интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Схемы генераторов высокой частоты. Схема принципиальная генератора


3.3. Электрические схемы генераторных установок

Принципиальные электрические схемы генераторных установок приведены на рис. 3.6.

Рис. 3.6. Схемы генераторных установок:

1 - генератор; 2 - обмотка возбуждения; 3 - обмотка статора; 4 - выпрямитель; 5 - выключатель: 6 - реле контрольной лампы; 7 - регулятор нвпряжения; 8 - контрольная лампа: 9 - помехоподави- тельный конденсатор; 10 - трансформаторно-выпрямительный блок; 11 - аккумуляторная батарея; 12 - стабилитрон защиты от всплесков напряжения; 13 - резистор

Генераторные установки могут иметь следующие обозначения выводов: «плюс» силового выпрямителя: «+», В, 30, В+, ВАТ; «масса»: «-», D-, 31, В-, М, Е, GRD; вывод обмотки возбуждения: Ш, 67, DF, F, EXC, Е, FLD; вывод для со­единения с лампой контроля исправности (обычно «плюс» дополнительного выпрямителя, там, где он есть): D, D+, 61, L, WL, IND; вывод фазы: W, R, STA, вывод нулевой точки обмотки статора: 0, Мр; вывод регулятора напря­жения для подсоединения его в бортовую сеть, обычно к «+» аккумуляторной батареи: Б, 15, S; вывод регулятора напряжения для питания его от выключа­теля зажигания: I&, вывод регулятора напряжения для соединения его с бор­товым компьютером: FR, F.

Различают два типа невзаимозаменяемых регуляторов напряжения - в одном типе (рис. 3.6, а) выходной коммутирующий элемент регулятора напряжения со­единяет вывод обмотки возбуждения генератора с «+» бортовой сети, в другом типе (рис. 3.6, б, в) - с «-» бортсети. Транзисторные регуляторы напряжения второго типа являются более распространенными.

Чтобы на стоянке аккумуляторная батарея не разряжалась, цепь обмотки возбуждения генератора (в схемах 3.6, а, б) запитывается чврез выключатель зажигания. Однако при этом контакты выключателя коммутируют ток до 5А, что неблагоприятно сказывается на их сроке службы. Разгрузить контакты выключателя можно, используя промежуточное реле, но более прогрессивно, если через выключатель зажигания запитывается лишь цепь управления ре­гулятора напряжения (рис. 3.6, в), потребляющая ток силой в доли ампера. Прерывание тока в цепи управления переводит электронное реле регулятора в выключенное состояние, что не позволяет току протекать через обмотку возбуждения. Однако применение выключателя зажигания в цепи генератор­ной установки снижает ее надежность и усложняет монтаж на автомобиле. Кроме того, в схемах на рис. 3.6, а, б, в падение напряжения в выключателе зажигания и других коммутирующих или защитных элементах, включенных в цепь регулятора (штекерные соединения, предохранители), влияет на уро­вень поддерживаемого регулятором напряжения и частоту переключения его выходного транзистора, что может сопровождаться миганием ламп освети­тельной и светосигнальной аппаратуры, колебанием стрелок вольтметра и амперметра.

Поэтому более перспективной является схема на рис. 3.6, д. В этой схеме обмотка возбуждения имеет свой дополнительный выпрямитель, состоящий из трех диодов. К выводу «Д» этого выпрямителя и подсоединяется обмотка воз­буждения генератора. Схема допускает некоторый разряд аккумуляторной батареи малыми токами по цепи регулятора напряжения, и при длительной стоянкв рекомендуется снимать наконечник провода с клеммы «+» аккумуля­торной батареи.

В схему на рис 3.6, д введено подвозбуждение генератора от аккумулятор­ной батареи через контрольную лампу 8. Небольшой ток, поступающий в об­мотку возбуждения через зту лампу от аккумуляторной батареи, достаточен для возбуждения генератора и в то же время не может существенно влиять на разряд аккумуляторной батареи. Обычно параллельно контрольной лампе включают резистор 13, чтобы даже в случае перегорания контрольной лам­пы генератор мог возбудиться. Контрольная лампа в схеме на рис. 3.6, д яв­ляется одновременно и элементом контроля работоспособности генератор­ной установки.

В схеме применен стабилитрон 12, гасящий всплески напряжения, опасные для электронной аппаратуры.

С целью контроля работоспособности в схеме рис. 3.6, а введены реле с нор­мально замкнутыми контактами, через которые получает питание контрольная лампа 8.

Эта лампа загорается после включения замка зажигания и гаснет после пус­ка двигателя, т.к. под действием напряжения от генератора реле, обмотка ко­торого подключена к нулевой точке обмотки статора, разрывает свои нормаль­но замкнутые контакты и отключает контрольную лампу 8 от цепи питания.

Если лампа 8 при работающем двигателе горит, значит генераторная установ­ка неисправна. В некоторых случаях обмотка реле контрольной лампы 6 под­ключается на вывод фазы генератора.

Схема рис. 3.7, е характерна для генераторных установок с номинальным на­пряжением 28 В.

В этой схеме обмотка возбуждения включена на нулевую точку обмотки ста­тора генератора, т.е. питается напряжением, вдвое меньшим, чем напряжение генератора.

