интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Схема подключения асинхронного двигателя. Схема подключения асинхронного электродвигателя


Схема подключения асинхронного двигателя - Всё о электрике в доме

cхема подключения асинхронного двигателя

схема реверса трехфазного двигателя

Схему подключения реверсивного магнитного пускателя для асинхронного двигателя мы уже освоили, поэтому осталось только соединить разработанные узлы в одну принципиальную схему. 1 и 2 выводы схемы управления сажаем на фазы С1 и С3, а электродвигатель — к выходу теплового реле, вот и вся схема подключения асинхронного двигателя через пускатель.Схема подключения асинхронного двигателяПосмотрите, если убрать блокировку пусковых кнопок контактами КМ1.1 и КМ2.1, при отпускании кнопок пускатели отключатся. Где-то такое может быть неудобно, а вот в электросхеме тельфера считается обязательным.В этой схеме маленькая недоработка: я описывал трехфазное подключение теплового реле, а на Рис. 3 задействованы только две его фазы. Страшного ничего нет, можно сделать и такое подключение теплового реле, зато получилась схема подключения асинхронного двигателя с применением двухфазного теплового реле.

пуск двигателя звезда треугольник

Когда-нибудь замечали, как во время работы мощной сваркой мигает освещение. Так и при запуске мощного электродвигателя напряжение в сети падает из-за большого пускового тока. Чтобы пусковой ток снизить, придумали поэтапный пуск двигателя звезда треугольник (треугольник рассчитан на 380V). На каждой фазе статора своя обмотка, у которой есть начало и конец, и они выведены в клеммную коробку.Схема подключения асинхронного двигателяЗначение начала и конца важно: например, при соединении обмоток в треугольник конец первой обмотки соединяется с началом второй, конец второй — с началом третьей, и конец третьей — с началом первой. По-другому двигатель не потянет. В коробке переключение со звезды на треугольник производится перемычками с4-с5-с6 на с1-с4, с2-с5, с3-с6. Но при запуске не открывать же коробку и переставлять перемычки, для этого и придумали пуск с помощью двух контакторов КМ2 и КМ3, заменяющих эти пластинки.Схема подключения асинхронного двигателяКак это сделать? Прежде всего убрать перемычки, затем подключить все выводы обмоток к контакторам КМ1, КМ2 и КМ3 согласно схеме (Рис. 4).Как работает такая схема? При нажатии пусковой кнопки SB2 включается главный контактор КМ1, который запускает своим контактом КМ1.2 реле времени КТ и блокирует контактом КМ1.1 пусковую кнопку. Одновременно включается контактор КМ3, соединяющий обмотки статора в звезду, и размыкает своим контактом КМ3 цепь катушки КМ2 во избежание случайного ее включения. Пуск на звезде осуществлен.После разгона отключается контакт реле времени КТ1.2, катушка контактора КМ3 обесточивается, контакт КМ3 возвращается в исходное положение. В это время замыкается контакт реле времени КТ1.1, включает катушку контактора КМ2, соединяющего обмотки в треугольник и страхующего катушку КМ3 от включения, размыкая свой контакт КМ2. Теперь двигатель начал работать на нужном нам треугольнике.Очень важно настроить реле времени так, чтобы момент его срабатывания соответствовал полному разгону на звезде.Примечание: схема управления подключена на 220V, то есть на фазу и на «ноль» N, схема подключения двигателя через пускатель в грузоподъемных механизмах должна работать только на 380V, 220V разрешено подключать через трансформатор 380/220V.Проблему большого пускового тока эффективно решает подключение асинхронного двигателя с фазным ротором .В заключение предлагаю ознакомиться с еще одной схемой подключения асинхронного двигателя — подключение трехфазного двигателя к однофазной сети .

Добавить комментарий Отменить ответ

Как подключить асинхронный двигатель

Подробности Категория: Электрика Опубликовано 16.07.2014 13:21 Автор: Admin Просмотров: 16300

Как подключить трех фазный двигатель в сеть переменного тока напряжением в 220 В — спросите вы. Ведь на самом двигателе 3 фазы а сеть имеет 2 провода. Давай попробуем с этим разобраться.

