интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Как сделать инверторный сварочный аппарат своими руками. Схема инверторного сварочного аппарата


Сварочный аппарат инверторный своими руками: принцип работы

В сварочных работах применяют специально приспособленные для определенных целей устройства. Схемы отдельных аппаратов разительно отличаются по строению. Среди самых практичных и широко распространенных, можно выделить инверторную схему. Аппарат, собранный по данной схеме, плавно и точно настраивается, компактен, для мастеров, которые работают на выезде, он просто незаменим.

Схема устройства сварочного инвертора

Схема устройства сварочного инвертора.

Схема инверторного аппарата одна из самых простых, все необходимые элементы плат и транзисторы без труда можно найти в магазинах радиодеталей, а схемы сборки — у мастеров. Задача собрать такой сварочный аппарат своими руками вполне по силам людям, умеющим работать с паяльником.

Принцип работы инверторного сварочного аппарата

Сам по себе данный прибор является подобием мощного блока питания, аналогичного импульсным блокам типа АТ и АТХ, которые устанавливают в персональных компьютерах. Порядок изменений исходных параметров электрического тока в этих двух устройствах идентичен. В инверторе электрическая энергия проходит через ряд преобразований:

  1. Переменное напряжение бытовой сети преобразуется в постоянное.
  2. Постоянный ток преобразуется в переменный с высокой частотой.
  3. Значение напряжения понижается.
  4. Ток со сниженным вольтажом выпрямляется с сохранением заданной частоты.

Все перечисленные преобразования объясняются необходимостью уменьшить вес и габариты силовых трансформаторов сварочных аппаратов.

Схема работы сварочного инвертора

Схема работы сварочного инвертора.

Принцип работы старых аппаратов сводился к снижению напряжения от питающей сети и росту значения силы тока на вторичной обмотке до нескольких десятков, а то и сотни ампер — значения необходимого для дуговой сварки. Чтобы обеспечить нужное соотношение по снижению вольтажа и росту величины силы тока, у вторичной обмотки задавалось меньшее число витков и большее сечение провода. Потому старые сварочные трансформаторы были с большими габаритами и массой. Производство трансформаторной обмотки требовало крупных затрат медного провода, из-за чего стоили сварочные аппараты совсем не дешево.

Поправить положение позволили инверторные схемы. Посредством увеличения частоты тока на рабочей обмотке до 60-80 кГц и выше получилось уменьшить размеры и вес всей конструкции. За счет 4-кратного увеличения рабочей частоты преобразования габариты аппарата уменьшились вдвое. А в нашем случае речь идет о тысячекратном увеличении частоты.

Столь высокие значения частоты переменного тока достигаются установленными в инверторной схеме транзисторами переключения, которые сообщаются между собой с частотой 60-80 кГц. Ток к транзисторам приходит постоянный, от выпрямителя. Переменное напряжение выпрямляется мостовой схемой из диодов и выравнивается конденсаторами. На выход из выпрямителя и конденсатора поступает постоянное напряжение 220 В. Такова первая ступень схемы.

Высокочастотные транзисторы инверторной цепи передают переменный высокочастотный ток на понижающий трансформатор. Так как рабочая частота уже в 1000 раз ниже частоты питающей сети, трансформатор представляет собой очень компактную катушку.

Вернуться к оглавлению

Компоненты схемы сварочного аппарата

Электрическая схема сварочного инвертора

Электрическая схема сварочного инвертора.

Инверторная схема рассчитана на значение тока питающей сети до 32 А и напряжение 220-230 В. Значение тока на выходе из преобразователя достигает 250 А. Такая величина гарантирует создание прочного шва при сварке электродом на расстоянии до 1 см. Блок питания инверторного аппарата включает такие компоненты:

  1. Трансформатор с основанием из ферритного сердечника 7х7 или 8х8.
  2. Первичная обмотка, насчитывающая 100 колец из провода диаметром 0,3 мм.
  3. Внутренний заход вторичной обмотки на 15 оборотов проводом толщиной 1 мм.
  4. Средний заход вторичной обмоткой на то же количество витков проводом меньшей толщины (0,2 мм).
  5. Наружный заход вторичной обмотки на 20 оборотов провода с толщиной 0,35 мм.

