Схема переключения электродвигателя со звезды на треугольник: Переключение звезда треугольник, схема пуска двигателя

Содержание

Подключение асинхронного двигателя звезда-треугольник

Содержание

  • 1 Чем отличаются схемы подключения обмоток «звездой» и «треугольником»
  • 2 Формулы, определяющие напряжение, ток и мощность
  • 3 Как правильно выбрать схему
  • 4 Переключение «звезда-треугольник» для обеспечения плавного пуска
  • 5 Переключение «звезда-треугольник»: как работает схема
    • 5.1 Силовая схема
    • 5.2 Управляющая схема
    • 5.3 Временные диаграммы
  • 6 Заключение

Как в асинхронных трехфазных двигателях решают проблему высоких пусковых токов. Как на практике реализуется схема звезда-треугольник. Ограничения на использование разных схем подключения обмоток асинхронных двигателей.

Согласно имеющейся статистике, около 95% промышленного оборудования работает с приводом от асинхронных электромоторов, причем их мощность намного больше, чем у двигателей, используемых в бытовых приборах. Особенностью работы таких двигателей является повышенный пусковой ток, превышающий номинал в несколько раз.

Это – вынужденная мера, поскольку вал двигателя, будучи в состоянии покоя, требует больших усилий для того, чтобы начать вращаться. А когда он выходит на рабочие обороты, начинает работать сила инерции, и для поддержания вращения с одинаковой скоростью требуется меньше затрат энергии, в нашем случае – электрической.

С другой стороны, повышенные значения стартового тока не есть хорошо, причем с разных точек зрения. Во-первых, при включении такого электродвигателя происходит скачок в сети: из-за повышенных пусковых токов происходит «просадка» напряжения, из-за чего могут пострадать другие потребители электроэнергии. Самый показательный пример – мигание лампочки при работе даже относительно маломощного сварочного аппарата. Все мы знаем, чем чреваты скачки напряжения, и промышленное оборудование в этом плане столь же уязвимо, как и бытовые приборы.

Но и для самого электромотора повышенные стартовые токи – причина более быстрого износа двигателя. Кроме того, это приводит к кратковременному перегреву обмоток, что со временем может вылиться в пробой изолятора и короткое замыкание. Другими словами, двигатель рано или поздно сгорит, если ничего не предпринимать.

Придумано немало способов решения этой проблемы, но одним из самых простых в реализации считается применение комбинированной схемы «звезда-треугольник», которая позволяет использовать работу электродвигателя с уменьшенными пусковыми токами при раскрутке и другую схемную конструкцию – при выходе частоты вращения вала двигателя в номинал.

Чем отличаются схемы подключения обмоток «звездой» и «треугольником»

В электротехнике обе схемы используются весьма активно, и отнюдь не только для подключения обмоток электродвигателей – если имеется нагрузка, то часто она подключается звездой или треугольником. Взять, к примеру, тэны промышленных и бытовых электрокотлов. Но поскольку мы рассматриваем их в разрезе работы трёхфазного асинхронного мотора, то в дальнейшем будем говорить об этих схемах исключительно в разрезе подключения обмоток статора, который и является источником электродвижущей силы, заставляя вращаться ротор.

На этом рисунке показано, как три фазы промышленной сети подключаются к обмоткам статора, но из него не совсем ясно, почему одна схемная реализация называется звездой, а другая – треугольником.

А вот здесь всё становится более-менее понятно – это тот же рисунок, но сделанный с другого ракурса. Как видим, в «звезде» нагрузка (или обмотка, как в нашем случае) каждой из трёх фаз сходится в единой точке, которая называется нейтральной. Нейтральной потому, что к ней обычно подводится нулевой (нейтральный) провод. На верхнем рисунке он синего цвета, а внизу для простоты не показан.

Что касается «треугольника», то здесь оба вывода каждой обмотки подключены к разным фазам, но не абы как, а в определённом порядке: к началу первой обмотки подключается фаза А, к концу – фаза В, к началу второй обмотки подключается фаза В, к концу – С, и так далее. Если перепутать концы обмоток в одной из обмоток – двигатель работать не будет.