При этом приблизительно вдвое снижаются и величины импульсов напряже­ния, возникающих при работе генераторной установки, что благоприятно сказы­вается на надежности работы полупроводниковых элементов регулятора на­пряжения. Резистор 13 служит тем же целям, что и контрольная лампа в схеме рис. 3.6, д, т.е. обеспечивает уверенное возбуждение генератора.

На автомобилях с дизельными двигателями может применяться генера­торная установка на два уровня напряжения 14/28 В. Второй уровень 28 В используется для зарядки аккумуляторной батареи, работающей при пуске ДВС. Для получения второго уровня используется электронный удвоитель напряжения или трансформаторно-выпрямительный блок (ТВБ), как это по­казано на рис. 3.6, г. В системе на два уровня напряжения регулятор стаби­лизирует только первый уровень напряжения 14 В. Второй уровень возника­ет посредством трансформации и последующего выпрямления ТВБ перемен­ного тока генератора. Коэффициент трансформации трансформатора ТВБ близок к единице.

В некоторых генераторных установках зарубежного и отчественного произ­водства регулятор напряжения поддерживает напряжение не на силовом вы­воде генератора «+», а на выводе его дополнительного выпрямителя, как по­казано на схеме рис. 3.6, ж. Схема является модификацией схемы рис. 3.6, д, с устранением ее недостатка - разряда аккумуляторной батареи регулятора на­пряжения при длительной стоянке. Такое исполнение схемы генераторной ус­тановки возможно потому, что разница напряжения на клеммах «+» и Д неве­лика. На этой же схеме (рис. 3.6, ж) показано дополнительное плечо выпрями­теля, выполненное на стабилитронах, которые в нормальном режиме работа­ют, как обычные выпрямительные диоды, а в аварийных предотвращают опас­ные всплески напряжения. Резистор R, как было показано выше, расширяет

диагностические возможности схемы. Этот резистор вообще характерен для генераторных установок фирмы Bosch.

Генераторные установки без дополнительного выпрямителя, но с подводом к регулятору вывода фаз, пименение которых, особенно японскими и американ­скими фирмами, расширяется, выполняются по схеме рис. 3.6, з. В этом случае схема генераторной установки упрощается, но усложняется схема регулятора напряжения, т.к. на него переносятся функции предотвращения разряда акку­муляторной батареи на цепь возбуждения генератора при неработающем дви­гателе автомобиля и управления лампой контроля работоспособного состояния генераторной установки. На вход регулятора может подаваться напряжение ге­нератора или аккумуляторной батареи (пунктир на рис. 3.6, з), а иногда и оба эти напряжения сразу.

Конечно, стабилитрон 12, защищающий от всплесков напряжения дополни­тельное плечо выпрямителя, а также выполнение выпрямителя на стабилитро­нах может быть использовано в любой из приведенных схем.

Некоторые фирмы применяют включение контрольной лампы через раздели­тельный диод, а в схемах 3.6, д, ж включение ее идет через контактное реле. В этом случае обмотка реле включается на место контрольной лампы. Если гене­раторная установка работает в комплексе с датчиком температуры электроли­та, она имеет дополнительные выводы для его подсоединения.

Генераторы на большие выходные токи могут иметь параллельное включение диодов выпрямителя. Для защиты цепей генераторной установки применяют предохранители, обычно в цепях контрольной лампы, соединениях регулятора с аккумуляторной батареей, в цепи питания аккумуляторной батареи.

studfiles.net

Электрическая схема - генератор - Большая Энциклопедия Нефти и Газа, статья, страница 1

Электрическая схема - генератор

Cтраница 1

Электрическая схема генератора ( рис. 58) состоит из задающего генератора, каскадов предварительного усиления мощности и усилителя мощности. Трансформаторы и выпрямители питания, защитные и пусковые устройства, двигатель с вентилятором для нагретого воздуха не показаны.  [2]

Электрическая схема генератора с независимым возбуждением изображена на рис. 245, а. Якорь генератора на схемах условно обозначается окружностью с двумя щетками и буквой Г в середине, а обмотка возбуждения - в виде ломаной линии.  [3]

Электрическая схема генератора представлена на фиг. Генератор имеет две обмотки возбуждения: намагничивающую параллельную Н и размагничивающую последовательную С. Последовательно в эту обмотку включен регулировочный реостат РТ для плавной регулировки сварочного тока. Последовательная обмотка включается последовательно внешней цепи генератора и секционируется для грубой, ступенчатой регулировки сварочного тока.  [4]

Электрическая схема генератора пмпульсн лх токов.  [5]

Электрическая схема генератора представлена на фиг.  [6]

Электрическая схема генератора ( см. рис. 66) включает две пары щеток. Плюсовые - щетки установлены в изолированных от корпуса щеткодержателях л сое. Минусовые щетки не ИЗОЛИРУЮТСЯ и соединяются с массой генератора, с которой соединены и по одному концу двух пар катушек обмотки возбуждения. Вторые кон мы этих катушек, обозначенные буквой Ш, выведены вместе е выводом VI в специальную экранирующую коробку, закрепленную на корил се генератора.  [7]

Электрическая схема генератора ( рис. 5 - 4) построена на транзисторе Т с положительной обратной связью. Входной контур настраивается на частоту 50 Гц изменением индуктивности L1 вторичной обмотки трансформатора Тр путем регулировки воздушного зазора в его магнитопроводе. Ре-ристоры Rl - R4 предусмотрены для стабилизации режима работы, причем резистор R4 образует отрицательную обратную связь по току.  [9]