Вернуться к оглавлению

Сборка трансформатора

Схема обмотки трансформатора

Схема обмотки трансформатора.

Перед тем как навивать провода на сердечник трансформатора, его оборачивают медью. Ширина полос составляет 40 мм, высота ленты — 0,3 мм. Вместе с медной лентой сердечник обматывается термобумагой. Для этой цели хороша кассовая лента и любая другая тонкая и прочная бумага, которой удобно будет обтянуть сердечник. Провод круглого сечения на первичную обмотку не годится, потому что он легко перегревается. Из-за этого токи перенаправляются на внешнюю сторону обмотки, а внутренние слои остаются ненагруженными.

Вторичная обмотка укладывается в 3 слоя проводов, между которыми вставляют прокладки из фторопласта. Для этих целей не подходят стандартные провода с диаметром 0,5-0,7 мм. Из-за круглого сечения в обмотке они плохо прилегают друг к другу, оставляя зазоры, тем самым ухудшают теплообмен.

Накручивая обмотку, обращайте внимание, чтобы провод завивался без промежутков вокруг сердечника. Только так напряжение будет стабильным. Типичная схема инверторного прибора подразумевает наличие двух трансформаторов с частотой 41 кГц, но подойдут и на 55 кГц. Затем устанавливаются изолирующая прокладка и дроссель с маркировкой L2. Сбоку платы дополнительно ставят вентилятор для обдува, его электрические характеристики 0,13 А и 220 В.

Вернуться к оглавлению

Пайка инверторной платы

На составление схемы сварочного аппарата инверторного типа идут кулеры и радиаторы, которые встречаются в компьютерных блоках питания. Их можно извлечь из старой техники или обратиться в магазин радиодеталей за новыми.

Радиаторы ставятся вверху и внизу концов косого моста.

Диоды крепятся к радиаторам на предварительно заготовленную прослойку из слюды.

Кулер от компьютера

Для сборки инвертора потребуется кулер.

Когда для распределения потоков применяется мост IRG4PC50W, следует использовать термопасту вместо слюды.

Направление выводов транзисторов и диодов выставляется навстречу друг другу. В промежутке между радиаторами монтируется плата, которая соединит все участки цепи питания сварочного прибора с промежуточными элементами моста. Имейте в виду, что расчетное напряжение цепи питания 300 В. Мощности, сбрасываемые трансформатором, должны уходить в цепь, для чего на плату припаивают конденсаторы на 0,15 мкФ. Установка после трансформатора снабберов и конденсаторов гасит нежелательные перенапряжения от бросков на выходе из вторичной обмотки.

Вернуться к оглавлению

Настройка и отладка работы инвертора

Схема внутреннего устройства инвертора

Схема внутреннего устройства инвертора.

Завершив сборку, надо непременно настроить работу инверторного модуля. Подключите к ШИМ напряжение в 15 В и запитайте вентилятор. Затем через резистор R11 осуществите подключение реле К1. Все это делается для того, чтобы предотвратить скачки при подсоединении к сети 220 В. Проконтролируйте своевременное включение реле и через 10 секунд подайте рабочее питание на ШИМ. После срабатывания реле прямоугольных участков в диаграмме ШИМ не должно наблюдаться.

Затем мост подключается к источнику напряжения в 15 В. При работе вхолостую инвертор потребляет ток в пределах 100 мА. Если замер показывает допустимую величину, то схема собрана правильно. Дополнительно необходимо убедиться, что фазировка обмоток не перепутана.