Внешний вид асинхронного двигателя

Схема подключения асинхронного двигателя

Асинхронными двигателями они называются потому что у них отличаются частоты вращения магнитного поля статора и ротора. Получается что ротор пытается догнать или сравнять эти частоты. Таким образом и происходит вращение.

Схема соединения обмоток статора асинхронного двигателя

Обмотки статора, которых там 3 штуки имеют 2 способа подключения:

  • соединение в звезду;
  • соединение в треугольник.

На крышке двигателя имеются выводы которые обозначаються как C1-C6. C1-C3 это концы обмоток, а C4-C6 это их начала. Как осущствляеться подсоединение обмоток в ту или иную конйигурация показано на рисунках ниже.

Схема подключения асинхронного двигателя

Схема подключения асинхронного двигателя

Как работает асинхронный двигатель

Принцип действия таких двигателей основан на всеми известным законом электромагнитной индукции. Статор двигателя имеет 3 обмотки на них поочередно подается напряжение. В обмотках возникает электрический ток который также поочередно появляется в этих обмотках.

Электрический ток как известно создает «вокруг» себя переменное магнитное поле. А по закону электромагнитной индукции переменное магнитное поле наводит в металле электрический ток. В результате в обмотке ротора наводится электрический ток. Данный ток создает свое магнитное поле которое взаимодействует с магнитным полем статора. Получается своего рода аналог двух магнитов которые взаимодействуют с собой. Как отталкиваются и притягиваются магниты, объяснять думаю не стоит.

В роторе не подводиться электрический ток — это стоит понимать. Обмотки ротора замыкаются между собой при помощи блока переменных сопротивлений. Переменное сопротивление используется в этом случае для регулировки частоты вращения двигателя. Изменяя при помощи него ток ротора меняется сила взаимодействия ротора и статора.

Схема подключения асинхронного двигателя в сеть 220В

Схема подключения асинхронного двигателя

Для того чтобы подключить асинхронный двигатель нам нужно два вывода обмотки соеденить через конденсатор между собой и сделать вывод. При подсоединении нашего асинхронника к сети 220В по схеме представленной выше, выдаваимая им мощность будет составлять 0.7 от номинальной. Это происходит потому что мы присоединяем 3-х вахный двигатель в одно вазную сеть. Для расчета емкости можно использовать приближенную формулу:

С — емкость в мкФ

P — мощность двигателя в Вт

Рабочее напряжение конденсатора должно быть больше напряжения в сети. На схеме также представлен пусковой конденсатор, номинал его емкости долже быть в 3-4 раза больше рабочей емкости. Пусковой конденсатор необходим для компенсации значительных пусковых токов в момент запуска двигателя, т. к. возникают значительные напряжения самоиндукции в момент пуска.

Довольно часто получаеться так что под рукой не оказывается нужной емкости. Для выхода из этой ситуации нужно использовать параллельное соединение конденсаторов.

Трехфазный асинхронный двигатель – подключение на 220 вольт

Бытовых ситуаций много, особенно у тех, кто проживает в своем собственном частном доме. К примеру, необходимо установить в гараже точильный станок с асинхронным электродвигателем, который работает от трехфазной сети переменного тока. А на участок проведена лишь однофазная сеть на 220 В. Что делать? В принципе, это не проблема, потому что любой трехфазный электрический движок можно подключить и к однофазной сети, главное знать, как это сделать. Итак, наша задача в этой статье разобраться в позиции – асинхронный двигатель подключение на 220 вольт.

Схема подключения асинхронного двигателя

Существуют две классические схемы такого подключения, в которых присутствуют конденсаторы. То есть, сам электродвигатель становится не асинхронным, а конденсаторным. Вот эти схемы:

Конечно, это не единственные варианты, но в этой статье будем говорить именно о них, как о самых простых и часто используемых.

На схемах хорошо видно, что в них установлены конденсаторы: рабочий и пусковой, которые в свою очередь называются фазосдвигающими. А так как в данной схеме эти элементы являются основными, то самый важный момент – это правильно подобрать конденсатор по емкости, которая бы соответствовала мощности мотора.