Электрическая схема генератора ГАБ-2-0 / 230 и процесс его работы ничем не отличаются от описанного выше.  [10]

Электрические схемы генераторов ВЧД-16 / 40 - НП-Л01, ЛД1 - 4 и ЛД4 - 10 принципиально не отличаются. Автогенератор с общим анодом выполнен по П - образной схеме. Настройка на заданный диапазон частоты и требуемый режим производится на заводе-изготовителе катушками переменной индуктивности и конденсатором. В эксплуатационных условиях режим регулируют только ручкой рабочего конденсатора.  [12]

Электрическая схема генератора импульсов приведена на рис. 5.14. Его подключают в сварочную цепь параллельно сварочному трансформатору, конденсатор С заряжается от повышающего трансформатора ТП через выпрямительное устройство В. А, при этом импульс имеет ту же полярность, что и напряжение дуги в данный момент. После разряда конденсатора синхронизирующее устройство размыкает выключатель, а конденсатор заряжается вновь для подачи следующего импульса.  [14]

Электрическая схема генератора Г-304 изображена на рисунке 7.1, а. Фазовые обмотки генератора ФО соединены в треугольник, а концы фаз выведены на панель переменного тока и подключены к выпрямителю В.  [15]

Страницы:      1    2    3

www.ngpedia.ru

LC-автогенераторы | conture.by

Двухточечный LC-автогенератор с трансформаторной обратной связью

Принципиальная электрическая схема этого генератора представлена на рисунке 11.

Рисунок 11 - Принципиальная электрическая схема LC автогенератора с трансформаторной обратной связью

В этом генераторе в качестве усилительного элемента используется транзистор VT1 включенный по схеме с общим эмиттером. Нагрузкой транзистора является параллельный колебательный контур L2 C2. Этот контур используется как колебательная система, с помощью которой формируются колебания, и как избирательная цепь, от которой зависит частота и форма колебаний. Катушки индуктивности L1 и L2 образуют высокочастотный трансформатор. Кроме того катушка L1 является элементом обратной связи, с помощью которого колебания подаются на базу транзистора. Резисторы R1 и R2 образуют делитель напряжения. С его помощью на транзистор подается напряжение смещения U0, которым задается положение рабочей точки на вольт-амперной характеристике. Резистор R3 является температурной стабилизацией транзистора. Также R3 с конденсатором C4 образуют цепь автоматического смещения, которая осуществляет перевод генератора из мягкого режима самовозбуждения в жесткий. Конденсаторы С1 и С3 являются разделительными, и отделяют постоянную составляющую тока питания от переменной составляющей колебания. Электропитание генератора осуществляется от источника Ек.

Принцип действия генератора заключается в следующем. При включении источника питания Ек происходит заряд конденсатора C2, который затем разряжается на L2. Таким образом, в контуре появляются колебания. Эти колебания, за счет ЭДС взаимоиндукции, возбуждают переменное напряжение в катушке L1, которое вместе с напряжением смещения U0 поступает на базу транзистора. За счет усилительных свойств возникшие колебания нарастают. По мере нарастания амплитуды колебаний возрастает ток базы транзистора. Постоянная составляющая этого тока создает падение напряжения на R3 (переменная составляющая этого тока проходит через конденсатор С4). В результате этого, напряжение смещение, подаваемое на транзистор, уменьшается. Уменьшение U0 приводит к смещению рабочей точки вниз по характеристике, и генератор переходит в жесткий режим самовозбуждения. Колебания возрастают до значения точки устойчивого равновесия, и затем генератор переходит в стационарный режим работы.

Условие баланса амплитуд выполняется за счет усилительных свойств транзистора. Условие баланса фаз выполняется за счет транзистора включенного по схеме с общим эмиттером (осуществляет сдвиг фазы на 180°) и катушек индуктивности L1 и L2 (при подобном включении, каждая катушка  сдвигает фазу на 90°).

Частота колебаний вырабатываемых данным автогенератором определяется выражением

wг=l(sqlrt(L2С2))                                                                                              (15)

Амплитуда генерируемых колебаний определяется выражением

Umвых=Im1?wг?L2                                                                             (16)

Коэффициент обратной связи определяется выражением

Кос=М/L2                                                                                       (17)

где М — взаимная индуктивность между катушками L1 и L2.

Условия самовозбуждения генератора определяются неравенством

М(sqrt(L2C2? QSдиф))>1                                                                                                  (18)

где Q — добротность колебательного контура;

Sдиф — дифференциальная крутизна вольт-амперной характеристики усилительного элемента.

Трехточечные автогенераторы

Как отмечалось выше трехточечным автогенератором является генератор, в котором колебательный контур подключается к усилительному элементу тремя точками. В этих генераторах используются колебательные контуры второго и  третьего рода. Чтобы определить местоположение элементов колебательной системы таких генераторов рассмотрим обобщенную трехточечную схему. В этой схеме (рисунок 12) элементы колебательной системы заменим реактивными сопротивлениями XКБ, XБЭ, XКЭ (активными сопротивлениями можно пренебречь). Индексы обозначают точки подключения этих элементов к транзистору.