На ШИМ снижается установка частоты до тех, пока на нижней части графика не вырисовывается загиб, что будет означать перенасыщение узла. Данное значение частоты делим на 2 и прибавляем к рабочей частоте платы ШИМ и непосредственно трансформатора. Схема соединена правильно в том случае, если при настройке реле выдает сигнал при 150 мА. Если световой сигнал нечеткий и слабый, то плата соединена неправильно или одна из обмоток пробивает. Убрать ненужные помехи получится, если укоротить все провода электропитания.

Вернуться к оглавлению

Проверка работоспособности устройства

Сварка инвертором

После сборки сварочного инвертора необходимо проверить его на работоспособность.

Итак, инверторный сварочный аппарат собран и готов к использованию, теперь остается удостовериться, что он работоспособен. Включите аппарат в электросеть, плавно задавайте большую силу тока и сверяйтесь с показаниями осциллографа по напряжению. Напряжение в нижней петле осциллограммы приемлемо в пределах 500 В, в условиях выброса допускается превышение до 550 В. В корректно скомпилированной схеме указанная цифра не превысит 350 В.

Когда проверяете работоспособность прибора, убедитесь, что гул от шины не нарастает при увеличении нагрузки. Чтобы подать максимальный ток, фоновый шум должен оставаться неизменным.

Затем приступаем к самой сварке. После запуска надо выждать 10 секунд и проверить температуру охладителей. На протяжении первых 20 секунд они должны оставаться холодными, в течение следующей минуты — чуть теплыми.

После этого берем 2 электрода для нужного вида сварки и на пробном материале раскраиваем шов, пока они полностью не выгорят. Закончив, контролируем температуру трансформатора: он к этому времени успеет разогреться, но не раскалиться добела. Чрезмерный нагрев будет указывать на недочеты схемы сборки.

Радиаторы успевают серьезно нагреться после непрерывной работы на 3 электродах. Поэтому понадобится дать им остыть 2 минуты. Этого достаточно, чтобы кулер понизил температуру до нормального уровня и можно было продолжить работу без потери качества.

Процесс сборки сварочного аппарата своими руками, весьма кропотливый, проявите как можно больше сосредоточенности и внимания к нему. Тщательно изучите выбранную вами схему, разберитесь с последовательностью соединения деталей в ней, сосчитайте точное число составных частей и проводов. По окончании сборки изобретение обязательно проверяется на исправность и безопасность. Организуйте сварочные работы со всеми необходимыми условиями для безопасного труда: на руках носите плотные перчатки, лицо закрывайте сварочным щитком.

moiinstrumenty.ru

Инверторный сварочный аппарат своими руками: последовательность действий

Самой важной частью приобретенного или самодельного сварочного инвертора является схема. Провод в сварочном инверторе не обматывается материалом для термоизоляции. За основу можно взять плиту из дюралюминия. К ней понадобится присоединить несколько проводов и проводников, которые будут отдавать тепло. Для обдува понадобится использовать вентилятор большой мощности (в данном случае может использоваться радиатор от автомобиля). Также будут необходимы радиаторы диодов выпрямления и дроссель. Последний элемент прижимается к конструкции через прокладочный материал для уплотнения.

Конструкция сварочного инвертора

Конструкция сварочного инвертора.

Самодельный сварочный аппарат не сможет работать без дроссельного устройства. Его можно изготовить из медных сердечников. Подобные элементы чаще всего установлены в строчных трансформаторах. Если таких приспособлений нет, можно их изготовить своими руками из деталей телевизоров или приобрести на строительном рынке. Диоды прижимаются к основанию инверторной схемы, после чего к ним подсоединяются уплотнители для изоляции и стабилизаторы напряжения.

Пример изготовления сварочного инвертора

В подобной конструкции будет использоваться нестандартный трансформатор, так как магнитный провод в нем имеет сечение 2 мм. Подобный провод не покрывается изоляционными материалами, однако можно использовать и защищенный кабель.

