интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Автотрансформатор своими руками. Электронный латр своими руками схема


Электронный ЛАТР своими руками

В настоящее время производится много регуляторов напряжения и большинство из них изготовлены на тиристорах и симисторах, которые создают значительный уровень радиопомех. Предлагаемый регулятор помех не даёт совсем и может использоваться для питания различных устройств переменного тока, без каких – либо ограничений, в отличие от симисторных и тиристорных регуляторов.В Советском Союзе выпускалось очень много автотрансформаторов, которые, в основном, применялись для повышения напряжения в домашней электрической сети, когда по вечерам напряжение очень сильно падало, и ЛАТР (лабораторный автотрансформатор) был единственным спасением для людей, желающих посмотреть телевизор. Но главное в них то, что на выходе из этого автотрансформатора получается такая же правильная синусоида, как и на входе, не зависимо от напряжения. Этим свойством активно пользовались радиолюбители.Выглядит ЛАТР так:Напряжение в этом приборе регулируется при помощи качения графитового ролика по оголённым виткам обмотки: Помехи в таком ЛАТРе, всё же были из - за искрения, в момент качения ролика по обмоткам.В журнале «РАДИО», №11, 1999г на странице 40 была напечатана статья «Беспомеховый регулятор напряжения».Схема этого регулятора из журнала: В предлагаемом журналом регуляторе не искажается форма выходного сигнала, но низкий коэффициент полезного действия и невозможность получения повышенного напряжения (выше напряжения сети), а также устаревшие комплектующие, которые найти сегодня проблематично, сводят на нет все преимущества данного прибора.

Схема электронного ЛАТРа

Я решил по возможности избавиться от некоторых недостатков регуляторов, перечисленных выше и сохранить их главные достоинства.От ЛАТРа возьмём принцип автотрансформации и применим его на обычном трансформаторе, тем самым повысим напряжение выше напряжения сети. Мне понравился трансформатор от блока бесперебойного питания. В основном тем, что его не нужно перематывать. Всё нужное в нём есть. Марка трансформатора: RT-625BN. Вот его схема:Как видно из схемы, в нём присутствует, помимо основной обмотки на 220 вольт, ещё две, выполненные обмоточным проводом того же диаметра, и две вторичные мощные. Вторичные обмотки отлично подходят для питания цепи управления и работы кулера охлаждения силового транзистора. Две дополнительные обмотки соединяем последовательно с первичной обмоткой. На фотографиях видно, как это сделано по цветам.На красный и чёрный провода подаём питание.Добавляется напряжение с первой обмотки.Плюс две обмотки. Итого получается 280 вольт. Если нужно большее напряжение, то можно домотать ещё провода до заполнения окна трансформатора, предварительно сняв вторичные обмотки. Только мотать нужно обязательно в том же направлении, что и предыдущая обмотка, и соединять конец предыдущей обмотки с началом следующей. Витки обмотки должны, как бы продолжать предыдущую обмотку. Если намотаете навстречу, то при включении нагрузки будет большая неприятность!Повышать напряжение можно, лишь бы регулирующий транзистор выдержал это напряжение. Транзисторы из импортных телевизоров встречаются до 1500 вольт, так что простор есть.Трансформатор можно взять и любой другой, подходящий вам по мощности, удалить вторичные обмотки и домотать провод до нужного вам напряжения. В этом случае, напряжение управления можно получить от дополнительного вспомогательного маломощного трансформатора на 8 – 12 вольт.Если кому – то захочется повысить КПД регулятора, то можно и здесь найти выход. Транзистор бесполезно расходует электроэнергию на нагрев тогда, когда ему приходится сильно убавлять напряжение. Чем сильнее нужно убавить напряжение, тем сильнее нагрев. В открытом состоянии, нагрев незначителен. Если изменить схему автотрансформатора и сделать на нём много выводов нужных вам уровней напряжения, то можно при помощи переключения обмоток подать на транзистор напряжение близкое к нужному вам в данный момент. Ограничения в количестве выводов трансформатора не имеется, нужен только соответствующий количеству выводов переключатель. Транзистор в этом случае будет нужен только для незначительной точной корректировки напряжения и КПД регулятора повысится, а нагрев транзистора уменьшится.

Изготовление ЛАТРа

Можно приступать к сборке регулятора.Схему из журнала я немного доработал, и получилось вот что:С такой схемой можно значительно повышать верхний порог напряжения. С добавлением автоматического кулера, снизился риск перегрева регулирующего транзистора.Корпус можно взять от старого компьютерного блока питания.Сразу нужно прикинуть порядок размещения блоков устройства внутри корпуса и предусмотреть возможность их надёжного закрепления.Если нет предохранителя, то обязательно нужно предусмотреть другую защиту от короткого замыкания.Высоковольтный клеммник надёжно крепим к трансформатору.На выход я поставил розетку для подключения нагрузки и контроля напряжения. Вольтметр можно поставить любой другой, на соответствующее напряжение, но не меньше 300 Вольт.

Понадобится

Нам понадобятся детали:
  • Радиатор охлаждения с кулером (любой).
  • Макетная плата.
  • Контактные колодки.
  • Детали можно подбирать исходя из наличия и соответствия номинальным параметрам, я ставил то, что первым под руку попало, но выбирал более или менее подходящее.
  • Диодные мосты VD1 – на 4 - 6А – 600 В. Из телевизора, кажется. Или собрать из четырёх отдельных диодов.
  • VD2 - на 2 - 3 А – 700 В.
  • T1 – C4460. Транзистор я поставил от импортного телевизора на 500V и мощностью рассеяния 55W. Можете попробовать любой другой подобный высоковольтный, мощный.
  • VD3 – диод 1N4007 на 1A 1000 В.
  • C1 – 470mf х 25 В, лучше ёмкость ещё увеличить.
  • C2 – 100n.
  • R1 – 1 кОм потенциометр любой проволочный, от 500 Ом и выше.
  • R2 – 910 - 2 Вт. Подбор по току базы транзистора.
  • R3 и R4 - по 1 кОм.
  • R5 – подстрочный резистор на 5 кОм.
  • NTC1 - терморезистор на 10 кОм.
  • VT1 – любой полевой транзистор. Я поставил RFP50N06.
  • M – кулер на 12 В.
  • HL1 и HL2 – любые сигнальные светодиоды, их можно вовсе не ставить вместе с гасящими резисторами.
Первым делом нужно приготовить плату для размещения деталей схемы и закрепить её на месте в корпусе.Размещаем на плате детали и припаиваем их.Когда схема собрана, настаёт время её предварительного испытания. Но нужно это делать очень осторожно. Все детали находятся под напряжением сети. Для испытания устройства я спаял две лампочки на 220 вольт последовательно, чтобы они не сгорели, когда на них пойдёт напряжение 280 вольт. Одинаковой мощности лампочек не нашлось и поэтому накал спиралей сильно различается. Нужно иметь ввиду, что без нагрузки регулятор работает очень некорректно. Нагрузка в данном устройстве является частью схемы. При первом включении лучше поберегите глаза (вдруг что – то напутали). Включаем напряжение и потенциометром проверяем плавность регулировки напряжения, но не долго, во избежание перегрева транзистора.После испытаний начинаем собирать схему автоматической работы кулера, в зависимости от температуры.У меня не нашлось терморезистора на 10 кОм, пришлось взять два по 22 кОм и соединить их параллельно. Получилось около десяти кОм.Крепим терморезистор рядом с транзистором с применением теплопроводной пасты, как и для транзистора.Устанавливаем остальные детали и припаиваем. Не забудьте удалить медные контактные площадки макетной платы между проводниками, как на фото, иначе при включении высокого напряжения может произойти замыкание в этих местах.Осталось отрегулировать подстроечным резистором начало работы кулера, когда температура радиатора возрастёт. Помещаем всё в корпус на штатные места и закрепляем. Окончательно проверяем и закрываем крышку.Смотрите, пожалуйста, видео работы беспомехового регулятора напряжения.Удачи вам.

Смотрите видео

sdelaysam-svoimirukami.ru

Электронный ЛАТР — Меандр — занимательная электроника

Читать все новости ➔

В статье рассмотрена конструкция регулируемо­го источника питания переменного тока промыш­ленной частоты синусоидальной формы, который способен заменить ЛАТР небольшой мощности.

После выхода из строя ЛАТРа, установленного в стенде СИ-СЦБ, предназначенного для испыта­ния приборов железнодорожной автоматики, ав­тор задался целью заменить его электронным ана­логом и успешно воплотил ее в жизнь. Описываемое устройство имеет следующие основные технические характеристики:

  • напряжение питания - ~19...24 В;
  • выходное напряжение переменного тока - ре­гулируемое от 0 до 300 В;
  • максимальная мощность нагрузки - 30 Вт.

Такие параметры, как максимальная мощность нагрузки и максимальное выходное напряжение, будут зависеть от мощности источника питания и параметров выходного трансформатора.

Описание схемы устройства

Идея регулятора напряжения переменного то­ка довольно проста: необходимо взять регулируе­мый по уровню синусоидальный сигнал и подать его на усилитель мощности низкой частоты, нагру­женный на повышающий трансформатор. Таким образом, можно получить напряжение переменно­го тока, регулируемое от 0 до значения, определяе­мого параметрами выходного трансформатора.

Принципиальная электрическая схема устрой­ства показана на рис.1. Схема состоит из двух блоков: модуля питания и регулирования, и усили­теля низкой частоты (УНЧ).