Элементы колебательной системы могут быть конденсаторами, катушками индуктивности или более сложными электрическими цепями. В такой схеме автогенератора колебания могут возникнуть на частоте генерации fг при выполнении условия резонанса

XКБ+XБЭ+XКЭ=0                                                                            (19)

Рисунок 12 - Обобщенная трухточечная схема автогенератора

Следовательно, один из элементов должен иметь противоположный знак по отношению к двум другим элементам. Определить знаки элементов можно исходя из коэффициента обратной связи

Кос= XБЭ/XКЭ                                                                                 (20)

Согласно уравнению автогенератора коэффициент обратной связи должен быть положительным. Следовательно элементы XБЭ, XКЭ должны иметь одинаковый знак, а элемент XКБ должен иметь противоположный знак. В соответствии с вышеизложенным можно составить два варианта трехточечных схем: емкостную (рисунок 13, а) и индуктивную (рисунок 13, б).

Рисунок 13 - Упрощенные трёхточечные схемы автогенераторов

Одним из генераторов, эквивалентным трехточечной индуктивной схеме, является LC автогенератор с автотрансформаторной связью. Принципиальная электрическая схема этого генератора приведена на рисунке 14.

Рисунок 14 - Принципиальная электрическая схема LC-автогенератора с автотрансформаторной обратной связью

В этом генераторе используется колебательный контур второго рода L1 C4. Колебательный контур подключается к транзистору VT1 через блокировочные конденсаторы большой емкости С2 С3 и разделительный конденсатор С1. Начальное смещение рабочей точки задается делителем напряжения R1 R2. Перевод генератора из мягкого режима самовозбуждения в жесткий осуществляется цепью автоматического смещения R3 C3. Элементы С2 R4 выполняют функции фильтра цепи питания, который предотвращает влияние высокочастотных колебаний на источник постоянного тока Ек.

Конденсатор С5 является разделительным конденсатором, он предотвращает поступление постоянной составляющей тока питания в нагрузку. Элементом обратной связи является часть витков катушки L1 включенная между базой и коллектором транзистора. Колебательный контур образован индуктивной ветвью (часть витков катушки L1 включенная между коллектором и эмиттером) и емкостной ветвью (конденсатор С4 и часть витков катушки L1 включенная между базой и эмиттером транзистора). Т. к. токи в этих ветвях в любой момент времени противофазны, то  баланс фаз будет соблюден (транзистор, включенный по схеме с общим эмиттером, также дает сдвиг фазы 180°).

Частота колебаний генератора с автотрансформаторной связью определяется выражением

wг= l(sqrt( L1 C4)                                                                                                   (21)

Коэффициент обратной связи для этого генератора определяется выражением

Кос=Lбэ/Lкэ                                                                                  (22)

где Lбэ — индуктивность катушки L1 образованная витками, включенными между базой и эмиттером транзистора VT1;

Lкэ — индуктивность катушки L1 образованная витками, включенными между коллектором и эмиттером транзистора VT1.

Условия самовозбуждения генератора определяются неравенством

LбэLкэQSдиф/sqrt (Lбэ +Lкэ)^3 C4 >1                                                                                                    (23)

Принципиальная электрическая схема LC автогенератора с емкостной обратной связью эквивалентный трехточечной емкостной схеме приведена на    рисунке 15.

Рисунок 15 - Принципиальная электрическая схема LC-автогенератора с емкостной обратной связью

В этом генераторе используется колебательный контур третьего рода С4 С5 L2. Контур подключается к транзистору через блокировочные конденсаторы С2 С3 и разделительный конденсатор С1. Дроссель L1 с конденсатором С7 образуют фильтр цепи питания. В данной схеме используется схема параллельного коллекторного питания, в которой источник питания, колебательный контур и транзистор включены параллельно друг другу. Элементом обратной связи является конденсатор С5. Назначение остальных элементов схемы аналогично схеме представленной на рисунке 14. Колебательный контур образован индуктивной ветвью (элементы L2 С5) и емкостной ветвью (конденсатор С4). Токи в этих ветвях в любой момент противофазны, поэтому баланс фаз также соблюдается.

Частота колебаний автогенератора с емкостной обратной связью определяется по выражению

wг= sqrt((C4+С5)/(С4 С5 L2))                                                                                                       (24)

Коэффициент обратной связи этого генератора определяется как

Кос=С4/С5                                                                                     (25)

Условия самовозбуждения генератора определяются неравенством:

sqrt(С4С5L2Qsдиф)/(C4+C5)^3    >   1                                                   (26)

conture.by

Схемы генераторов высокой частоты | Техника и Программы

   Предлагаемые генераторы высокой частоты предназначены для получения электрических колебаний в диапазоне частот от десятков кГц до десятков и даже сотен МГц. Такие генераторы, как правило, выполняют с использованием LC-колебательных контуров или кварцевых резонаторов, являющихся частотозадающими элементами. Принципиально схемы от этого существенно не изменяются, поэтому ниже будут рассмотрены LC-генераторы высокой частоты. Отметим, что в случае необходимости колебательные контуры в некоторых схемах генераторов (см., например, рис. 12.4, 12.5) могут быть без проблем заменены кварцевыми резонаторами.