Выбираем конденсаторы

Существует формула, по которой емкость можно рассчитать. Правда, для схемы звезда и треугольника она отличается коэффициентом. Для схемы звезда формула вот такая:

С=2800*I/U, где I – это ток, который можно замерить в питающем проводе клещами, U – это напряжение однофазной сети – 220 В.

Формула для треугольника:

Здесь загвоздка может быть только в определение силы тока, просто клещей может не оказаться под рукой, поэтому предлагаем упрощенный вариант формулы:

С=66*Р, где Р – это мощность электродвигателя, которая наносится на шильдик мотора или в его паспорте. По сути, получается так, что емкость рабочего конденсатора в размере 7 мкФ должно хватить на 0,1 кВт мощности двигателя. Обычно электрики берут именно это соотношение, когда перед ними ставиться вопрос, как подключить асинхронный двигатель с 380 на 220 В. И еще один момент – конденсатор контролирует силу тока, поэтому так важно правильно подобрать его емкость. И самое главное в подключении двигателя добиться того, чтобы значение тока при эксплуатации электродвигателя не поднималось выше номинальной величины.

Что касается пускового конденсатора, то его обязательно устанавливают в схему, если при пуске мотора действует хотя бы минимальная нагрузка. Включается он обычно буквально на пару секунд, пока ротор не наберет свои обороты. После чего он просто отключается. Если по каким-то причинам пусковой конденсатор не отключится, то произойдет перекос фаз, и двигатель перегреется.

Внимание! Так как в процессе пуска, тем более под нагрузкой, величина тока сильно возрастает, то и емкость пускового конденсатора должна быть раза в три больше конденсатора рабочего.

Есть еще один показатель, на который необходимо обратить внимание при выборе. Это напряжение. Правило здесь одно: напряжение конденсатора должно быть больше напряжения в однофазной сети на 1,5.

Тип конденсаторов

Специалисты рекомендуют в качестве пускового и рабочего конденсаторов использовать одинаковые модели. Самый простой вариант – это бумажные конструкции в герметичном металлическом корпусе. Правда, есть у них один существенный недостаток – большие габаритные размеры. Поэтому если перед вами стоит вопрос, как подключить небольшой мощности двигатель 380 на 220 вольт, то количество таких конденсаторов будет приличным, и вся конструкция будет смотреться не очень.

Схема подключения асинхронного двигателя

Можно использовать для этих целей электролитические приборы, но их схема подключения отличается от предыдущей, потому что в нее придется установить резисторы и диоды. К тому же эти конденсаторы при пробое взрываются. Есть более современные виды – это полипропиленовые модели металлизированного типа. Себя они зарекомендовали хорошо, претензий к ним сейчас у специалистов нет.

Полезные советы

  • Обращаем ваше внимание на тот факт, что при подключении трехфазного двигателя к однофазной сети можно говорить и снижении мощности электрического агрегата. В общем, его фактический показатель не будет превышать номинальный 70-80%. При этом скорость вращения ротора не уменьшится.
  • Если используемый движок имеет схему переключения 380/220, это обязательно указывается на шильдике, то в однофазную сеть его надо подключать только треугольником.
  • В том случае, если на шильдике указаны схема подключения звездой и только трехфазное подключение на 380 вольт, то вам придется вскрыть клеммную коробку и добраться до соединения концов обмоток двигателя. Потому что внутри агрегата уже установлена схема звезда, ее-то и придется разобрать и вывести наружу шесть концов обмотки статора.

Схема подключения асинхронного двигателя

Установка реверса

Иногда возникает необходимость провести подключение так, чтобы трехфазный двигатель, подсоединенный к однофазной сети, вращался то в одну, то в другую стороны. Для этого необходимо установить в схему любой управляющий прибор. Это может быть тумблер, кнопка или ключи управление. Но здесь есть два основных требования:

  1. Обращайте внимание на силу тока, которую этот управляющий прибор может выдержать. Чтобы он был больше нагрузки, создаваемой электродвигателем.
  2. В конструкции управляющего прибора должно быть две пары контактов: нормально замкнутые и нормально разомкнутые.