Но в чём заключается практическое различие между этими двумя схемами? В схеме «звезда» перегорание одной из обмоток не скажется на работоспособности двух оставшихся. Но если перегорит ещё одна, третья работать уже не будет. При использовании «треугольника» перегорание двух обмоток не критично, поскольку здесь нулевой провод не задействован. А в звезде нулевой провод, как мы уже знаем, подключен к нейтральной точке – это необходимо для обеспечения выравнивания рабочих токов фаз, если электрические характеристики обмоток не будут равными (в том же примере с электрокотлом, если тэны одного номинала подключены по-разному – один параллельно, а два последовательно). Если сгорит ноль, возникнет перекос фаз, поскольку напряжения уже выравниваться не будут.

Но в трёхфазном асинхронном электромоторе обмотки в большинстве случаев имеют одинаковые характеристики, поэтому ноль в нейтральной точке подключают не всегда.

Формулы, определяющие напряжение, ток и мощность

В любой трехфазной электрической схеме различают два типа напряжения – линейное (измеряется между фазами) и фазное (измеряется между фазой и нулём). При этом независимо от номинала линейного напряжения для схемы звезда фазное будет в √3 раза меньше, то есть между этими двумя видами напряжения существует линейная зависимость:

Uлин=1. 73*Uфаз

При этом фазные и линейный токи будут равны между собой:

Iлин=Iфаз

Из этого следует, что если линейное напряжение равно 380 В, то фазное будет меньшим в 1.73 раза, и это 220 В.

При соединении «треугольником» всё наоборот: фазное и линейное напряжения идентичны, а токи отличаются с тем же поправочным коэффициентом:

Iлин=1.73*Iфаз

При этом формулы расчёта мощности будут одинаковыми независимо от типа подключения:

Sполная=3*Sфаз=3*(Uлин/√3)*I =√3*Uлин*I;

Pактивная=√3* Uлин*I*cosφ;

Qреактивная=√3* Uлин*I*sin φ.

Из этого следует, что мощность электродвигателя, обмотки которого подключены по звезде, будет отличаться от такого же мотора с подключением треугольником в три раза.

Пускай у нас имеется трехфазный асинхронный двигатель, работающий от сети 380/220 В. Тогда, если его обмотки по схеме «звезда» рассчитаны на Uлин=660 В, то при перекоммутации в треугольник получим 380 В, что подходит для нашей сети.

А что же с мощностью? Та же пропорция! Скажем, если при подключении треугольником в трехфазную сеть 380 В величина тока на статоре равнялась 5 А, то полная мощность обмотки будет равна:

Sполная=380*√3*5=3287 ВА

Если перекоммутировать треугольник в звезду, полная мощность статора уменьшится втрое, поскольку величина напряжения на обмотках снизится в √3 раза (c 380 до 220 вольт), и ток – во столько же раз увеличится.

Тогда Sполная=380*√3*(5/3)=1070 ВА

Рассмотрим другой пример. Пускай у нас имеется тот же трехфазный пятиамперный мотор, обмотки статора которого подключены звездой, но к сети 380 В. Тогда при перекоммутации треугольником он сможет работать от 220 В. Но что будет, если в последнем случае подключить обмотки к 380 вольтам?

Тогда полная мощность двигателя вырастет втрое, поскольку в √3 раз выросло напряжение на обмотках статора, как и сила тока:

Sполная=380*√3*5*(3)=9861 ВА

На практике это означает, что электродвигатель при таком повороте событий просто сгорит. То есть нужно использовать тот вид подключения, при котором напряжение будет соответствовать номинальному.

Как правильно выбрать схему

Поскольку асинхронные двигатели в подавляющем большинстве рассчитаны на работу в сети 380/220 В, давайте рассмотрим, какую именно схему можно использовать для коммутации обмоток статора.

Трёхфазные электромоторы промышленного изготовления, как правило, оснащаются клеммной коробкой, позволяющей изменять один вид подключения на другой. То есть клеммник имеет 6 клемм и три перемычки, и, меняя расположение этих перемычек, можно быстро и просто поменять тип подключения обмоток.

Но как определить какой именно тип подключения будет правильным? Здесь всё просто: вы можете использовать как звезду, так и треугольник, главное, чтобы параметры питающей сети соответствовали характеристикам двигателя. Обычно все нужные данные указываются на шильдике, нужно только уметь их интерпретировать.