Рис. 1

Рис. 1

В качестве УНЧ использована конструкция двухтактного транзисторного усилителя мощнос­ти звуковой частоты, работающего в режиме В. Выбор схемы и конструкции УНЧ обусловлен его простотой, высоким КПД, большой выходной мощ­ностью и высокой температурной стабильнос­тью. Принцип работы такого усилителя подробно описан в [1].

Модуль питания и регулирования служит для преобразования поступающего напряжения пере­менного тока в двухполярное напряжение посто­янного тока, выделения синусоидального сигнала с регулируемой амплитудой для подачи на вход усилителя мощности, и питания вентилятора ох­лаждения.

Для создания двухполярного напряжения ис­пользована однополупериодная схема выпрямле­ния на диодах VD1, VD2 с фильтрующими конден­саторами С2, С3.

Синусоидальный сигнал управления УНЧ снима­ется с регулируемого делителя R1-R3. Подстроен­ный резистор R2 служит для установки максималь­ного уровня входного сигнала, обеспечивающего отсутствие нелинейных искажений выходного сиг­нала УНЧ.

Схема питания вентилятора охлаждения состо­ит из токоограничивающего резистора R4 и филь­трующего конденсатора С5.

Выход УНЧ защищен от короткого замыкания предохранителем FU1. Для предотвращения воз­можного протекания через нагрузку постоянной составляющей выходного сигнала, в ее цепи уста­новлен разделительный конденсатор С4.

Конструкция, детали и наладка

Оба функциональных блока устройства собра­ны на печатных платах из односторонне фольгированного стеклотекстолита. Чертеж печатной пла­ты УНЧ показан на рис.2, а схема расположения элементов - на рис.3.

Рис. 2

Рис. 2

3

Рис. 3

Резистор R5 использован для поверхностного монтажа, все остальные компоненты схемы - вы­водные. Особых требований к используемым де­талям нет, и они могут быть заменены любыми ана­логичными по параметрам. В качестве предвыходных транзисторов можно использовать импортные аналоги, например, комплементарную пару SS8050, SS8550. Для замены выходных тран­зисторов подойдет пара BD912, BD911, или более мощные 2SA1943, 2СА5200.

Выходные транзисторы VT3, VT4 должны быть установлены на радиатор. Для обеспечения компактности конструкции удобно использовать ради­атор охлаждения центрального процессора персо­нального компьютера с установленным на нем вентилятором. Так как коллекторы выходных тран­зисторов соединены, то изолировать их от ради­атора нет необходимости.

Схема УНЧ допускает параллельное включение выходных транзисторов для обеспечения большей выходной мощности. На плате предусмотрена возможность монтажа двух пар транзисторов.

Наладка УНЧ заключается в установке напряже­ния между базами транзисторов VT1, VT2 на уров­не 0,4...0,5 В. Она осуществляется подбором но­миналов резисторов R10, R11.

Чертеж платы модуля питания и регулирования не приводится, так как ее размеры и компоновка будут зависеть от типа используемых компонентов и схемы реализации низковольтного питания. В большинстве случаев разводку этого модуля удоб­ней будет произвести навесным монтажом.

Окончательная наладка устройства сводится к регулировке уровня входного сигнала УНЧ для обеспечения необходимой мощности нагрузки при отсутствии нелинейных искажений. Для это­го устройство нагружают требуемой максималь­ной нагрузкой. Затем движок регулятора R3 пере­водят в верхнее по схеме положение и, контролируя осциллографом форму сигнала на на­грузке. Подстроечным резистором R2 регулируют амплитуду входного сигнала таким образом, что­бы в выходном сигнале отсутствовали искажения.

Регулировка амплитуды входного сигнала УНЧ приведет к изменению уровня выходного напряже­ния устройства, поэтому лучше использовать вы­ходной трансформатор, имеющий обмотку с отво­дами, чтобы была возможность регулировки необходимого максимального уровня выходного напряжения.

Следует отметить, что в связи с отсутствием стабилизации питающего напряжения и свойств выходного трансформатора, уровень выходного напряжения будет достаточно сильно зависеть от мощности нагрузки. Но так как ЛАТР обычно используется для плавной регулировки напряже­ния от нуля на уже подключенной к нему нагруз­ке с контролем напряжения и тока, то это не име­ет значения.

В авторской реализации для питания устройст­ва от сети ~220 В был использован сигнальный трансформатор СТ-6 номинальной мощностью 40 ВА, а выход УНЧ нагружался на часть вторичной обмотки трансформатора Тр2 стенда. На самом деле выбор схемы питания и типа выходного трансформатора будет зависеть от целей приме­нения устройства.

Во время экспериментов и тестирования ре­гулятора его питание осуществлялось от само­дельного трансформатора мощностью около 100 Вт, имеющего выходное напряжение около 17 В, а для нагрузки использовалась вторичная обмотка типового трансформатора ТС-40-2. Пер­вичная обмотка трансформатора Т2 нагружалась лампой накаливания мощностью 40 Вт. Получены следующие результаты тестирования экспери­ментальной схемы:

  • на «холостом ходу» при выведенном на ноль регуляторе уровня: ~U1 = 17,3 В, ~I1=30 мА, =U1=±23 В, ~U2=0, ~I2=30 мА, ~Uвых=0, где: ~U1/~I1 - напряжение/ток во вторичной обмотке трансформатора Т1, =U1 - напряжение питания УНЧ, ~U2/~I2 - напряжение/ток в первичной об­мотке трансформатора Т2, ~Uвых - напряжение на вторичной обмотке Т2;
  • при установленном на максимум регуляторе (до момента появления искажений выходного сигнала): ~U1 = 17 В, ~I1= 1,4 A, =U1=±20,5 В, ~U2=16 В, ~I2=1,2 А, ~Uвых=220 В;
  • при нагрузке вторичной обмотки выходного трансформатора лампой накаливания мощностью 40 Вт: ~U1=16,8 В, ~I1=2,5 A, =U1=±17,7 В, ~U2=14 В, ~I2=2,1 А, ~Uвых=170 В.

Как видно из выше приведенных эксперимен­тальных данных, КПД устройства, при потреблении нагрузкой около 30 Вт, составляет приблизитель­но 70%.

Заключение

Автором было изготовлено и успешно исполь­зуется уже три таких устройства. Они хорошо се­бя показали, так как в сравнении с ЛАТРом имеют лучшую плавность регулирования.

В современных условиях для питания УНЧ удобнее использовать импульсный двухполярный источник питания. Однако в этом случае придет­ся изготовить генератор синусоидального сигна­ла или же брать сигнал из сети через дополнитель­ный маломощный сетевой трансформатор.

Литература

  1. Дорофеев. М. Режим В в усилителях мощно­сти 34 // Радио. - 1991. - №3. - С.53-56.

Автор: Дмитрий Карелов, г. Кривой РогИсточник: журнал Радиоаматор №11-12, 2015

Возможно, Вам это будет интересно:

meandr.org

Латр своими руками — sovetskyfilm.ru

Что собой представляет электронный ЛАТР?

Автотрансформаторы нужны, чтобы плавно изменять напряжение тока частотой 50—60 Гц во время проведения разных электротехнических работ. Еще их нередко используют, когда требуется уменьшить либо увеличить переменное напряжение для бытового или строительного электрооборудования.

Трансформаторами выступает электрическая аппаратура, которая оснащена несколькими обмотками соединенными индуктивно. Применяется она для преобразования электрической энергии по уровню напряжения или тока.

Кстати, широко использовать электронный ЛАТР начали 50 лет тому назад. Раньше прибор оснащали токосъемным контактом. Его располагали на вторичной обмотке. Так получалось плавно настраивать выходное напряжение.

Когда подключались различные лабораторные устройства. присутствовал вариант оперативного изменения напряжения. Скажем, при желании можно было менять степень нагрева паяльника, настраивать обороты электромотора, яркость освещения и прочее.

В настоящее время ЛАТР имеет разные модификации. В целом он представляет собой трансформатор, преобразующий переменное напряжение одной величины в другую. Подобное устройство служит стабилизатором напряжения. Его главным отличием является возможность регулировки напряжения на выходе из оборудования.

Существуют разные виды автотрансформаторов:

Последний тип — установленные в единой конструкции три однофазных ЛАТРа. Однако мало кто желает стать его владельцем. И трехфазные, и однофазные автотрансформаторы оборудованы вольтметром и регулировочной шкалой .

Область применения ЛАТРа

Автотрансформатор используют в различных сферах деятельности, среди них:

  • Металлургическое производство;
  • Коммунальное хозяйство;
  • Химическая и нефтяная промышленности;
  • Производство техники.

Кроме этого, он нужен для следующих работ: изготовления бытовых приборов, исследования электрооборудования в лабораториях, наладки и проверки техники, создания телевизионных приемников.

Вдобавок ЛАТР часто используют в учебных заведениях для проведения опытов на уроках химии и физики. Его можно даже обнаружить в составе устройств некоторых стабилизаторов напряжения. Также применяется в качестве дополнительного оборудования к самописцам и станкам. Почти во всех лабораторных исследованиях в виде трансформатора используют именно ЛАТР, поскольку он имеет простую конструкцию и несложен в эксплуатации.

Автотрансформатор в отличие от стабилизатора, который применяется лишь в нестабильных сетях и на выходе создает напряжение 220В с разной погрешностью в 2—5%, выдает точное заданное напряжение.