   Рис. 12.1

   Генераторы высокой частоты (рис. 12.1, 12.2) выполнены по традиционной и хорошо зарекомендовавшей себя на практике схеме «индуктивной трехточки». Они различаются наличием эмиттерной RC-цепочки, задающей режим работы транзистора (рис. 12.2) по постоянному току. Для создания обратной связи в генераторе от катушки индуктивности (рис. 12.1, 12.2) делают отвод (обычно от ее 1/3… 1/5 части, считая от заземленного вывода). Нестабильность работы генераторов высокой частоты на биполярных транзисторах обусловлена заметным шунтирующим влиянием самого транзистора на колебательный контур. При изменении температуры и/или напряжения питания свойства транзистора заметно изменяются, поэтому частота генерации «плавает». Для ослабления влияния транзистора на рабочую частоту генерации следует максимально ослабить связь колебательного контура с транзистором, до минимума уменьшив переходные емкости. Кроме того, на частоту генерации заметно влияет и изменение сопротивления нагрузки. Поэтому крайне необходимо между генератором и сопротивлением нагрузки включить эмиттерный (истоковый) повторитель.

   Для питания генераторов следует использовать стабильные источники питания с малыми пульсациями напряжения.

   Рис. 12.2

   Рис. 12.3

   Генераторы, выполненные на полевых транзисторах (рис. 12.3), обладают лучшими характеристиками.

   Генераторы высокой частоты, собранные по схеме «емкостной трехточки» на биполярном и полевом транзисторах, показаны на рис. 12.4 и 12.5. Принципиально по своим характеристикам схемы «индуктивной» и «емкостной» трехточек не отличаются, однако в схеме «емкостной трехточки» не нужно делать лишний вывод у катушки индуктивности.

   Во многих схемах генераторов (рис. 12.1 — 12.5 и другие схемы) выходной сигнал может сниматься непосредственно с колебательного контура через конденсатор небольшой емкости или через согласующую катушку индуктивной связи, а также с неза-земленных по переменному току электродов активного элемента (транзистора). При этом следует учитывать, что дополнительная нагрузка колебательного контура меняет его характеристики и рабочую частоту. Иногда это свойство используют «во благо» — для целей измерения различных физико-химических величин, контроля технологических параметров.

   Рис. 12.4

   Рис. 12.5

   На рис. 12.6 показана схема несколько видоизмененного варианта ВЧ генератора — «емкостной трехточки». Глубину положительной обратной связи и оптимальные условия для возбуждения генератора подбирают с помощью емкостных элементов схемы.

   Схема генератора, показанная на рис. 12.7, работоспособна в широком диапазоне значений индуктивности катушки колебательного контура (от 200 мкГн до 2 Гн) [Р 7/90-68]. Такой генератор можно использовать в качестве широкодиапазонного высокочастотного генератора сигналов или в качестве измерительного преобразователя электрических и неэлектрических величин в частоту, а также в схеме измерения индуктивностей.

   Рис. 12.6

   Рис. 12.7

   Рис. 12.8

   Генераторы на активных элементах с N-образной ВАХ (туннельные диоды, лямбда-диоды и их аналоги) содержат обычно источник тока, активный элемент и частотозадающий элемент (LC-контур) с параллельным или последовательным включением. На рис. 12.8 показана схема ВЧ генератора на элементе с лям-бдаобразной вольт-амперной характеристикой. Управление его частотой осуществляется за счет изменения динамической емкости транзисторов при изменении протекающего через них тока.

   Светодиод НИ стабилизирует рабочую точку и индицирует включенное состояние генератора.

   Генератор на аналоге лямбда-диода, выполненный на полевых транзисторах, и со стабилизацией рабочей точки аналогом стабилитрона — светодиодом, показан на рис. 12.9. Устройство работает до частоты 1 МГц и выше при использовании указанных на схеме транзисторов.

   Рис. 12.9

   Рис. 12.10

   На рис. 12.10 в порядке сопоставления схем по степени их сложности приведена практическая схема ВЧ генератора на туннельном диоде. В качестве полупроводникового низковольтного стабилизатора напряжения использован прямосме-щенный переход высокочастотного германиевого диода. Этот генератор потенциально способен работать в области наиболее высоких частот — до нескольких ГГц.

   Высокочастотный генератор частоты, по схеме очень напоминающий рис. 12.7, но выполненный с использованием полевого транзистора, показан на рис. 12.11 [Рл 7/97-34].

   Прототипом RC-генератора, показанного на рис. 11.18 является схема генератора на рис. 12.12 [F 9/71-171; 3/85-131].

   Этот генератор отличает высокая стабильность частоты, способность работать в широком диапазоне изменения параметров частотозадающих элементов. Для снижения влияния нагрузки на рабочую частоту генератора в схему введен дополнительный каскад — эмиттерный повторитель, выполненный на биполярном транзисторе VT3. Генератор способен работать до частот свыше 150 МГц.

   Рис. 12.11

  

   Рис. 12.12

   Из числа всевозможных схем генераторов особо следует выделить генераторы с ударным возбуждением. Их работа основана на периодическом возбуждении колебательного контура (либо иного резонирующего элемента) мощным коротким импульсом тока. В результате «электронного удара» в возбужденном таким образом колебательном контуре возникают постепенно затухающие по амплитуде периодические колебания синусоидальной формы. Затухание колебаний по амплитуде обусловлено необратимыми потерями энергии в колебательном контуре. Скорость затухания колебаний определяется добротностью (качеством) колебательного контура. Выходной высокочастотный сигнал будет стабилен по амплитуде, если импульсы возбуждения следуют с высокой частотой. Этот тип генераторов является наиболее древним в ряду рассматриваемых и известен с XIX века.