Типичный случай – маркировка следующего вида:

Δ/Y 220/380

Такая запись означает, что если линейное напряжение равно 220 В, нужно использовать схему подключения обмоток статора двигателя треугольником, если это сеть 380 В – нужно коммутировать их звездой.

В приведённой таблице приведены все допустимые способы подключения:

Напряжение электромотора, В

Напряжение сети, В

220/127380/220660/380
220/127Y (звезда)
380/220Δ (треугольник)Y (звезда)
660/380Δ (треугольник)Y (звезда)

Переключение «звезда-треугольник» для обеспечения плавного пуска

Итак, мы довольно детально разобрались с особенностями подключения обмоток статора в асинхронных электродвигателях и выяснили, что, во-первых, не все способы подключения допустимо использовать, учитывая номиналы напряжения сети и самого электромотора, и, во-вторых, что эти схемы отличаются своими выходными характеристиками при неизменных входных параметрах.

И ещё мы знаем, что для пуска асинхронных моторов требуются токи повышенного номинала. Использование любой из этих двух типов подключения связано с очевидными минусами: если ток будет достаточным для раскрутки двигателя, то при выходе на рабочие частоты вращения он уже будет избыточным, и тогда мотор будет перегреваться и рано или поздно сгорит. При использовании альтернативного типа подключения ток будет меньше, что хорошо для нормальной работы, но для пуска его может не хватать, то есть электродвигатель может просто не запуститься.

Дилемма решается простым и очевидным способом: использованием разного типа подключения на старте и в процессе выхода на рабочие частоты вращения ротора. Главное, чтобы на шильдике присутствовало обозначение треугольника, и номинал напряжения мотора соответствовал напряжению сети.

На практике это означает, что в отечественных трехфазных сетях можно использовать асинхронные электромоторы с номиналом напряжения 380/660 для подключения «Δ/Y» соответственно.

Когда мотор включается, обмотки статора скоммутированы звездой и рассчитаны на потребление 380 в, хотя номинал равен 660 вольт. Когда вал ротора раскрутится, автоматика переключает схему на треугольник, и дальше двигатель работает уже на номинальном напряжении. Переключение обычно производится по таймеру, выставленному на определённый интервал времени с момента включения. Если требуется более точное переключение, используют датчики оборотов вала или силы тока, но такое решение удорожает двигатель.

В самом простом случае может использоваться перекидной рубильник, но чаще – дополнительные коннекторы. Они усложняют электросхему, но зато обладают рядом достоинств:

  • снижают нагрузку на сеть, уменьшая вероятность сбоев в работе другого электрооборудования из-за просадки напряжения;
  • обеспечивают более мягкий старт электромотора, продлевая его ресурс.

Разумеется, пусковой момент при этом снижается, но это меньшее из двух зол. Можно смириться и с необходимостью использования двух дополнительных трехжильных кабелей, соединяющих контакторы с клеммами электродвигателя.

Переключение «звезда-треугольник»: как работает схема

Рассмотрим алгоритм работы асинхронного мотора с использованием коммутации:

  • 380 В подаётся на начало обмоток (U1/W1/V1), их коны соединены в одной точке, то есть имеем звезду с напряжением 380 вольт вместо 660. Но нужно понимать, что 380 В, указываемые на обмотках – это номинал напряжения, действующее значение будет равно 220 В;
  • в этом режиме мотор работает некоторое время (без нагрузки и при малой мощности – порядка 5 секунд, с нагрузкой – до нескольких минут), которое настраивается через таймер;
  • как только таймер подаст сигнал, питающее напряжение вообще отключается, но уже по второму таймеру, то есть вал на протяжении короткого интервала времени (0.05-0.5 сек, или несколько полных периодов напряжения) вращается по инерции. Такой временной пропуск необходим для обеспечения безопасности – перед включением «треугольного» контактора «звёздный» должен успеть выключиться. А выключение коннектора отнюдь не мгновенное, из-за намагничивания оно как раз и составляет эти миллисекунды;
  • после срабатывания второго таймера коннектор включает схему треугольником и двигатель начинает работать в номинальном режиме, то есть на крейсерской стабильной скорости.

Второй таймер может и не использоваться, но тогда необходимо каким-либо другим способом обеспечить блокировку перекоммутации на треугольник, пока не будет выключена звездная схема.