Вот схема, по которой подключается этот элемент в питание электродвигателя:

Здесь видно, что реверс осуществляется подачей электроэнергии на разные полюса конденсаторов.

Заключение по теме

Схема трехфазного асинхронного двигателя с подключением к 220 вольт – дело реальное. Проблем с ним быть не должно. Здесь главное, и это было показано в статье, правильно подобрать конденсаторы (рабочие и пусковые) и правильно выбрать схему подключения. Особое внимание придется уделить правилам соединения, где в основе будет лежать сам двигатель, а, точнее, его возможности.

Схема подключения электродвигателя на 220В через конденсатор

  • Схема подключения асинхронного двигателя

    Как правильно провести подключение электродвигателя 380 на 220 вольт

  • Схема подключения асинхронного двигателя

    Как подключить трехфазный электродвигатель в сеть 220В – схемы и рекомендации

    Источники: http://electriku.ru/dvigatel, http://www.radio-magic.ru/elektrika/122-uzo-3, http://onlineelektrik.ru/eoborudovanie/edvigateli/trexfaznyj-asinxronnyj-dvigatel-podklyuchenie-na-220-volt.html

  • electricremont.ru

    Подключение электродвигателя

    Подключение асинхронного двигателя

    Трехфазный переменный ток

    Электрическая сеть трехфазного переменного тока получила наиболее широкое распространение среди электрических систем передачи энергии. Главным преимуществом трехфазной системы по сравнению с однофазной и двухфазной системами является ее экономичность. В трехфазной цепи энергия передается по трем проводам, а токи текущие в разных проводах сдвинуты относительно друг друга по фазе на 120°, при этом синусоидальные ЭДС на разных фазах имеют одинаковую частоту и амплитуду.

    Трехфазный ток

    Трехфазный ток (разница фаз 120°)

    Звезда и треугольник

    Трехфазная обмотка статора электродвигателя соединяется по схеме "звезда" или "треугольник" в зависимости от напряжения питания сети. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя (из двигателя выходит три провода), выведены наружу (выходит шесть проводов), выведены в распределительную коробку (в коробку выходит шесть проводов, из коробки три).

    Фазное напряжение - разница потенциалов между началом и концом одной фазы. Другое определение: фазное напряжение это разница потенциалов между линейным проводом и нейтралью.

    Линейное напряжение - разность потенциалов между двумя линейными проводами (между фазами).

    Внимание: Несмотря на то, что мощность для соединений в звезду и треугольник вычисляется по одной формуле, подключение одного и того же электродвигателя разным способом в одну и туже электрическую сеть приведет к потреблению разной мощности. При этом не правильное подключение электродвигателя, может привести к расплавлению обмоток статора.

    Пример: Допустим электродвигатель был подключен по схеме "звезда" к трехфазной сети переменного тока Uл=380 В (соответственно Uф=220 В) и потреблял ток Iл=1 А. Полная потребляемая мощность:

    S = 1,73∙380∙1 = 658 Вт.

    Теперь изменим схему соединения на "треугольник", линейное напряжение останется таким же Uл=380 В, а фазовое напряжение увеличится в корень из 3 раз Uф=Uл=380 В. Увеличение фазового напряжения приведет к увеличению фазового тока в корень из 3 раз. Таким образом линейный ток схемы "треугольник" будет в три раза больше линейного тока схемы "звезда". А следовательно и потребляемая мощность будет в 3 раза больше:

    S = 1,73∙380∙3 = 1975 Вт.

    Таким образом, если двигатель рассчитан на подключение к трехфазной сети переменного тока по схеме "звезда", подключение данного электродвигателя по схеме "треугольник" может привести к его поломке.

    Если в нормальном режиме электродвигатель подключен по схеме "треугольник", то для уменьшения пусковых токов на время пуска его можно соединить по схеме звезда. При этом вместе с пусковым током уменьшится также пусковой момент.