   Практическая схема генератора высокочастотных колебаний ударного возбуждения показана на рис. 12.13 [Р 9/76-52; 3/77-53]. Импульсы ударного возбуждения подаются на колебательный контур L1C1 через диод VD1 от низкочастотного генератора, например, мультивибратора, или иного генератора прямоугольных импульсов (ГПИ), рассмотренных ранее в главах 7 и 8. Большим преимуществом генераторов ударного возбуждения является то, что они работают с использованием колебательных контуров практически любого вида и любой резонансной частоты.

   Рис. 12.13

   Рис. 12.14

   Еще один вид генераторов — генераторы шума, схемы которых показаны на рис. 12.14 и 12.15.

   Такие генераторы широко используют для настройки различных радиоэлектронных схем. Генерируемые такими устройствами сигналы занимают исключительно широкую полосу частот — от единиц Гц до сотен МГц. Для генерации шума используют обратносмещенные переходы полупроводниковых приборов, работающих в граничных условиях лавинного пробоя. Для этого могут быть использованы переходы транзисторов (рис. 12.14) [Рл 2/98-37] или стабилитроны (рис. 12.15) [Р 1/69-37]. Чтобы настроить режим, при котором напряжение генерируемых шумов максимально, регулируют рабочий ток через активный элемент (рис. 12.15).

   Рис. 12.15

   Отметим, что для генерации шума можно использовать и резисторы, совмещенные с многокаскадными усилителями низкой частоты, сверхрегенеративные приемники и др. элементы. Для получения максимальной амплитуды шумового напряжения необходим, как правило, индивидуальный подбор наиболее шумящего элемента.

   Для того чтобы создать узкополосные генераторы шума, на выходе схемы генератора может быть включен LC- или RC-фильтр.

    Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

nauchebe.net

Схемы генераторов и генераторных установок применяемых на иномарках

Схемы генераторных установок

 

Соединение генератора с регулятором напряжения и элементами контроля работоспособности генераторной установки выполняются, в основном, по схемам, приведенным на рис.6. Обозначения выводов на схемах 6а,б соответствует принятому фирмой Bosch, а 6в - Nippon Dense. Однако другие фирмы могут применять отличные

от этих обозначения.

Схема

6а применяется наиболее широко особенно на автомобилях европейского производства Volvo, Audi,Mercedes и др. В зависимости от типа генератора, его мощности, фирмы изготовителя и особенно от времени начала его выпуска, силовой выпрямитель может не содержать дополнительного плеча выпрямителя, соединенного с нулевой точкой обмотки статора, т. е. иметь не 8, а 6 диодов, собираться на силовых стабилитронах как показано на рис.6 б,в

В генераторах повышенной мощности применяют параллельное включение диодов выпрямителя или парал

лельное включение выпрямительных блоков. Это объясняется тем, что ток через диод равен трети тока, отдаваемого генератором, поэтому, например, если применяются диоды, на максимально допустимый ток 25 А, то генератор может иметь максимальный ток только 75 А. При больших токах диоды приходится включать параллельно. Конденсатор 11 вводится в схему для подавления радиопомех, источником которых служит генераторная установка. Резистор 8 , включенный параллельно лампе контроля заряда, обеспечивает под-возбуждение генератора даже в случае перегорания этой лампы. Резистор 6, расширяющий, как было показано выше, диагностические способности лампы 9 контроля работоспособного состояния генераторной установки, применяется далеко не всеми фирмами. Фирма Toyota, например, применяет включение лампы контроля работоспособного состояния генераторной установки через разделительный диод. Ею же применяется на некоторых марках автомобилей включение этой лампы через контакты реле. В этом случае обмотка реле установлена на место контрольной лампы 9 по схеме 6а, а сама лампа включается через нормально разомкнутые контакты этого реле на "массу". Иногда вывод "D+" используется там, где для управления включением или отключением потребителя постоянного тока требуется напряжение, появляющееся только после пуска двигателя автомобиля. Однако величина тока, которую может отдать дополнительный выпрямитель обмотки возбуждения, подсоединенный к этому выводу, весьма ограничена и не превышает обычно 6 А из которых до 5 А забирает сама обмотка возбуждения. На выводе "W" напряжение тоже появляется только после пуска двигателя, но это напряжение пульсирующее, частота пульсации которого, как было показано выше, связана с частотой вращения коленчатого вала двигателя.

Этот вывод используется для питания устройств

, реагирующих на частоту вращения, например, тахометра.

Рис

.6. Принципиальные схемы генераторных установок:

1 -генератор;

2 - обмотка статора генератора;

3 -обмотка возбуждения генератора;

4 - силовой выпрямитель:

5 - регулятор напряжения;

6, 8 -резисторы в системе контроля работоспособности генераторной установки; 7 - дополнительный выпрями-

тель обмотки возбуждения

;

9 - лампа контроля работоспособного состояния генераторной установки;

10-выключатель зажигания;

II -конденсатор;

12 - аккумуляторная батарея

Недостатком схемы по рис.6.а является то, что регулятор поддерживает напряжение на выводе "D+" генератора, а потребители, в том числе, аккумуляторная батарея, включены на вывод "В+". Кроме того, при таком включении регулятор не воспринимает падения напряжения в соединительных проводах между генератором и аккумуляторной батареей и не вносит корректировок в напряжение генератора, чтобы компенсировать это падение.

Эти недостатки устранены в схеме рис

.6,б, где на входную цепь регулятора напряжение подается от того места, где его следует стабилизировать — либо это вывод аккумуляторной батареи, либо вывод "В+" генератора, а иногда, как показано

на рис

.6,б, сразу от двух этих точек, чем предотвращается возможность возникновения аварийного режима при обрыве этого соединения.