Рассмотрим, как конкретно можно реализовать описанный выше алгоритм. Он будет состоять из двух схем, которые мы назовем силовой и управляющей.

Силовая схема

Включение двигателя и переключение схем можно реализовать по-разному. Например, с использованием так называемого софтстартера, или мягкого пускателя (общее название – устройства плавного пуска). Иногда используют преобразователь частоты, но мы рассмотрим применение контакторов, которых нам потребуется три:

  • КМ1 – общий контактор, задача которого – подача напряжения на выводы обмоток U1/V1/W1 на все время работы электромотора;
  • КМ2 – контактор, коммутирующий схему в звезду, то есть соединяющий выводы обмоток в одну точку, пока двигатель не наберет обороты;
  • КМ3 – контактор для коммутации схемы в «треугольник», переключает мотор на работу в нормальном режиме.

Общий контактор на этой и других схемах обозначен синим цветом.

Зелёный – цвет контактора КМ2 для переключения в звезду.

Красным обозначен контактор КМ3 для треугольника.

Управляющая схема

Работу этих контакторов можно организовать несколькими способами:

  • задействовать три обычных тумблера. Дёшево и сердито, но неудобно;
  • использовать полуавтоматический переключатель типа 0–Y–Δ, они продаются в готовом виде. Но можно собрать их и своими руками, используя переключатель кулачкового или галетного типа;
  • схема с таймером с применением реле;
  • использование специализированного реле;
  • включение в схему контроллера типа PLC.

При желании слаботочную часть схемы можно отделить от силовой посредством гальванической развязки, что, конечно, усложнит схему, так как нужно будет использовать трансформатор или блок питания на 24 В, а если есть возможность, то используют 12-вольтный аккумулятор.

Мы пойдём по простому пути:

Здесь в схему добавляется элемент КА1, который является временным реле, обеспечивающим задержку при перекоммутации. Какой тип реле использовать, особого значения не имеет – оно может быть пневматическим или полностью электронным. Важно только, чтобы контакты релюшки замыкались через некоторое время после того, как на КА1 будет подано питание.

Что касается запуска двигателя, то здесь тоже могут быть разные варианты. Можно, например, использовать тумблер или кнопку, а можно реализовать схему классического вида с применением самоподхвата.

Подобная схема имеет один, но существенный недостаток: имеется не нулевая вероятность конфликта между звездным и треугольным контакторами. При малейшей неточности в подборе компонент контакты начнут подгорать, что часто приводит к отключению вводного автомата.

Чтобы свести на нет аварийность, необходимо обеспечить наличие блокировки, можно электрической, но рекомендуется механическая.

Если использовать специализированное временное реле, то оно содержит два реле времени, причём основанными на разном принципе функционирования, а чтобы гарантировать нужную паузу между переключениями, эти два реле синхронизируют.

Временные диаграммы

Рассмотрим временную диаграмму работы переключателя «звезда-треугольник» применительно к нашей схемной реализации.

Здесь более-менее все понятно, но нужно ещё раз уточнить важный нюанс: между областями, соответствующими срабатыванию КМ3 (то есть между зеленой и красной полосками) должен быть ненулевой зазор.

Если его не обеспечить, тогда может возникнуть ситуация, когда две области пересекаются. Например, при включении в схему обратновключенного диода время включения может быть меньше времени выключения в 10 раз.

Заключение

Итак, мы уже разобрались, что на трехфазном асинхронном электромоторе подключение обмоток треугольником и звездой будут различаться мощностью, но неправильная перекоммутация приведет к тому, что мотор просто сгорит. Строго говоря, между этими схемами нет никакой принципиальной разницы, они обе рабочие.

Аргумент в пользу заезды как соединения, при котором можно получить ток меньшего номинала, не совсем состоятельны. Ведь если взять два трехфазных двигателя одинаковой мощности, обмотки одного из которых подключены треугольником, а другого – звездой, то ток у них будет одинаковым. Важно понимать, что электромотор нельзя переключать, не понимая, для чего это нужно делать и как это делать правильно, иначе последствия могут быть печальными.

Выбор схемы нужно согласовывать с характеристиками сети и параметрами самой силовой установки.

Подбор контактора по току в схеме «звезда — треугольник».

