, который состоит  из параллельно соединенных катушки и конденсатора. Этот контур настроен на определенную частоту и способен из электрического хаоса, поступающего с антенны выбрать электрический сигнал нужной нам радиостанции. Для изготовления катушки я использовал ферритовый стержень диаметром порядка 8 мм и длиной около 9 см, на него вплотную наматывал катушку, виток к витку, чтобы намотка была плотной.

Выделенный в контуре сигнал имеет не совсем правильную форму. Такой сигнал амплитудно модулированный, т.е. амплитуда сигнала определенной частоты изменяется в такт со звуковой частотой. Детектирование сигнала автоматически происходит в транзисторе. Последним звеном схемы простейшего радиоприемника является транзистор необходимого для усиления и последующей подачи сигнала на динамик.

Катушка радиоприемника

Для изготовлении катушки индуктивности. Нам понадобится ферритовый стержень. Такой стержень можно купить в любом магазине радиоэлектроники. Или вытащить из сломанного FM радиоприемника. На этот стержень нам необходимо сделать 30-100 витков медного провода с диаметром 0.2-0.3 мм.

Усиление сигнала 

Для настройки режима работы транзистора нашего простейшего радиоприемника подключен подстроечный резистор R1. Изменяя его сопротивление можно менять ток протекающий через биполярный транзистор, а соответственно и усиление сигнала.

Добавить комментарий

www.radio-magic.ru


Каталог товаров
    .