По климатическим параметрам разрешается использование этих приборов при высоте 2000 метров, но ток нагрузки приходится снижать на 2,5% при подъеме на каждые 500 м.

Основные минусы и плюсы автотрансформатора

Главное преимущество ЛАТРа — это более высокий КПД. ведь только некоторая часть мощности трансформируется. Особенно важно, если входное и выходное напряжения немного отличаются.

Их минусом является то, что отсутствует между обмотками электрическая изоляция. Хотя в промышленных электросетях нулевой провод обладает заземлением, поэтому такой фактор особой роли играть не будет, к тому же для обмоток используется меньше меди и стали для сердечников, как следствие, меньший вес и габариты. В результате можно хорошо сэкономить.

Первый вариант — прибор изменения напряжения

Если вы начинающий электрик, то лучше попробовать сначала сделать простую модель ЛАТРа, которая будет регулироваться устройством напряжения — от 0—220 вольт. По такой схеме автотрансформатор имеет мощность — от 25—500 Вт .

Чтобы увеличить мощность регулятора до 1,5 кВт, нужно тиристоры VD 1 и 2 поставить на радиаторы. Подключают их параллельно нагрузке R 1. Эти тиристоры ток пропускают в противоположных направлениях. При включении прибора в сеть они закрыты, а конденсаторы C 1 и 2 начинают заряжаться от резистора R 5. Еще им при необходимости изменяют величину напряжения во время нагрузки. Вдобавок этот переменный резистор вместе с конденсаторами образовывает фазосдвигающую цепь.

Такое техническое решение дает возможность пользоваться сразу двумя полупериодами переменного тока. В итоге для нагрузки применяется полная мощность, а не половинная.

Единственный недостаток схемы в том, что форма переменного напряжения во время нагрузки из-за специфики работы тиристоров оказывается не синусоидальной. Все это приводит к помехам по сети. Для исправления в схеме проблемы достаточно встроить фильтры последовательно нагрузке. Их можно вытащить из сломанного телевизора.

Второй вариант — регулятор напряжения с трансформатором

Не вызывающий помех в сети и дающий синусоидальное напряжение прибор, собирать труднее предыдущего. ЛАТР, схема которого имеет биополярный VT 1. в принципе тоже получится сделать самостоятельно. Причем транзистор служит регулирующим элементом в устройстве. Мощность в нем зависит от нагрузки. Работает он как реостат. Такая модель позволяет изменять рабочее напряжение не только при реактивных нагрузках, но и активных.

Однако представленная схема автотрансформатора тоже не идеальна. Ее минус в том, что функционирующий регулирующий транзистор выделяет очень много тепла. Для устранения недостатка понадобится мощный теплоотводящий радиатор, площадь которого равна не менее 250 см ².

В этом случае применяется трансформатор T 1. Он должен иметь вторичное напряжение около 6—10 В и мощность примерно 12—15 Вт. Диодный мост VD 6 осуществляет выпрямление тока, который впоследствии проходит к транзистору VT 1 в любом варианте полупериода через VD 5 и VD 2. Базовый ток транзистора регулируется переменным резистором R 1, изменяя тем самым характеристики тока нагрузки.

Вольтметром PV 1 контролируют размеры напряжения на выходе из автотрансформатора. Он используется с расчетом напряжения от 250—300 В. Если появляется необходимость увеличить нагрузку, тогда стоит заменить диоды VD 5- VD 2 и транзистор VD 1 на более мощные. Естественно, за этим последует расширение площади радиатора.

Как видно, собрать своими руками ЛАТР, возможно, нужно только иметь немного знаний в данной области и закупить все необходимые материалы.

ЛАТР (сокращенное название от Лабораторный Автотрансформатор) представляет собою трансформатор. снабженный дополнительным ползунком, способным производить регулировку выходного напряжения. Причем не только в сторону понижения, но и повышения.

В радлиолюбительской лаборатории это, безусловно, очень полезный прибор. С его помощью можно, например, регулировать температуру паяльника, производить настройку различных приборов (к примеру он очень полезен во время настройки устройства защиты от перенапряжения ),

Также он очень может пригодится и во время ремонта импульсных источников питания, когда требуется необходимость проверки устройства на работоспособность при пониженном напряжении.

Но при всех своих полезных свойствах, у промышленного ЛАТРа есть и ряд недостатков: достаточно высокая стоимость и крупные размеры (что не всегда приемлемо для домашних условий).

Поэтому в ряде случаев ЛАТР можно заменить электронным аналогом: то есть устройством, позволяющим производить регулировку переменного напряжения в широком диапазоне.

Схема электронного латра представлена ниже:

Латр своими руками

Схема довольна проста и доступна даже начинающему радиолюбителю. Она позволяет регулировать напряжение на активной нагрузке в пределах от 0 до 220В. Мощность ее может быть в пределах от 25 до 500 Вт, но если тиристоры (тринисторы) VD1, VD2 установить на радиаторы, мощность можно увеличить до 1,5кВт.

Основные элементы устройства – тиристоры VD1,VD2 включены навстречу друг другу и параллельно нагрузке R1. Они поочередно пропускают ток то в одном, то в другом направлении. При включении прибора в сеть тиристоры закрыты, и конденсаторы заряжаются через резистор R5. Напряжение на нагрузке устанавливается с помощью переменного резистора R5,который совместно с конденсаторами С1, С2 образует фазосдвигающую цепочку.

Тиристоры управляются импульсами, формируемыми динисторами VD3, VD4 некоторый момент, который определяется сопротивлением включенной в цепь части резистора R5, откроется один из динисторов (какой именно зависит от полярности полупериода). Через него потечет ток разряда соединенного с ним конденсатора, и вслед за динистором откроется соответствующий тиристор. Через тиристор, а значит, и через нагрузку потечет ток. В момент смены знака полупериода тиристор закрывается, и начинается новый цикл зарядки конденсаторов, но уже в обратной полярности. Теперь открывается второй динистор и второй тиристор. Особенность этой схемы в том, что в ней используются оба полупериода переменного тока и к нагрузке подводится полная, а не половинная мощность.

Правда, у данной схемы имеется один существенный недостаток (плата за простоту так сказать. ):

форма переменого напряжения на нагрузке будет все-же не строго синусоидальная. Это обусловлено особенностью работы тиристоров.

Этот факт може привести к возникновению помех по сети, так что в дополнение к схеме желательно установить фильтры (дроссели) последовательно нагрузке, которые можно взять, к примеру, из неисправного телевизора.

Уверен: от компактного и вместе с тем достаточно надежного, дешевого и простого в изготовлении «сварочника» ни один мастеровой, домовитый хозяин не откажется. Особенно если узнает, что в основе этого аппарата — легко поддающийся модернизации 9-амперный (знакомый практически каждому со школьных уроков физики) лабораторный автотрансформатор ЛАТР2 да самодельный тиристорный минирегулятор с выпрямительным мостом. Они позволяют не только безопасно подключаться к бытовой осветительной сети переменного тока с напряжением 220 В. но и изменять u на электроде, а значит, выбирать нужную величину тока сварки.

Режимы работы задают с помощью потенциометра. Совместное конденсаторами C2 и C3 он образует фазосдвигающие цепочки, каждая из которых, срабатывая во время своего полу периода. открывает соответствующий тиристор на некоторый промежуток времени. В результате на первичной обмотке сварочного Т1 оказываются регулируемые 20—215 В. Трансформируясь во вторичной обмотке, требуемые -u позволяют легко зажечь дугу для сварки на переменном (клеммы Х2, Х3) или выпрямленном (Х4, Х5) токе.

Резисторы R2 и RЗ шунтируют цепи управления тиристоров VS1 и VS2. Конденсаторы C1. C2 снижают до допустимого уровень радиопомех, сопровождающих дуговой разряд. В роли светового индикатора НL1, сигнализирующего о включении аппарата в бытовую электросеть, используется нвоновая лампочка с токоограничительным резистором R1.

Для подсоединения «сварочника» к квартирной электропроводке применима обычная штепсельная вилка Х1. Но лучше использовать более мощный электроразъем, который в обиходе называют «евровилка-евророзетка». А в качестве выключателя SB1 подойдет «пакетник» ВП25, рассчитанный на ток 25 А и позволяющий размыкать оба провода сразу.

Как показывает практика, устанавливать на сварочном аппарате какие бы то ни было предохранители (про-тивоперегрузочные автоматы) не имеет смысла. Здесь приходится иметь дело с такими токами, при превышении которых обязательно сработает защита на вводе сети в квартиру.

Для изготовления вторичной обмотки с базового ЛАТР2 снимают кожух-ограждение, токосьемный ползунок и крепежную арматуру. Затем на имеющуюся обмотку 250 В (отводы 127 и 220 В остаются невостребованными) накладывают надежную изоляцию (например, из лакоткани), поверх которой размещают вторичную (понижающую) обмотку. А это 70 витков изолированной медной или алюминиевой шины, имеющей в поперечнике 25 мм2. Приемлемо выполнение вторичной обмотки из нескольких параллельных проводов с таким же общим сечением.

Намотку удобнее осуществлять вдвоем. В то время как один, стараясь не повредить изоляцию соседних витков, осторожно протягивает и укладывает провод, другой удерживает свободный конец будущей обмотки, предохраняя ее от скручивания.