Общая часть

При запуске электродвигатель испытывает крутящий момент нагрузки и инерцию рабочей машины. Для более плавного пуска электродвигателя следует обеспечить пусковой ток в силовой цепи в пределах рабочего диапазона.  Этот вид запуска понижает пусковые токи до необходимой величины. Также и происходит снижение крутящего момента разгоняемого двигателя.

 

Технические характеристики

При запуске:

  • бросок пускового тока снижен до одной трети от его величины при обычном пуске,
  • крутящий момент электродвигателя снижен до одной трети или даже меньше от его величины при обычном пуске.

При пуске переключением со «звезды» на «треугольник» в общем случае наблюдаются переходные токи.

Область применения

В начальный момент процесса запуска (соединение типа «звезда») до момента переключения на «треугольник» крутящий момент сопротивления рабочей машины, независимо от скорости вращения, должен оставаться меньшим, чем крутящий момент электродвигателя, собранного в «звезду».

Подобный режим идеально подходит для двигателей, пускающихся в отсутствии нагрузки:

  • механические станки,
  • центробежные компрессоры,
  • деревообрабатывающие станки.

Чтобы предотвратить большой бросок тока в момент переключения со «звезды» на «треугольник», электродвигатель должен развить частоту вращения 80-85% от номинальной.

Указание по мерам безопасности

Номинальное рабочее напряжение обмоток электродвигателя при соединении их в «треугольник» должно быть равным напряжению силовой цепи.

Пример:

Электродвигатель для сети 400 В, пускаемый переключением со «звезды» на «треугольник», должен быть рассчитан на напряжение 400 В при соединении его обмоток в «треугольник». Обычно это обозначается как «электродвигатель на 400/690 В». Обмотки электродвигателя должны иметь 6 отдельных выводов.

Порядок работы

  • 1-й этап — подключение «звезды»

Нажмите кнопку «Пуск» цепи управления для замыкания контактора «звезды» KM2. После чего замыкается линейный контактор KM1, и электродвигатель запускается. При этом начинается отсчёт заданного времени пуска (обычно от 6 до 10 с).

  • 2-й этап — переключение со «звезды» на «треугольник»

По истечении заданного времени размыкается контактор звезды KM2.

  • 3-й этап — подключение «треугольника»

Между моментами размыкания контактора «звезды» и замыкания контактора «треугольника», при помощи реле времени типа TE5S, задаётся время переключения (задержки) в 50 мс. Этим достигается отсутствие перекрытия цепей «звезды» и «треугольника».

Примечание

При использовании в качестве контакторов «треугольника» и «звезды» контакторов «AF…» или контакторов «A…» в качестве контактора «звезды», а «AF…» контактора «треугольника», нет необходимости применять реле времени, задающего время переключения (задержки), т.е. TE5S или аналогичное. Достаточно реле времени, задающего длительность подключения «звезды» при пуске. Необходимая электрическая блокировка между контакторами «звезды» и «треугольника» осуществляется при помощи устройства VE 5 или вспомогательными контактами.

Однако в этом случае, при переключении контактора в разомкнутое состояние (перерыв в подаче напряжения может достигать 95 мс), то необходимо проверить допустимость подобного режима, т.е. уменьшения скорости вращения электродвигателя при пуске, для практических условий.

Пускатель звезда-треугольник — работа, схема, преимущества, недостатки

В настоящее время в промышленности наиболее распространенным типом электродвигателя является асинхронный двигатель. Если двигатель запускается методом прямого подключения, он запускается с приложением максимального напряжения, а пусковой ток будет в 7-10 раз больше номинального тока.

Таким образом, большие асинхронные двигатели не запускаются напрямую, если запуск означает повреждение обмотки и других деталей. Мотору нужно что-то еще, чтобы преодолеть эту проблему.

Пускатель звезда-треугольник необходим для запуска больших двигателей индикации.

Соглашение

  • Star Delta Starter
  • Компоненты Star Delta Starter
    • Миниатюрный разрыв схемы (MCB)
    • Контактор
    • Timer
    • Push Buttons
    • измерения измерения
    • 2
    • Daving Dearement Devices
  • .
  • Схема пускателя звезда-треугольник
    • Цепь питания
    • Цепь управления
  • Работа пускателя «звезда-треугольник»
  • Преимущества пускателя «звезда-треугольник»
  • Недостатки пускателя «звезда-треугольник»

Пускатель «звезда-треугольник» крутящий момент и пусковой ток.