Соединение регулятора напряжения с аккумуляторной ба

тареей обычно осуществляется, минуя выключатель зажигания. В этом случае сила тока в этом соединении не превышает нескольких миллиампер, что не опасно с точки зрения разряда аккумуляторной батареи при неработающем двигателе автомобиля.

Генераторные установки без дополнительного выпрямите

ля, применение которых расширяется, особенно японскими и американскими фирмами выполняются по схеме рис.бв. В этом случае схема генератора упрощается, но усложняется схема регулятора напряжения, т. к. на него переносятся функ-

ции предотвращения разряда аккумуляторной батареи на цепь возбуждения генератора при неработающем дви

гателе автомобиля и управления лампой контроля работоспособного состояния генераторной установки.

В некоторых случаях на автомобилях находят применение двухуровневые системы напряжения

, при которых вся бортовая сеть выполняется на номинальное напряжение (у легковых автомобилей на 12В), а отдельные потребители включаются на повышенное напряжение. К числу таких последних относятся стеклообогреватели, выполняемые напылением токопроводящего слоя на стекло. Повышенное сопротивление стеклообогревателя требует подведения к нему и повышенного напряжения для обеспечения нужной мощности для оттаивания стекла. Например, на американских автомобилях Ford Taurus и Sable, на питание обогревателя подводится напряжение 75 В. При включении стеклообогревателя все потребители, кроме стеклообогревателя, переходят на питание от аккумуляторной батареи, генератор же питает только обогрев стекла, причем регулятор напряжения отключается. Применяются и варианты питания стеклообогревателей переменным током, забираемым с обмоток фаз генератора. Цепи генераторной установки снабжаются предохранителями и переходными колодками. В

частности

, предохранители обычно устанавливаются в цепь контрольной лампы 9 (см. рис.б), а также в цепях,соединяющих регулятор с аккумуляторной батареей и в цепи питания самой аккумуляторной батареи. Соединение генератора с аккумуляторной батареей у европейских автомобилей в большинстве случаев производится на выводе стартера, однако встречаются и соединения на переходных колодках. Если регулятор напряжения расположен вне генератора, то их "массы" должны соединяться проводом.

На некоторых генераторах

, например, у автомобилей Chrysler, Mercedes с целью максимального исключения влияний вибрации двигателя, посадочные места в крепежных лапах снабжены резиновыми втулками. В таком случае генератор соединяется с "массой" автомобиля специальным проводом. Кроме приведенных на рис.6 выводов генераторные установки некоторых фирм имеют выводы или гнезда, используемые для диагностирования или управления от бортового компьютера, а также соединения обмотки возбуждения непосредственно с "массой".

Autocop.ru ® 2007 All rights reserved © | [email protected] | 8 (49449) 5 48 26

www.autocop.ru

Принципиальная схема - генератор - Большая Энциклопедия Нефти и Газа, статья, страница 3

Принципиальная схема - генератор

Cтраница 3

На рис. 7.5 представлена принципиальная схема генератора постоянного тока параллельного возбуждения. Этот генератор является машиной с самовозбуждением, у которой ток возбуждения берется от якоря машины. В данном случае обмотка возбуждения генератора присоединяется параллельно зажимам якоря. Для возможности самовозбуждения такого генератора требуется соблюдение определенных условий.  [31]

На рис. 7.8 представлена принципиальная схема генератора постоянного тока смешанного возбуждения. Этот генератор является также машиной с самовозбуждением, у которой имеются две обмотки возбуждения: главная - параллельная и дополнительная - последовательная. Первая обмотка возбуждения присоединяется параллельно выходным зажимам генератора, а вторая - последовательно в цепь якоря. Условия самовозбуждения этого генератора не отличаются от рассмотренных выше для генератора параллельного возбуждения.  [33]

На рис. 2.8 а представлена принципиальная схема генератора с двухпетлевой отрицательной запаздывающей обратной связью.  [34]

На рис. 3.33 а приведена принципиальная схема микромощного генератора на ПЭТ и МОП-транзисторе со встроенным n - каналом. Функцию резистора в этой схеме выполняет р-п-переход исток - подложка МОП-транзистора. МОП-транзистора смещены в прямом направлении. Переход исток - подложка шунтирует вход ПЭТ и изменяет амплитуду напряжения на его входе в зависимости от величины напряжения на затворе. Таким образом, соблюдаются необходимые условия для возникновения автоколебаний.  [35]

На рис. 11.1 приведен пример принципиальной схемы генератора звуковой частоты типа LC. Как видно из нее, генератор состоит из возбудителя, буферного и выходного усилителей. Возбудитель двухтактного типа собран по трехточечной схеме с параллельным питанием.  [37]

На рис. 10 - 38 приведены принципиальные схемы генераторов.  [38]

На рис. 4 - 5 приведена принципиальная схема генератора ( при работе по схеме с обратной акустической связью), собранной на лампе с воздушным охлаждением типа ГУ-5Б.  [40]

На рис. 2 - 2 приведена принципиальная схема генератора RC, выполненного на базе моста Вина.  [42]

На рис. 17.3, а изображена принципиальная схема генератора релаксационных колебаний. Она состоит из источника постоянной ЭДС Е, линейного резистора сопротивлением R, конденсатора емкостью С и параллельно соединенного с ним нелинейного резистора, имеющего ВАХ S-образной формы.  [43]