Модернизированный ЛАТР2 помещают в защитный металлический кожух с вентиляционными отверстиями, на котором располагают монтажную плату из 10-мм гетинакса или стеклотекстолита с пакетным выключателем SВ1, тиристорным регулятором напряжения (с резистором R6), светоиндикатором HL1 включения аппарата в сеть и выходными клеммами для сварки на переменном (Х2, Х3) или постоянном (Х4, Х5) токе.

При отсутствии базового ЛАТР2 его можно заменить самодельным «сва-рочником» с магнитопроводом из трансформаторной стали (сечение сердечника 45—50 см2). Его первичная обмотка должна содержать 250 витков провода ПЭВ2 диаметром 1,5 мм. Вторичная же ничем не отличается от той, что используется в модернизированном ЛАТР2.

На выходе низковольтной обмотки устанавливают блок выпрямителей с силовыми диодами VD3 — VD10 для сварки на постоянном токе. Помимо указанных вентилей вполне приемлемы и более мощные аналоги, например, Д122-32-1 (выпрямленный ток — до 32 А).

Силовые диоды и тиристоры устанавливают на радиаторах-теплоотводах, площадь каждого из которых не менее 25 см2. Наружу из кожуха выводят ось регулировочного резистора R6. Под рукояткой размещают шкалу с делениями, соответствующими конкретным величинам постоянного и переменного напряжения. А рядом — таблицу зависимости сварочного тока от напряжения на вторичной обмотке трансформатора и от диаметра сварочного электрода (0,8—1,5 мм).

Сварочный трансформатор на базе широко распространенного ЛАТР2 (а), его подключение к принципиальная электрической схеме самодельного регулируемого аппарата для сварки на переменном или постоянном токе (б) и эпюра напряжений (в), поясняющая работу резисторного регулятора режима горения электродуги.

Разумеется, приемлемы и самодельные электроды, изготовленные из углеродистой стальной «катанки» диаметром 0,5—1,2 мм. Заготовки длиной 250—350 мм покрывают жидким стеклом — смесью силикатного клея и измельченного мела, оставив незащищенными 40-мм концы, необходимые для подключения к сварочному аппарату. Обмазку тщательно высушивают, иначе при сварке она начнет «постреливать».

Хотя для сварки можно использовать как переменный (клеммы Х2, Х3), так и постоянный (Х4, Х5) ток, второй вариант, по отзывам сварщиков, предпочтительнее первого. Причем полярность играет далеко немаловажную роль. В частности, при подаче «плюса» на «массу» (свариваемый предмет) и, соответственно, подключении электрода к клемме со знаком «минус» имеет место так называемая прямая полярность. Для нее характерно выделение большего количества тепла, чем при обратной полярности, когда электрод подсоединен к положительному выводу выпрямителя, а «масса» — к отрицательному. Обратная полярность применяется, если нужно уменьшить выделение тепла, например, при сварке тонких листов металла. Почти вся выделяемая злектродугой энергия идет на образование сварного шва, а потому глубина провара на 40—50 процентов больше, чем при токе той же величины, но прямой полярности.

И еще несколько весьма существенных особенностей. Увеличение тока дуги при неизменной скорости сварки приводит к росту глубины провара. Причем если работа ведется на переменном токе, то последний из названных параметров становится на 15—20 процентов меньше, чем при использовании постоянного тока обратной полярности. Напряжение же сварки мало влияет на глубину провара. Зато от uсв зависит ширина шва: с ростом напряжения она увеличивается.

Отсюда важный вывод для занимающихся, скажем, сварочными работами при ремонте кузова легкового автомобиля из тонколистовой стали: наилучшие результаты даст сварка постоянным током обратной полярности при минимальном (но достаточном для устойчивого горения дуги) напряжении.

Дугу необходимо поддерживать минимально короткой, электрод тогда расходуется равномерно, а глубина проплавления свариваемого металла — максимальна. Сам же шов получается чистым и прочным, практически лишенным шлаковых включений. А от редких брызг расплава, трудно удаляемых после остывания изделия, можно защититься, натерев мелом околошовную поверхность (капли будут скатываться, не приставая к металлу).

Возбуждение дуги производят (предварительно подав на электрод и «массу» соответствующее Ucв) двумя способами. Суть первого в легком прикосновении электрода к свариваемым деталям с последующим отводом его на 2—4 мм в сторону. Второй способ напоминает чиркание спичкой по коробку: скользнув электродом по свариваемой поверхности, его тут же отводят на небольшое расстояние. В любом случае нужно уловить момент возникновения дуги и уже потом, плавно перемещая электрод над образующимся тут же швом, поддерживать ее спокойное горение.

В зависимости от типа и толщины свариваемого металла выбирают тот или иной электрод. При наличии, например, стандартного сортамента для листа Ст3 толщиной 1 мм подойдут электроды диаметром 0,8—1 мм (на это в основном и рассчитана рассматриваемая конструкция). Для сварочных работ на 2-мм стальном прокате желательно иметь и «сва-рочник» помощнее, и электрод потолще (2—3 мм).

Для сварки ювелирных изделий из золота, серебра, мельхиора лучше использовать тугоплавкий электрод (например, вольфрамовый). Можно сваривать и менее стойкие к окислению металлы, используя защиту углекислым газом.

В любом случае работу можно выполнять как вертикально расположенным электродом, так и наклоненным вперед или назад. Но искушенные профессионалы утверждают: при сварке углом вперед (имеется в виду острый угол между электродом и готовым швом) обеспечиваются более полный провар и меньшая ширина самого шва. Сварка же углом назад рекомендуется лишь для соединения внахлестку, особенно когда приходится иметь дело с профильным прокатом (уголком, двутавром и швеллером).

Немаловажная вещь — сварочный кабель. Для рассматриваемого аппарата как нельзя лучше подойдет медный многожильный (общее сечение около 20 мм2) в резиновой изоляции. Потребное количество — два полутораметровых отрезка, каждый из которых следует оборудовать тщательно обжатым и пропаянным клеммным наконечником для подключения к «сварочнику». Для непосредственного же соединения с «массой» используют мощный зажим типа «крокодил», а с электродом — держатель, напоминающий трехзубую вилку. Можно воспользоваться и автомобильным «прикуривателем».

Необходимо позаботиться также о личной безопасности. При электроду-говой сварке постараться уберечься от искр, а тем более — от брызг расплавленного металла. Рекомендуется надевать брезентовую одежду свободного покроя, защитные рукавицы и использовать маску, предохраняющую глаза от жесткого излучения электрической дуги (солнцезащитные очки здесь непригодны).

Разумеется, нельзя забывать и о «Правилах техники безопасности при выполнении работ на электрооборудовании в сетях с напряжением до 1 кВ». Электричество беспечности не прощает!

М.ВЕВИОРОВСКИЙ, Московская обл.

В чем отличие автотрансформатора от обычного трансформатора

И то, и другое изделие предназначены для питания силовых цепей, однако в отличии от обычного трансформатора, который имеет как минимум две обмотки – первичную и вторичную, автотрансформатор представляет собой однообмоточный трансформатор, у которого нет вторичной обмотки, ее роль выполняет часть витков первичной обмотки. Обмотка автотрансформатора наматывается на сердечник из электротехнической стали.

Устройство автотрансформатора ЛАТР

Конструкция автотрансформатора состоит из кольцевого магнитопровода из электротехнической стали, на который в один слой намотана обмотка из медного провода. На торце сердечника по узкому участку обмотки с удаленной изоляцией перемещается щеточный контакт, по которому и снимается выходное напряжение.

Номинальная мощность промышленных ЛАТРов состоит из ряда: 0,5 – 1,0 – 2,0 – 5,0 – 7,5 КВт.

Схема автотрансформатора и принцип работы

Латр своими руками

На схеме показан автотрансформатор со скользящим контактом для регулирования выходного напряжения. Такие автотрансформаторы применяются в лабораторной практике и называются ЛАТР – лабораторный автотрансформатор. На первичную обмотку трансформатора подается сетевое напряжение, вторичное напряжение снимается с части первичной обмотки. Как правило, лабораторные трансформаторы имеют возможность не только понижать входное, но и повышать его, как правило до 250 вольт. Чаще всего автотрансформаторы используются при коэффициенте трансформации, близком к единице и как повышающие, т.к. при низком выходном напряжении выгоднее использовать двухобмоточные изделия. Латр своими рукамиЛабораторный автотрансформатор может быть дополнен выпрямительным мостом на мощных диодах, при этом на выходе получаем регулируемое постоянное напряжение от 0 до 220 вольт.

Как работать с автотрансформатором напряжения

Трехфазные автотрансформаторы

Трехфазные устройства изготавливаются аналогично однофазным, где три вторичные обмотки представляют собой часть витков от первичных обмоток. Используются трехфазные автотрансформаторы напряжения преимущественно в промышленных электрических сетях и на производствах для пуска мощных трехфазных электродвигателей при пониженном напряжении.

Недостатки автотрансформаторов: электрическая связь первичной и вторичной обмоток, что ограничивает область их применения.

Cтатьи из категории: Электротехника

  • Латр своими рукамиКак правильно рассчитать сечение проводов под нагрузку

    Чтобы правильно рассчитать необходимое сечение проводов для той или иной полезной электрической нагрузки, для начала полезно разобраться – а зачем это нужно вообще делать?