Конструкция пускателя «звезда-треугольник» обычно состоит из 3 контакторов, автоматического выключателя и таймера для установки времени переключения «звезда-треугольник».

В пускателе «звезда-треугольник» во время нормальной работы двигатель должен подключаться только по схеме «треугольник».

В пускателе звезда-треугольник получаемый пусковой ток составляет всего около 33 % от пускового тока при прямом пуске в режиме онлайн, а пусковой момент снижается примерно до 33% крутящего момента, доступного при прямом пуске в режиме онлайн.

Компоненты пускателя «звезда-треугольник»

Ниже приведен список компонентов и устройств, используемых для проводки и схемы пускателя двигателя по схеме «звезда-треугольник».

Миниатюрный автоматический выключатель (MCB)

MCB представляет собой электромеханическое устройство, автоматически отключающее цепь при возникновении какой-либо неисправности.

MCB используется для обнаружения перегрузки по току, вызванной коротким замыканием или любой неисправностью. Это автоматический электрический выключатель, который используется для предотвращения повреждения электрической цепи в результате избыточного тока.

MCB был разработан для таких случаев, чтобы срабатывать при перегрузке или коротком замыкании, чтобы предотвратить электрические неисправности и отказ оборудования.

Контактор

Контактор — это электрическое устройство, используемое для замыкания или размыкания контакта с нагрузкой, проще говоря, для включения или выключения электрической цепи. Он считается особым типом реле.

Обычно они находятся в разомкнутом контакте, когда под напряжением они обеспечивают рабочую мощность для нагрузки. Они предназначены для передачи больших токов, и основной частью контактора является катушка, которая находится внутри контактора. Катушку также называют электромагнитом.

Таймер

Простой таймер задержки включения, который используется в пускателе звезда-треугольник, практически называется таймером звезда-треугольник. Таймер звезда-треугольник состоит из двух контактов, одного нормально разомкнутого (НО) контакта и нормально замкнутого (НЗ) контакта и подключения к источнику питания.

Таймер используется здесь для автоматического переключения соединения со звезды на треугольник. Аналоговый и цифровой оба типа таймера могут использоваться для пускателя по схеме звезда-треугольник.

Диапазон времени должен быть установлен пользователем вручную, в зависимости от мощности двигателя значения времени могут различаться.

Кнопки

В этом пускателе обычно используются две кнопки.

Это были:

NO (нормально открытый) Кнопка:

Это тип кнопки, который в основном используется для запуска цепи. В состоянии по умолчанию он не контактирует с электрической цепью.

При нажатии кнопки ее состояние меняется на замкнутый контакт и активируется электрическая цепь.

НЗ (нормально замкнутый) Кнопка:

Это тип кнопки, которая в основном используется для остановки цепи. В состоянии по умолчанию он находится в контакте с электрической цепью.

При нажатии на кнопку ее состояние меняется на разомкнутый контакт и отключает электрическую цепь.

Измерительные устройства

Эти устройства в основном используются для проверки правильности введенных данных и правильности получения выходных данных, а также необходимых для выполнения требований.

В основном мы хотим измерить два основных фактора: ток и напряжение. Амперметр используется для измерения силы тока, а вольтметр – для измерения напряжения.

Амперметр подключен последовательно, тогда как вольтметр подключен параллельно для получения правильного значения.

Современные мультиметры или клещи-мультиметры, в которых используются устройства для измерения тока и напряжения

Принцип действия пускателя звезда-треугольник

обмотка.

В типе «звезда-треугольник» все обмотки подключаются к сети с помощью автоматического переключателя/контакта.

При эксплуатации обмотка двигателя была соединена в треугольник, значит напряжение обмотки должно быть равно фазному напряжению трехфазной системы.

При соединении звездой напряжение обмотки уменьшается в 0,58 раза.

Например, если номинальное напряжение 400 В, значит, при соединении треугольником напряжение будет таким же 400. Таким образом, пусковой момент и пусковой ток при соединении звездой уменьшаются примерно на 1/3 от соединения треугольником.

Принципиальная схема пускателя звезда-треугольник

Пусковая схема звезда-треугольник состоит из двух частей.