    Схема соединения - звезда и треугольник

    Подключение электродвигателя по схеме звезда и треугольник

    Обозначение выводов статора трехфазного электродвигателя

    Обозначение выводов обмоток статора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85

    Схема соединения обмоток, наименование фазы и выводаОбозначение выводаНачалоКонец
    Открытая схема (число выводов 6)
    первая фазаU1U2
    вторая фазаV1V2
    третья фазаW1W2
    Соединение в звезду (число выводов 3 или 4)
    первая фазаU
    вторая фазаV
    третья фазаW
    точка звезды (нулевая точка)N
    Соединение в треугольник (число выводов 3)
    первый выводU
    второй выводV
    третий выводW

    Обозначение выводов обмоток статора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85

    Схема соединения обмоток, наименование фазы и выводаОбозначение выводаНачалоКонец
    Открытая схема (число выводов 6)
    первая фазаC1C4
    вторая фазаC2C5
    третья фазаC3C6
    Соединение звездой (число выводов 3 или 4)
    первая фазаC1
    вторая фазаC2
    третья фазаC3
    нулевая точка0
    Соединение треугольником (число выводов 3)
    первый выводC1
    второй выводC2
    третий выводC3

    Подключение трехфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего элемента

    Трехфазные асинхронные электродвигатели могут быть подключены к однофазной сети с помощью фазосдвигаюших элементов. При этом электродвигатель будет работать либо в режиме однофазного двигателя с пусковой обмоткой (рисунок а, б, г) либо в режиме конденсаторного двигателя с постоянно включенным рабочим конденсатором (рисунок в, д, е).

    Подключение трехфазного асинхронного двигателя к однофазной сети

    Схемы подключения трехфазного асинхронного электродвигателя к однофазной сети

    Схемы приведенные на рисунке "а", "б", "д" применяются, когда выведены все шесть концов обмотки. Электродвигатели с соединением обмоток согласно схемам "а", "б", "г" практически равноценны двигателям, которые спроектированы как однофазные электродвигатели с пусковой обмоткой. Номинальная мощность при этом состовляет 40-50% от мощности в трехфазном режиме, а при работе с рабочим конденсатором 75-80%.

    Емкость рабочего конденсатора при частоте тока 50 Гц для схем "в", "д", "е" примерно рассчитывается соответственно по формулам:

    • ,где Cраб - емкость рабочего конденсатора, мкФ,
    • Iном – номинальный (фазный) ток статора трехфазного двигателя, А,
    • U1 – напряжение однофазной сети, В.

    Управление асинхронным двигателем

    Прямое подключение к сети питания

    Использование магнитных пускателей позволяет управлять асинхронными электродвигателями путем непосредственного подключения двигателя к сети переменного тока.

    С помощью магнитных пускателей можно реализовать схему:

    • нереверсивного пуска: пуск и остановка;
    • реверсивного пуска: пуск, остановка и реверс.

    Использование теплового реле позволяет осуществить защиту электродвигателя от величин тока намного превышающих номинальное значение.

    Нереверсивная схема
    Нереверсивнпя схема подключения трехфазного асинхронного двигателя через магнитный пускатель

    Нереверсивная схема подключения трехфазного асинхронного электродвигателя к трехфазной сети переменного электрического тока через магнитный пускательL1, L2, L3 - контакты для подключения к сети трехфазного переменного тока, QF1 - автоматический выключатель, SB1 - кнопка остановки, SB2 - кнопка пуска, KM1 - магнитный пускатель, KK1 - тепловое реле, HL1 - сигнальная лампа, M - трехфазный асинхронный двигатель

    Реверсивная схема
    Реверсивная схема подключения трехфазного асинхронного двигателя через магнитные пускатели

    Реверсивная схема подключения трехфазного асинхронного электродвигателя к трехфазной сети переменного электрического тока через магнитные пускателиL1, L2, L3 - контакты для подключения к сети трехфазного переменного тока, QF1 - автоматический выключатель, KM1, KM2 - магнитные пускатели, KK1 - тепловое реле, Mм - трехфазный асинхронный двигатель, SB1 - кнопка остановки, SB2 - кнопка пуска "вперед", SB3 - кнопка пуска "назад" (реверс), HL1, HL2 - сигнальные лампы

    Частотное управление асинхронным электродвигателем

    Для регулирования скорости вращения и момента асинхронного двигателя используют частотный преобразователь. Принцип действия частотного преобразователя основан на изменении частоты и напряжения переменного тока.