  • Латр своими рукамиПервая помощь при ударе электротоком

    Последствия поражения человека электрическим током могут быть разной тяжести и зависят от многих факторов. Сила тока, напряжение сети, конкретный путь прохождения электрического тока по телу пострадавшего, качество и количество одежды, […]

  • Латр своими рукамиГенераторы переменного тока

    Генераторы переменного тока являются основными источниками переменного напряжения, используемого в промышленности и в аграрном секторе. Гидрогенераторы ГЭС и турбогенераторы ТЭЦ, выходящие на разветвленную сеть станций и систем линий ЛЭП, имеют […]

    Электродвигателем называется устройство, преобразующее электрическую энергию, получаемую из сети распределения, в механическую энергию вращения. Любой электродвигатель состоит из корпуса, защищающего устройство от пыли и влаги, неподвижной части (статора), жёстко скреплённой […]

  • Латр своими рукамиДиэлектрики в электротехнике

    Электроизоляционными принято называть материалы, которые обладают свойством электрически изолировать друг от друга токоведущие части, находящиеся под напряжением из-за наличия между ними определённой разности потенциалов. Такие материалы (называемые диэлектриками) отличаются высоким […]

  • Латр своими рукамиАВ для однофазных и трехфазных сетей

    Согласно требованиям ПУЭ (Правилам Устройства Электроустановок) для обеспечения надёжной защиты промышленных и бытовых электрических сетей от перенапряжений и короткого замыкания в них должны устанавливаться специальные приборы – так называемые выключатели […]

  • Латр своими рукамиПриборы для ограничения напряжения

    Разрядниками принято называть специальные электротехнические приборы, служащие для ограничения перенапряжений, нередко возникающих при эксплуатации действующих электрических сетей. Отметим, что первоначально ими назывались механические изделия, представляющие собой два электрода с искровым […]

  • Латр своими рукамиЗапуск электродвигателя через ПМ

    Как известно, электромагнитный пускатель представляет собой электрический коммутационный прибор, который используется для запуска, защиты и остановки электродвигателей, работающих по асинхронной схеме. Главным рабочим элементом любого пускателя является электромагнитный контактор для […]

    Навигация по записям

    Добавить комментарий Отменить ответ

    Материал является пояснением и дополнением к статье:Импульсный преобразователь, источник синусоидального напряжения из постоянного или меандра, прямоугольного Импульсный силовой преобразователь напряжения в чисто синусоидальное. Принципиальная схема, расчет. Импульсный источник синусоидального напряжения

    Вопрос: Можно ли на основе схемы преобразователя напряжения в синусоидальное построить лабораторный автотрансформатор, латр? Какие изменения нужно внести в схему и конструкцию?

    Ответ: Конечно. На основе данной схемы можно изготовить устройство с плавно регулируемым выходным напряжением. Может возникнуть только одна проблема. Если Вы планируете питать от этого ЛАТРа устройства, чувствительные к высокочастотным помехам, то это может не получиться. Изделие дает на выходных клеммах некоторые помехи в высокочастотном диапазоне.

    Изменения в схеме. Преобразователь напряжения в синусоидальное -> импульсный ЛАТР

    Вашему вниманию подборка материалов:

    П рактика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

    Внеся приведенные изменения в схему преобразователя, мы получаем возможность плавно регулировать выходное напряжение практически от нуля до 220 вольт.

    Подстроечные резисторы R2 и R12 теперь превратились в сдвоенный переменный. А для начальной настройки симметрии сигнала добавились подстроечные резисторы R2′ и R12′ по 5 кОм.

    Советы по сборке и наладке устройства изменения не претерпевают.

    Корректор коэффициента мощности

    Если Вы планируете изготовить устройство на мощность от 300 Ватт и более, то необходимо предусмотреть на входе корректор коэффициента мощности. Дело в том, что выпрямитель на входе обладает неприятным свойством. Он потребляет от сети большой ток для зарядки электролитического конденсатора фильтра в моменты достижения синусоидой максимальных значений. Все остальное время ток не потребляется. Происходят броски тока в сети. Это плохо и для сети, и для Вашего устройства, так как может вызвать перегрев и пробой диодов моста на входе. Стерпеть подобную неприятность можно при небольшой потребляемой мощности. Но когда мощность большая, броски тока могут быть опасными.

    Эту проблему решает специальное устройство — корректор коэффициента мощности. Подключим корректор во входную цепь вместо моста М и конденсатора C1

    Также обращаю внимание на то, что если Вы хотите официально сертифицировать схему, то без корректора при мощности более 300 Вт этого сделать не удастся.

    Внимание, только СЕГОДНЯ!
  • sovetskyfilm.ru

    Самодельный сварочный аппарат из ЛАТР 2. Схема и описание

    Данный самодельный сварочный аппарат из ЛАТР 2 построен на базе девяти амперного ЛАТР 2 (лабораторный регулируемый автотрансформатор) и в его конструкции предусмотрена регулировка сварочного тока. Наличие в конструкции сварочного аппарата диодного моста позволяет производить сварку постоянным током.

    Схема регулятора тока для сварочного аппарата

    Режим работы сварочного аппарата регулируется переменным резистором R5. Тиристоры VS1 и VS2 открываются каждый в свой полупериод попеременно на определенный промежуток времени благодаря фазосдвигающей цепи, построенной на элементах R5, С1 и С2.

    Самодельный сварочный аппарат из ЛАТР 2

    В итоге появляется возможность изменять на первичной обмотке трансформатора входное напряжение от 20 до 215 вольт. В результате трансформации на вторичной обмотке появляется пониженное напряжение, позволяющее с легкостью поджечь сварочную дугу на клеммах X1 и X2 при сварке переменным током и  на клеммах X3 и X4 при сварке постоянным током.

    Подключение сварочного аппарата к электросети производится обыкновенной штепсельной вилкой. В роли включателя SA1 можно использовать спаренный автомат на 25А.

    Переделка ЛАТР 2 под самодельный сварочный аппарат

    Сперва с автотрансформатора  удаляют защитный кожух, электросъемный контакт и крепление. Далее на существующую обмотку 250 вольт наматывают хорошую электроизоляцию, к примеру, стеклоткань, сверху которой укладывают 70 витков вторичной обмотки. Для вторичной обмотки желательно выбрать медный провод с площадью сечения около 20 кв. мм.

    В случае если нет провода подходящего сечения, можно сделать намотку из нескольких проводов с общей площадью сечения 20 кв.мм. Видоизмененный ЛАТР2 монтируют в подходящий самодельный корпус имеющий вентиляционные отверстия. Там же необходимо  установить плату регулятора, пакетный выключатель, а так же клеммы для Х1, Х2 и Х3, Х4.

    В случае отсутствия ЛАТР 2, трансформатор можно сделать самодельный, намотав первичную и вторичную обмотки на сердечник из трансформаторной стали. Сечение сердечника должно быть примерно 50 кв. см. Первичная обмотка наматывается проводом ПЭВ2 диаметром 1,5мм и содержит 250 витков, вторичная такая же которая наматывается на ЛАТР 2.

    На выходе вторичной обмотки подключают диодный мост из  мощных выпрямительных диодов. Вместо указанных на схеме диодов можно применить диоды Д122-32-1 или 4 диода ВЛ200 (электровозные). Диоды для охлаждения необходимо установить на самодельные радиаторы с площадью не менее 30 кв. см.

    Еще существенным моментом является выбор кабеля для сварочного аппарата. Для данного сварочника  необходимо применить медный многожильный кабель в резиновой изоляции с сечением не менее 20 кв.мм. Необходимо два куска кабеля по 2 метра длинной. Каждый необходимо хорошо обжать клеммными наконечниками для подключения к сварочному аппарату.

     

    www.joyta.ru

    "ЛАТР" без ЛАТРа - Радиолюбителям - Сборник - Познавательный Интернет-журнал "Умеха

    "ЛАТР" без ЛАТРаВам потребовалось, чтобы жало паяльника нагревалось чуть меньше, чем позволяет его конструкция. Как бы пригодился здесь ЛАТР (лабораторный автотрансформатор регулирующий), но его нет! Не беда. Выручит довольно простое устройство, которое предлагаем собрать своими руками. Его габаритные размеры не превышают 100x50x40 мм. Схема, представленная на рисунке, позволяет регулировать напряжение на активной нагрузке в пределах от 0 до 220 В. Мощность ее может быть любой — от 25 до 1000 Вт, а если тиристоры VD1, VD2 установить на радиаторы, мощность можно увеличить до 1,5 кВт.

    Основные элементы регулятора — тиристоры VD1, VD2, включенные встречно друг другу и параллельно нагрузке. Они поочередно пропускают ток то в одном, то в другом направлении.

    При включении регулятора в сеть в первый момент оба тиристора закрыты, и конденсаторы заряжаются через резистор R5.

    Напряжение на нагрузке устанавливают с помощью переменного резистора R5, который совместно с конденсаторами С1, С2 образует фазосдвигающую цепочку. Тиристоры управляются импульсами, формируемыми динисторами VD3, VD4. В некоторый момент, который определяется сопротивлением включенной в цепь части резистора R5, откроется один из динисторов (какой именно, зависит от полярности полупериода). Через него потечет ток разряда соединенного с ним конденсатора, и вслед за динистором откроется соответствующий тиристор. Через тиристор, а значит, и через нагрузку потечет ток. В момент смены знака полупериода тиристор закрывается, и начинается новый цикл зарядки конденсаторов, но уже в обратной полярности.

    Теперь открываются второй динистор и второй тиристор. Особенность нашей схемы в том, что в ней используются оба полупериода переменного тока и к нагрузке подводится полная, а не половинная мощность.

    umeha.3dn.ru

    Автотрансформатор своими руками — sovetskyfilm.ru

    Что собой представляет электронный ЛАТР?