Это

  1. Цепь питания
  2. Цепь управления

Цепь питания

Цепь управления

Работа пускателя звезда-треугольник

Подается питание и включается MCB.

Затем нажимается кнопка пуска, включается главный контактор, контактор звезды и таймер.

Поскольку главный контактор заблокирован, даже после отпускания кнопки также подается питание на звездный и главный контактор.

Для цепи управления подается однофазное питание, питание проходит через контактор при управлении кнопками «Пуск» и «Стоп».

На главный контактор подается питание из-за защелки, а также на контактор «Звезда» подается питание от замкнутых контактов Таймера и контактора «треугольник».

Теперь двигатель работает в режиме звезды.

При этом таймер начинает отсчет установленного на нем времени после того, как фактическое время сравняется с заданным временем.

Вспомогательный контакт изменяется, что прерывает соединение звездой, заставляет двигатель работать в режиме треугольника.

Ступень главного контактора будет такой же, как и раньше.

Теперь двигатель работает с треугольником и главным контактором, что означает, что двигатель начинает вращаться с полной мощностью.

Здесь напряжение измеряется мультиметром.

Ток измеряется клещами.

В режиме звезды 1/3 тока снижается по сравнению с номинальным током.

В режиме Delta достигается максимальный ток.

Преимущества пускателя звезда-треугольник

  1. Пусковой ток и крутящий момент снижены на 33%
  2. Хорошо работает в условиях малой нагрузки, в том числе
  3. Не будет выделяться тепло
  4. Меньше механического напряжения.
  5. Автоматическое переключение сокращает ручной труд.
  6. Меньшее механическое напряжение

Недостатки пускателя звезда-треугольник

  1. Во время запуска под нагрузкой может возникнуть пик передачи.
  2. Время пуска велико по сравнению со пускателем DOL.
  3. Плавный останов невозможен.
  4. Больше компонентов по сравнению со стартером DOL.
  5. Проводка сложнее, чем у пускателя DOL.
  6. Пусковой крутящий момент снижен, но его нельзя отрегулировать.
  7. Дорого стоит.

Если вам понравилась эта статья, подпишитесь на наш канал YouTube для видеоуроков по КИПиА, электрике, ПЛК и SCADA.

Вы также можете подписаться на нас в Facebook и Twitter, чтобы получать ежедневные обновления.

Читать дальше:

Будьте первым, кто получит эксклюзивный контент прямо на вашу электронную почту.

Обещаем не спамить. Вы можете отписаться в любое время.

Недопустимый адрес электронной почты

Star Delta Motor. Запуск двигателя.
STAR во время стартовой последовательности. Когда двигатель разогнался до близкого к нормальному
рабочая скорость, двигатель подключен в треугольник.

Изменение внешнего соединения двигателя со звезды на треугольник обычно достигается тем, что
обычно называют пускателем звезда-треугольник. Этот стартер представляет собой просто ряд
контакторы (переключатели), которые соединяют разные выводы вместе, чтобы сформировать требуемый переход от звезды к треугольнику.

При пуске двигателя по схеме звезда фазное напряжение двигателя уменьшается на
коэффициент √3.
Снижение пускового тока, пусковой мощности и пусковых крутящих моментов при пониженном напряжении может
каждый из них рассчитывается с помощью уравнения 1 (при этом игнорируются другие факторы, такие как насыщенность и т.  д.):  

Эти пускатели обычно настроены на определенную последовательность пуска, в основном с использованием настройки времени для переключения
между Звездой и Дельтой. Эти пускатели могут иметь расширенную защиту, контролирующую
время, ток, напряжение, скорость двигателя и т. д. 

Например, если напряжение питания составляет 380 Вольт. Во время пуска, при котором двигатель соединен в звезду, на каждую катушку подается напряжение 380/1,73, что составляет 220 Вольт. В результате снижения подаваемого напряжения пусковой момент также уменьшится до 67%.

Цепь управления

Из приведенной выше схемы управления при нажатии переключателя S1 будет полный путь электрического тока, который будет течь от L1 к L2, вызывая активацию следующих катушек: 

Чтение: Управление электродвигателем на промышленных предприятиях

  • K1 — линейный или главный контактор
  • K2 — контактор звезды
  • K4 — таймер (установленный на 3-5 секунд)

По истечении заданного времени произойдет переход контакта таймера.