    Функциональная схема частотно-регулируемого привода

      В зависимости от функционала частотные преобразователи реализуют следующие методы регулирования асинхронным электродвигателем:
    • скалярное управление;
    • векторное управление.

    Скалярное управление является простым и дешевым в реализации, но имеет следующие недостатки - медленный отклик на изменение нагрузки и небольшой диапазон регулирования. Поэтому скалярное управление обычно используется в задачах, где нагрузка либо постоянна, либо изменяется по известному закону (например, управление вентиляторами).

    Скалярное управление асинхронным двигателем с короткозамкнутым ротором с датчиком скорости

    Скалярное управление асинхронным двигателем с датчиком скорости

    Векторное управление используется в задачах, где требуется независимо управлять скоростью и моментом электродвигателя (например, лифт), что, в частности, позволяет поддерживать постоянную скорость вращения при изменяющемся моменте нагрузки. При этом векторное управление является самым эффективным управлением с точки зрения КПД и увеличения времени работы электродвигателя.

    Среди векторных методов управления асинхронными электродвигателями наиболее широкое применение получили: полеориентированное управление и прямое управление моментом.

    Полеориентированное управления трехфазным асинхронным электродвигателем по датчику положения

    Полеориентированное управления асинхронным электродвигателем по датчику положения ротора

    Полеориентированное управление позволяет плавно и точно управлять параметрами движения (скоростью и моментом), но при этом для его реализации требуется информация о направлениии вектора потокосцепления ротора двигателя.

      По способу получения информации о положении потокосцепления ротора электродвигателя выделяют:
    • полеориентированное управление по датчику;
    • полеориентированное управление без датчика: положение потокосцепления ротора вычисляется математически на основе той информации, которая имеется в частотном преобразователе (напряжение питания, напряжения и токи статора, сопротивление и индуктивность обмоток статора и ротора, количество пар полюсов двигателя).
    Полеориентированное управления трехфазным асинхронным электродвигателем без датчика положения ротора

    Полеориентированное управления асинхронным электродвигателем без датчика положения ротора

    Прямое управление моментом имеет простую схему и высокую динамику работы, но при этом высокие пульсации момента и тока.

    agregat.me

    Подключение асинхронного электродвигателя по схеме звезда треугольник » Портал инженера

    Асинхронный электродвигатель  самое простое устройство, которое превращает электрическую энергию в механическую работу. Но как известно при прямом запуске от сети он потребляет кратковременно большой ток от 10 до 20 крат от номинала. Это создает проблемы при частых пусках или при запусках больших мощностей. Один из способов уменьшить пусковой ток это включение по схеме звезда треугольник.  Подключение можно сделать в том случае, если двигатель рассчитан на данное подключение.Это можно определить по коробке подключения – там должно быть выведено 6 концов. Так как указано на рисунке ниже Или если открыть коробку подключения не представляется возможным, то данную информацию можно получить с шильдика электродвигателя.Как видно что при напряжении 690В(соединение звезда) номинальный ток меньше чем соединении треугольником (напряжение 400В). Поэтому чтобы запустить двигатель нам нужно сначала запустить его в режиме «звезда»  сделать выдержку времени несколько секунд (в зависимости от механизма) и затем переключить в режим «Треугольник Рассмотрим как это реализуется на практике. Приведенная ниже схема это типовая схема подключения звезда треугольник. Рассмотрим ее работу детально. Силовая часть состоит их 3-х контакторов и теплового реле. Расмотрим работу схемы управления подробнее. При нажатии кнопки "Старт"(S2) подается питание на катушку управления контактора К1, контактора К3 и реле выдержки времени К4. Двигатель запускается в схеме "звезда". При срабатывании реле выдержки времени К4 происходит отключение контактора К2 и одновременно включение контактора К3. Обмотки двигателя соединяются в схему "треугольник". Для того чтобы остановить двигадель достаточно нажать кнопку "Стоп"(S1). Контакты К2.2 и К3.2 препятствуют одновременному включению контакторов К2 и К3 соотвественно. Источник: https://chastotnik.com.ua Обсудить на форуме

    ingeneryi.info


    Каталог товаров
      .