    Автотрансформаторы нужны, чтобы плавно изменять напряжение тока частотой 50—60 Гц во время проведения разных электротехнических работ. Еще их нередко используют, когда требуется уменьшить либо увеличить переменное напряжение для бытового или строительного электрооборудования.

    Трансформаторами выступает электрическая аппаратура, которая оснащена несколькими обмотками соединенными индуктивно. Применяется она для преобразования электрической энергии по уровню напряжения или тока.

    Кстати, широко использовать электронный ЛАТР начали 50 лет тому назад. Раньше прибор оснащали токосъемным контактом. Его располагали на вторичной обмотке. Так получалось плавно настраивать выходное напряжение.

    Когда подключались различные лабораторные устройства. присутствовал вариант оперативного изменения напряжения. Скажем, при желании можно было менять степень нагрева паяльника, настраивать обороты электромотора, яркость освещения и прочее.

    В настоящее время ЛАТР имеет разные модификации. В целом он представляет собой трансформатор, преобразующий переменное напряжение одной величины в другую. Подобное устройство служит стабилизатором напряжения. Его главным отличием является возможность регулировки напряжения на выходе из оборудования.

    Существуют разные виды автотрансформаторов:

    Последний тип — установленные в единой конструкции три однофазных ЛАТРа. Однако мало кто желает стать его владельцем. И трехфазные, и однофазные автотрансформаторы оборудованы вольтметром и регулировочной шкалой .

    Область применения ЛАТРа

    Автотрансформатор используют в различных сферах деятельности, среди них:

    • Металлургическое производство;
    • Коммунальное хозяйство;
    • Химическая и нефтяная промышленности;
    • Производство техники.

    Кроме этого, он нужен для следующих работ: изготовления бытовых приборов, исследования электрооборудования в лабораториях, наладки и проверки техники, создания телевизионных приемников.

    Вдобавок ЛАТР часто используют в учебных заведениях для проведения опытов на уроках химии и физики. Его можно даже обнаружить в составе устройств некоторых стабилизаторов напряжения. Также применяется в качестве дополнительного оборудования к самописцам и станкам. Почти во всех лабораторных исследованиях в виде трансформатора используют именно ЛАТР, поскольку он имеет простую конструкцию и несложен в эксплуатации.

    Автотрансформатор в отличие от стабилизатора, который применяется лишь в нестабильных сетях и на выходе создает напряжение 220В с разной погрешностью в 2—5%, выдает точное заданное напряжение.

    По климатическим параметрам разрешается использование этих приборов при высоте 2000 метров, но ток нагрузки приходится снижать на 2,5% при подъеме на каждые 500 м.

    Основные минусы и плюсы автотрансформатора

    Главное преимущество ЛАТРа — это более высокий КПД. ведь только некоторая часть мощности трансформируется. Особенно важно, если входное и выходное напряжения немного отличаются.

    Их минусом является то, что отсутствует между обмотками электрическая изоляция. Хотя в промышленных электросетях нулевой провод обладает заземлением, поэтому такой фактор особой роли играть не будет, к тому же для обмоток используется меньше меди и стали для сердечников, как следствие, меньший вес и габариты. В результате можно хорошо сэкономить.

    Первый вариант — прибор изменения напряжения

    Если вы начинающий электрик, то лучше попробовать сначала сделать простую модель ЛАТРа, которая будет регулироваться устройством напряжения — от 0—220 вольт. По такой схеме автотрансформатор имеет мощность — от 25—500 Вт .

    Чтобы увеличить мощность регулятора до 1,5 кВт, нужно тиристоры VD 1 и 2 поставить на радиаторы. Подключают их параллельно нагрузке R 1. Эти тиристоры ток пропускают в противоположных направлениях. При включении прибора в сеть они закрыты, а конденсаторы C 1 и 2 начинают заряжаться от резистора R 5. Еще им при необходимости изменяют величину напряжения во время нагрузки. Вдобавок этот переменный резистор вместе с конденсаторами образовывает фазосдвигающую цепь.

    Такое техническое решение дает возможность пользоваться сразу двумя полупериодами переменного тока. В итоге для нагрузки применяется полная мощность, а не половинная.

    Единственный недостаток схемы в том, что форма переменного напряжения во время нагрузки из-за специфики работы тиристоров оказывается не синусоидальной. Все это приводит к помехам по сети. Для исправления в схеме проблемы достаточно встроить фильтры последовательно нагрузке. Их можно вытащить из сломанного телевизора.

    Второй вариант — регулятор напряжения с трансформатором

    Не вызывающий помех в сети и дающий синусоидальное напряжение прибор, собирать труднее предыдущего. ЛАТР, схема которого имеет биополярный VT 1. в принципе тоже получится сделать самостоятельно. Причем транзистор служит регулирующим элементом в устройстве. Мощность в нем зависит от нагрузки. Работает он как реостат. Такая модель позволяет изменять рабочее напряжение не только при реактивных нагрузках, но и активных.

    Однако представленная схема автотрансформатора тоже не идеальна. Ее минус в том, что функционирующий регулирующий транзистор выделяет очень много тепла. Для устранения недостатка понадобится мощный теплоотводящий радиатор, площадь которого равна не менее 250 см ².

    В этом случае применяется трансформатор T 1. Он должен иметь вторичное напряжение около 6—10 В и мощность примерно 12—15 Вт. Диодный мост VD 6 осуществляет выпрямление тока, который впоследствии проходит к транзистору VT 1 в любом варианте полупериода через VD 5 и VD 2. Базовый ток транзистора регулируется переменным резистором R 1, изменяя тем самым характеристики тока нагрузки.

    Вольтметром PV 1 контролируют размеры напряжения на выходе из автотрансформатора. Он используется с расчетом напряжения от 250—300 В. Если появляется необходимость увеличить нагрузку, тогда стоит заменить диоды VD 5- VD 2 и транзистор VD 1 на более мощные. Естественно, за этим последует расширение площади радиатора.

    Как видно, собрать своими руками ЛАТР, возможно, нужно только иметь немного знаний в данной области и закупить все необходимые материалы.

    • Простое устройство регулирования напряжения
    • Схема регулятора напряжения с трансформатором

    Полвека назад лабораторный автотрансформатор был очень распространен. Сегодня электронный ЛАТР, схема которого должна быть у каждого радиолюбителя, имеет множество модификаций. Старые модели имели токосъемный контакт, расположенный на вторичной обмотке, что давало возможность плавно менять значение выходного напряжения, позволяло оперативно изменять напряжение при подключении различных лабораторных приборов, изменении интенсивности нагрева жала паяльника, регулировки электрического освещения, изменения оборотов электродвигателя и многого другого. Особое значение имеет ЛАТР в качестве устройства стабилизации напряжения, что очень важно при настройке различных приборов.

    Автотрансформатор своими руками

    Современный ЛАТР используется почти в каждом доме для стабилизации напряжения.

    Сегодня, когда электронный ширпотреб заполонил прилавки магазинов, приобрести надежный регулятор напряжения простому радиолюбителю стало проблемой. Конечно, можно найти и промышленный образец. Но они часто слишком дорогие и громоздкие, а для домашних условий это не всегда подходит. Вот и приходится многочисленным радиолюбителям «изобретать велосипед», создавая электронный ЛАТР своими руками.

    Простое устройство регулирования напряжения

    Схема простой модели ЛАТРа.

    Одна из самых простых моделей ЛАТР, схема которой изображена на рис.1, доступна и начинающим. Регулируемое устройством напряжение – от 0 до 220 вольт. Мощность этой модели – от 25 до 500 Вт. Повысить мощность регулятора можно до 1,5 кВт, для этого тиристоры VD1 и VD2 следует установить на радиаторы.

    Эти тиристоры (VD1 и VD2) подключаются параллельно нагрузке R1. Они пропускают ток в противоположных направлениях. При включении устройства в сеть эти тиристоры закрыты, а конденсаторы С1 и С2 заряжаются посредством резистора R5. Величину напряжения, получаемого на нагрузке, изменяют по необходимости переменным резистором R5. Он вместе с конденсаторами (С1 и С2) создает фазосдвигающую цепь.

    Автотрансформатор своими руками

    Рис. 2. Схема ЛАТРа, дающего синусоидальное напряжение без помех в системе.

    Особенностью этого технического решения является использование обоих полупериодов переменного тока, поэтому для нагрузки используется не половинная мощность, а полная.

    Недостатком данной схемы (плата за простоту) надо считать то, что форма переменного напряжения на нагрузке оказывается не строго синусоидальной, что обусловлено спецификой работы тиристоров. Это может привести к помехам по сети. Для устранения проблемы дополнительно к схеме можно установить фильтры последовательно нагрузке (дроссели), например, взять их из неисправного телевизора.

    Вернуться к оглавлению

    Схема регулятора напряжения с трансформатором

    Схема ЛАТРа, не создающего помехи в сети и дающего на выходе синусоидальное напряжение, приведена на рис.2. Регулирующим элементом в используемом приборе является биполярный транзистор VT1 (его мощность рассчитывают из потребности нагрузки), функционирующий как переменный резистор, он включен в схему последовательно с нагрузкой.

    Это техническое решение дает возможность регулировать рабочее напряжение при активной, а также реактивной нагрузках.