На рис. 30.8, а представлена принципиальная схема генератора дуги постоянного тока. Она состоит из аналитического промежутка ( АП), реостата и клемм, подводящих ток от выпрямителя. Вольтметр и амперметр в этой и других схемах для лучшего восприятия материала упускаются.  [44]

Страницы:      1    2    3    4    5

www.ngpedia.ru

мир электроники - LC генератор

Электронные устройства

 материалы в категории

LC-генератор так называется, потому что в нём используется LC-контур. Принципиальная схема LC-генератора показана на рисунке:

LC-генератор схема

Элементы R1, R2, R3, C3 обеспечивают необходимый режим транзистора по постоянному току и его термостабилизацию. Элементы L2, C2 образуют параллельный колебательный контур.

В момент включения питания в коллекторной цепи транзистора VT появляется коллекторный ток, заряжающий емкость С2 контура L2С2. В следующий момент времени заряженный кондер разряжается на катушку индуктивности. В контуре возникают свободные затухающие колебания частотой f0 = 1 / 2π√L2C2.

Переменный ток контура, проходя через катушку L2 создает вокруг неё переменное магнитное поле, а это поле в свою очередь наводит в катушке L1 переменное напряжение, которое вызывает пульсации тока коллектора транзистора VT. Переменная составляющая коллекторного тока восполняет потери энергии в контуре, создавая на нём усиленное переменное напряжение.

Трёхточечные схемы автогенераторов

Индуктивная трехточечная схема

Трехточечными такие генераторы называют потому что контур в них имеет три вывода:

LC генератор трехточечный

Элементы R1, R2, R3 C3, как и в предыдущей схеме, обеспечивают режим работы по постоянному току транзистора VT, в коллекторную цепь которого включен колебательный контур L'L''C2. Выходной сигнал снимается с коллектора транзистора VT (или с L''), сигнал ПОС - с катушки L'. Поскольку напряжения этих сигналов противофазны, то автоматически выполняется условие баланса фаз. Сигнал ПОС подается на базу транзистора через разделительный конденсатор С1, сопротивление которого на частоте генерации мало. Этот конденсатор предотвращает попадание постоянной составляющей в базовую цепь (через катушку). Общая точка L' и L'' подключена к источнику питания, сопротивление которого переменному току незначительно. Условие баланса амплитуд выполняют подбором числа витков L'L''.

Частота генерации определяется по формуле:

частота LC генератора формула

Емкостная трехточечная схема

 

емкостный LC генератор

В этой схеме, аналогично предыдущей, режим по постоянному току определяют элементы R1, R2, R3, R4, C2. В коллекторную цепь транзистора включен контур L1C3C4. Сигнал ПОС снимается с кондера С4 и через конденсатор С1 поступает в базовую цепь. С1 не пропускает высокое коллекторное напряжение на базу транзистора. Общую точку конденсаторв С3, С4 можно считать подключенной к источнику питания, поскольку его сопротивление переменному току незначительно.

Частота генерации определяется по формуле:

lc генератор емкостной формула

Стабилизация частоты LC-генераторов

Очень важным требованием, предъявляемым к генераторам, является стабильность частоты генерируемых колебаний. Нестабильность частоты зависит от многих факторов, а именно:

  • Изменение окружающей температуры
  • Изменение напряжения источника питания
  • Механическая вибрация и деформация деталей
  • Шумы активных элементов

Нестабильность частоты оценивается коэффициентом относительной нестабильности:

Существует два способа стабилизации частоты:

  • Параметрический способ стабилизации
  • Кварцевый способ стабилизации

При первом способе используется изготовление деталей из материалов, мало изменяющих свои свойства при изменении температуры и других факторов. Используется экранирование и герметизация контуров, высокая стабильность источника питания, рациональность монтажа и прочее. Однако этим методом нельзя обеспечить высокую стабильность частоты. Относительный коэффициент нестабильности частоты колеблется в пределах 10-4 - 10-5.

Значительно большей стабильности можно достичь, если применить способ кварцевой стабилизации, основанный на применении кварцевого резонатора. Кварцевые пластины резонатора обладают пьезоэлектрическим эффектом, который, если кто забыл, бывает двух видов:

  • Прямой пьезоэффект - при растяжении или сжатии кварцевой пластины на её противоположных гранях возникают равные по величине, но противоположные по знаку электрические заряды, величина которых пропорциональна давлению, а знаки зависят от направления силы давления
  • Обратный пьезоэффект - если к граням кварцевой пластины приложить электрическое напряжение, то пластина будет сжиматься или разжиматься в зависимости от полярности приложенного напряжения.

Эквивалентная схема кварцевого резонатора

зависимость реактивного сопротивления от частоты

Особо не вдаваясь в подробности теории цепей, из рисунков видно, что кварц может быть эквивалентом, как последовательного колебательного контура, так и параллельного.

На частоте f01 происходит резонанс напряжений. Эта частота определяется по формуле:

На частоте f02 происходит резонанс токов, и эта частота определяется по формуле:

Таким образом, кварцевый резонатор можно включать как вместо конденсатора, так и вместо катушки в контуре. При использовании кварцевого способа стабилизации коэффициент относительной нестабильности достигает 10-7 - 10-10.

Примечание: сайт-источник naf-st.ru

radio-uchebnik.ru


Каталог товаров
    .