    Недостатком предложенного решения является выделение слишком большого количества тепла используемым регулирующим транзистором (необходим мощный радиатор для теплоотвода). Для данного устройства площадь радиатора должна быть не менее 250 см².

    Трансформатор Т1, используемый в этой модели, должен иметь мощность 12-15 Вт и вторичное напряжение 6-10 В. Ток выпрямляется диодным мостом VD6. Далее при любом полупериоде переменного тока через диодный мост VD2-VD5 протекает выпрямленный ток для транзистора VT1. При использовании устройства переменным резистором R2 регулируем базовый ток транзистора VT1. Этим изменяются параметры тока нагрузки. На выходе устройства величина напряжения контролируется вольтметром PV1 (он должен быть рассчитан на напряжение 250-300 В). Для повышения мощности нагрузки необходимо заменить транзистор VD1 и диоды VD2-VD5 на более мощные и, конечно, увеличить площадь радиатора.

    Автотрансформатор своими рукамиВ лабораторных стендах моего колледжа регулярно выходят из строя лабораторные автотрансформаторы (ЛАТРы). Так получилось, что путем проб и ошибок мне удалось освоить технологию их ремонта. На данный момент мне удалось отремонтировать уже три лабораторных автотрансформатора, причем перематывал ЛАТРы я у себя в комнате в общежитии. Буду рад, если изложенная здесь технология перемотки ЛАТРов окажется кому-то полезной. Да, это моя первая статья, поэтому не судите строго 🙂

    Для начала краткий курс устройства ЛАТРа (смотрите рисунок).

    У ЛАТРа есть две обмотки соединенных последовательно. На первичную обмотку подается сетевое напряжение (это необходимо учесть при перемотке). Вторичная обмотка подключается к первичной. Она расчитана на напряжение от 0-240 В. На выводы А и N подается напряжение в магнитопроводе создается магнитный поток который наводит в обмотках ток снимаемый с зажимов А1 и N.

    Автотрансформатор своими руками

    Начнем с того, что нужно определить диаметр провода. Это можно с помощью штангенциркуля. Для этого нужно сначала замерить диаметр родного провода, а затем исходя из этого искать подходящий нам провод. Можно взять кусок старого провода и потом сравнивать его с искомым образцом.

    Потом необходимо определить длину провода. Это можно осуществить с помощью обычного математического выражения: L=lвитка×W1,2 см,

    где L – необходимая длина провода (в сантиметрах), lвитка – длинна одного витка; W1,2 — количество витков вторичной и первичной обмотки.

    Автотрансформатор своими руками

    Далее, определяем необходимое число витков необходимых для стабильной работы трансформатора. Здесь есть два возможных варианта:

    1) Расчет количества витков по формулам. Этот метод довольно простой, но в нем большая вероятность допустить погрешность, например в расчетах или в измерениях площади окна магнитопровода. Этот метод приведен ниже:

    — находим мощность автотрансформатора: P=U×I,

    где U – выходное напряжение, I – максимальный ток нагрузки (обычно написан на ЛАТРе).

    — находится габаритная мощность: Рг=1.9* Sc * S,

    где 1.9 коффициент водимый для торроидальных трансформаторов.

    — необходимое количество витков на 1 вольт:

    K = 35/Sc, где 35 коффициент водимый для торроидальных трансформаторов.

    — определяем число витков; W1 = U1*K

    — определяем размеры сердечника: Sс=((Dc-dc)/2)×h, So=πxd2/4,

    где Sc- площадь сердечника трансформатора; So – площадь окна.

    2) Второй вариант довольно трудоемкий, но надежный (при перемотке ЛАТРов я использовал этот метод). Этот способ определения числа витков заключается в том, что нужно отматывать старую обмотку и при этом считать количество витков. Для него необходимо: листик и ручка для того чтобы не сбиться, катушка или кусок деревяшки, чтобы наматывать туда старую обмотку, а также стальные нервы и терпение, чтобы не выкинуть его в окно после ста отсчитанных витков.

    После этого отдыхаем и расслабляемся после проделанной работы, потому что далее необходимо максимум внимательности и терпения. Когда отдохнете, начинаем готовить рабочее место. Желательно, что бы оно было хорошо освещено и можно было поместить все необходимые предметы, например письменный стол со светильником или стул в комнате с хорошим освещением.

    Новый провод для удобства перемотки лучше сначала намотать на деревянную болванку как показано на картинке:

    Автотрансформатор своими руками

    Принципиальной разницы как провод улаживается, на внутреннем диаметре окна нет. Но для того чтобы уложить нужное количество витков, необходимо намотать первый виток к нему в плотную, затем намотать второй виток, а на верх между первым и вторым уложить третий виток и так повторять, пока не намотаем нужное количество витков на напряжение 220В. После этого делаем вывод зажима сети и от этого вывода доматываем вторичную обмотку. На внешнем диаметре окна магнитопровода все витки необходимо укладывать последовательно один за одним как показано на рисунке.

    Автотрансформатор своими руками

    После того как перемотка будет закончена обмотку необходимо пропитать лаком для улучшения изоляционных свойств и что бы закрепить намотанный провод на своем месте. Так как много лака здесь не потребуется, то можно использовать любой устойчивый к температуре до 105 о С. После пропитки лаком автотрансформатор оставляем на пару часов сохнуть. Для лучшего эффекта можно поместить в теплое место. Комнату где производились работы покинуть и очень желательно открыть форточку для проветривания.

    После сушки необходимо сделать дорожку для съема напряжения. Это можно сделать с помощью ножа или шлифовальной бумаги. Делаем дорожку от внешнего окна к внутреннему длиной около 3 см (показано на рисунке ниже).

    Автотрансформатор своими руками

    Далее собираем автотрансформатор. Когда установим нижнюю крышку можно проверить обмотки тестером — между обмоткой и корпусом и между началом и концом обмотки.

    Автотрансформатор своими руками

    Проверить автотрансформатор можно включив его в сеть. Делать это лучше с помощью сетевого фильтра. Сначала испытываем на холостом ходу. Если после включения фильтра не произошло взрывов, коротких замыканий — значит автотрансформатор перемотан успешно. После этого можно медленно крутить ручку переключателя при этом тестером замерять показания с выводов. Если автотрансформатор начал сильно гудеть (может допускаться небольшое гудение) и греться, то это значит что вы ошиблись с количеством витков.

    Автотрансформатор своими руками

    После этого можете включить его под нагрузкой и пронаблюдать за трансформатором в течении 15 мин. Потом отключить и проверить температуру обмотки. Если она не сильно нагрелась, то ЛАТР готов к работе.

    Антон Ромашов, учащийся УО «ГГПК» для сайта http://electrik.info

    &#106&;лектрик Ин&#10&2;о — элек&#10&0;ротехника и элек&#10&0;роника, дома&#10&6;няя ав&#10&0;оматизация, &#108&;татьи про &#10&1;стройство и ремон&#10&0; дома&#10&6;ней элек&#10&0;ропроводки, ро&#107&;етки и в&#10&9;ключатели, провода и кабели, и&#108&;точники &#108&;вета, ин&#10&0;ересные &#10&2;акты и многое др&#10&1;гое для элек&#10&0;риков и дома&#10&6;них ма&#108&;теров.

    Ин&#10&2;ормация и об&#10&1;чающие ма&#10&0;ериалы для на&#10&5;инающих элек&#10&0;риков.

    Кей&#108&;ы, пример&#10&9; и &#10&0;ехнические ре&#10&6;ения, об&#107&;оры ин&#10&0;ересных элек&#10&0;ротехнических новинок.

    В&#108&;я ин&#10&2;ормация на &#108&;айте &#106&;лектрик Ин&#10&2;о предо&#108&;тавлена в о&#107&;накомительных и по&#107&;навательных &#10&4;елях. За применение э&#10&0;ой ин&#10&2;ормации админи&#108&;трация &#108&;айта о&#10&0;ветственности не не&#108&;ет. Сай&#10&0; може&#10&0; &#108&;одержать ма&#10&0;ериалы 12+

    Перепе&#10&5;атка ма&#10&0;ериалов &#108&;айта &#107&;апрещена.

    Автотрансформатор своими руками

    В чем отличие автотрансформатора от обычного трансформатора

    И то, и другое изделие предназначены для питания силовых цепей, однако в отличии от обычного трансформатора, который имеет как минимум две обмотки – первичную и вторичную, автотрансформатор представляет собой однообмоточный трансформатор, у которого нет вторичной обмотки, ее роль выполняет часть витков первичной обмотки. Обмотка автотрансформатора наматывается на сердечник из электротехнической стали.

    Устройство автотрансформатора ЛАТР

    Конструкция автотрансформатора состоит из кольцевого магнитопровода из электротехнической стали, на который в один слой намотана обмотка из медного провода. На торце сердечника по узкому участку обмотки с удаленной изоляцией перемещается щеточный контакт, по которому и снимается выходное напряжение.

    Номинальная мощность промышленных ЛАТРов состоит из ряда: 0,5 – 1,0 – 2,0 – 5,0 – 7,5 КВт.

    Схема автотрансформатора и принцип работы

    Автотрансформатор своими руками

    На схеме показан автотрансформатор со скользящим контактом для регулирования выходного напряжения. Такие автотрансформаторы применяются в лабораторной практике и называются ЛАТР – лабораторный автотрансформатор. На первичную обмотку трансформатора подается сетевое напряжение, вторичное напряжение снимается с части первичной обмотки. Как правило, лабораторные трансформаторы имеют возможность не только понижать входное, но и повышать его, как правило до 250 вольт. Чаще всего автотрансформаторы используются при коэффициенте трансформации, близком к единице и как повышающие, т.к. при низком выходном напряжении выгоднее использовать двухобмоточные изделия. Автотрансформатор своими рукамиЛабораторный автотрансформатор может быть дополнен выпрямительным мостом на мощных диодах, при этом на выходе получаем регулируемое постоянное напряжение от 0 до 220 вольт.

    Как работать с автотрансформатором напряжения

    Трехфазные автотрансформаторы

    Трехфазные устройства изготавливаются аналогично однофазным, где три вторичные обмотки представляют собой часть витков от первичных обмоток. Используются трехфазные автотрансформаторы напряжения преимущественно в промышленных электрических сетях и на производствах для пуска мощных трехфазных электродвигателей при пониженном напряжении.

    Недостатки автотрансформаторов: электрическая связь первичной и вторичной обмоток, что ограничивает область их применения.

    Cтатьи из категории: Электротехника

  • Автотрансформатор своими рукамиКак правильно рассчитать сечение проводов под нагрузку

    Чтобы правильно рассчитать необходимое сечение проводов для той или иной полезной электрической нагрузки, для начала полезно разобраться – а зачем это нужно вообще делать?

  • Автотрансформатор своими рукамиПервая помощь при ударе электротоком

    Последствия поражения человека электрическим током могут быть разной тяжести и зависят от многих факторов. Сила тока, напряжение сети, конкретный путь прохождения электрического тока по телу пострадавшего, качество и количество одежды, […]

  • Автотрансформатор своими рукамиГенераторы переменного тока

    Генераторы переменного тока являются основными источниками переменного напряжения, используемого в промышленности и в аграрном секторе. Гидрогенераторы ГЭС и турбогенераторы ТЭЦ, выходящие на разветвленную сеть станций и систем линий ЛЭП, имеют […]

    Электродвигателем называется устройство, преобразующее электрическую энергию, получаемую из сети распределения, в механическую энергию вращения. Любой электродвигатель состоит из корпуса, защищающего устройство от пыли и влаги, неподвижной части (статора), жёстко скреплённой […]

  • Автотрансформатор своими рукамиДиэлектрики в электротехнике

    Электроизоляционными принято называть материалы, которые обладают свойством электрически изолировать друг от друга токоведущие части, находящиеся под напряжением из-за наличия между ними определённой разности потенциалов. Такие материалы (называемые диэлектриками) отличаются высоким […]

  • Автотрансформатор своими рукамиАВ для однофазных и трехфазных сетей

    Согласно требованиям ПУЭ (Правилам Устройства Электроустановок) для обеспечения надёжной защиты промышленных и бытовых электрических сетей от перенапряжений и короткого замыкания в них должны устанавливаться специальные приборы – так называемые выключатели […]

  • Автотрансформатор своими рукамиПриборы для ограничения напряжения

    Разрядниками принято называть специальные электротехнические приборы, служащие для ограничения перенапряжений, нередко возникающих при эксплуатации действующих электрических сетей. Отметим, что первоначально ими назывались механические изделия, представляющие собой два электрода с искровым […]

  • Автотрансформатор своими рукамиЗапуск электродвигателя через ПМ

    Как известно, электромагнитный пускатель представляет собой электрический коммутационный прибор, который используется для запуска, защиты и остановки электродвигателей, работающих по асинхронной схеме. Главным рабочим элементом любого пускателя является электромагнитный контактор для […]

    Навигация по записям

    Добавить комментарий Отменить ответ

    jekd5050 писал(а): Я вот думаю может я связал гальванически вторичку и первичку. Типа автотрансформатор

    ну начет этого не знаю, знаю только что это опасно для жизни, гальваническая развязка обязательно должна быть

    Хотите новый монитор? ▒▒▒▒▒▒▒ Поскребите здесь гравёром.

    bigbarsuk Начинающий мастерАвтотрансформатор своими рукамиСообщения: 234 Зарегистрирован: 30 янв 2012, 23:09 Возраст: 22 Баллы репутации: 18 Автотрансформатор своими рукамиАвтотрансформатор своими руками

    мне розетка не страшна уже несколько раз провода брал случайно и один раз сел на них. Пока жив

    Цель оправдывает калибр

    да я тоже когда чистил от пыли как то схватился за радиатор что стоял на полевиках в компьютерном бп, еле руку отдёрнул, вся жизнь перед глазами пролетелатак что если хочешь жить не балуйся с переменкой

    Хотите новый монитор? ▒▒▒▒▒▒▒ Поскребите здесь гравёром.

    bigbarsuk Начинающий мастерАвтотрансформатор своими рукамиСообщения: 234 Зарегистрирован: 30 янв 2012, 23:09 Возраст: 22 Баллы репутации: 18 Автотрансформатор своими рукамиАвтотрансформатор своими руками

    Внимание, только СЕГОДНЯ!
  • sovetskyfilm.ru

    Электронный ЛАТр | Электроника | Каталог статей

    Для настройки стабилизаторов сетевого напряжения без ЛАТра обойтись просто невозможно. И если в середине прошлого столетия он имелся почти у каждого радиолюбителя, то сейчас он большая редкость.Но, голь на выдумки богата, и проблем не будет, если собрать схему электронного „ЛАТра”, изображенную на рисунке ниже.

    Рис. 1 Схема электронного ЛАТРа

     

    С обмотки WIII трансформатора Т1 переменное напряжение 0,5…1B через делитель напряжения на резисторах R15, R16 и переменного резистора R3 подается на вход УМЗЧ. Данный УМЗЧ в немного упрощенном варианте выполнен по схеме УМЗЧ, описанном в [1]. Достоинство этого УМЗЧ В том, что он очень прост конструктивно, легко налаживается и надежен в работе. Кроме того, все транзисторы можно расположить на одном радиаторе.Усиленный синусоидальный сигнал подается на первичную обмотку трансформатора Т2, а с вторичной обмотки этого трансформатора снимается выходное синусоидальное напряжение, величина которого регулируется переменным резистором R3.Вторичная обмотка WII трансформатора Т1 должна выдавать напряжение 22…24В. Как уже было сказано выше, транзисторы VT1…VT4 расположены на одном общем радиаторе, здесь же смонтированы резисторы R13, R14 и конденсаторы С7, C9. Диоды VD1…VD4, конденсаторы С2, С3 и резисторы R1, R2, R15, R16 смонтированы на отдельной плате. Переменный резистор R3 расположен на лицевой панели ЛАТра. Все остальные радиоэлементы УМЗЧ расположены на печатной плате.При наладке УМЗЧ сначала трансформатор Т2 к выходу усилителя не подключается. Необходимо замкнуть накоротко вход УМЗЧ (вывод 3 ОУ DA1 соединить с общим проводом).К выходу УМЗЧ подключаются щупы осциллографа. Если на выходе нет переменного напряжения (усилитель не возбуждается), это хорошо(так и будет, если соблюдать правила монтажа УМЗЧ, о которых некоторые опытные радиолюбители уже и забыли, а некоторые молодые никогда усилители и не собирали).Далее проверяют режим питания ОУ DA1.1. Напряжение питания ОУ должно быть в пределах 13…14В. Необходимо проверить падение напряжения на резисторах R13 и R14. Оно должно быть в пределах 0,35…0,4B. Если это не так, необходимо подобрать сопротивление резисторов R10, R11 (их сопротивления должны быть одинаковыми).Если постоянное напряжение на выходе УМЗЧ более 20…30мВ, необходима балансировка ОУ DA1.При выполнении вышесказанного к выходу УМЗЧ надо подключить сопротивление нагрузки около 16 Ом на мощность рассеивания 10…15Вт, разомкнуть вход УМЗЧ и плавно регулировать сопротивление переменного резистора R3. На экране осциллографа, подключенного на выход УМЗЧ, должна быть „красивая” синусоида 50Гц.В качестве трансформатора Т2 используется „звуковой” трансформатор ТВЗ-1-9 с лампово – полупроводникового телевизора УЛПЦТ. Если подать на его первичную обмотку сетевое напряжение 220В, на его вторичной обмотке напряжение составит около 6В. Вторичную обмотку ТВЗ-1-9 необходимо использовать как первичную трансформатора Т2 и подключить на выход УМЗЧ. Далее, регулируя сопротивление подстроечного резистора R4 и подобрав сопротивление резистора R15 делителя напряжения R15, R16 при положении среднего контакта переменного проволочного резистора R3 в крайнем нижнем по схеме положении (максимальное входное напряжение УМЗЧ), необходимо получить неискаженное синусоидальное напряжение на выходе УМЗЧ, действующее значение которого равно примерно 6,2B. При этом напряжение на вторичной обмотке трансформатора Т2 должно составлять около 230В.Итак, плавно регулируя сопротивление переменного резистора R3, на выходе „ЛАТра” получаем синусоидальное напряжение 0...230В частотой 50Гц.При наладке стабилизаторов переменного напряжения выход „ЛАТра” подключается на сетевую обмотку трансформатора (автотрансформатора), с которого снимается напряжение сравнения, подаваемое на компараторы стабилизатора (силовая часть стабилизатора при этом не подключается), и довольно легко и просто эти компараторы налаживаются.

     

    "Радиосхема" 2006-5. Автор: А.Н. Маньковский,

    пос. Шевченко, Донецкая обл.

    001-lab.at.ua


    Каталог товаров
      .