Пучок проводника собирается из нескольких проводков, их тоже нужно будет изолировать изолентой или полосой из фторопласта. Схему изготавливаемой конструкции для сварки можно увидеть на рис 1. Благодаря подобной вторичной обмотке лента из фторопласта будет расходоваться очень экономно, так как щель между изоляциями уже присутствует. Благодаря данному зазору можно производить охлаждение трансформатора тока. Если будет использована данная схема, то не понадобится дополнительно устанавливать какие-либо тиристоры или транзисторы.

Схема изготавливаемой конструкции для сварки

Рисунок 1. Пучок проводника из различных проводков необходимо изолировать изолентой.

Проводники надо будет развести в разные стороны, чтобы они не контачили и не вызывали сбоев в процессе работы. После этого на транзисторе нужно произвести монтаж силового моста. Он выполняется навесом. В данном случае понадобится использовать медный шнур сечением 2 мм без изоляции. Его следует залудить и обмотать обыкновенными нитками в несколько слоев. Подобный проводник имеет защиту от повреждений в процессе пайки или сварки. Для фиксации можно использовать пятки для изоляции, на которые будет переноситься нагрузка с транзисторов. Таким образом можно продлить работоспособность.

Транзисторы нужно дополнительно прижать к радиатору. Их можно закрепить при помощи использования пластинок из дюралюминия. Подобные прокладки следует привинтить с помощью винтов небольших размеров. Данные крепежные элементы удобно использовать при изготовлении маленького самодельного аппарата для сварки.

Вентилятор будет охлаждать несколько мостов, но каждый из мостов следует ограждать изоляционным слоем.

Вентиляция вторичной обмотки имеет большое значение. Если есть необходимость, то можно вывести вторичную обмотку на ферритовые цилиндры. В данном случае можно использовать и приемник питания со средними волнами, из которого энергия сможет поступать к сердечникам.

Как сделать импульсный инверторный сварочный аппарат своими руками?

Принципиальная схема инверторного устройства

Принципиальная схема инверторного устройства сварочного аппарата.

Импульсный инвертор можно сделать своими руками в домашних условиях. Следует помнить, что обмотки могут наматываться лишь на полную ширину каркаса. В таком случае трансформатор станет более устойчив к перепадам напряжения и воздействиям окружающей среды. Для того чтобы изготовить сварочный аппарат подобного типа, понадобится подготовить следующие элементы:

  • преобразователь трансформатора на 41 Гц;
  • элементы для уплотнения
  • жестянка из меди;
  • изолента;
  • чертежи инверторов.

В данном случае будет рассмотрен пример изготовления одноконтактного инвертора, который функционирует с помощью углекислого газа или аргона.

Вторичная обмотка в данном варианте наматывается в несколько слоев. На ферритный сердечник надо будет намотать дроссель. Через трансформаторное устройство нужно закрепить специальные кольца к первичной или вторичной обмотке.

Схема работы импульсного инверторного сварочного аппарата

Рисунок 2. Схема работы импульсного инверторного сварочного аппарата.

Чтобы производить охлаждение самодельного инвертора для сварки, понадобится использовать специальный компьютерный радиатор, который отлично подходит и по мощности, и по потреблению энергии. Импульсное трансформаторное приспособление наматывается полосой из меди, так как алюминиевые провода не смогут выдержать перепадов непостоянного тока.

Бесперебойная работа конструкции будет напрямую зависеть не только от величины тока, но и от толщины провода. Если будет намотана обмотка толстым слоем, то получится обратный скин-эффект, который может негативно сказаться на работе остальных бытовых конструкциях.

Вес подобного приспособления составляет приблизительно 5-10 кг, его пропускная способность составляет 30-150 А. Схему подобной конструкции можно увидеть на рис. 2.

Как настроить работу самодельного инвертора?

Изготовить подобную конструкцию можно с легкостью своими руками, при этом понадобится незначительное количество материалов. Однако правильно настроить данное приспособление самостоятельно сможет далеко не каждый, потому может потребоваться помощь высококвалифицированных специалистов с опытом работы.

Если все же есть желание произвести настройку инвертора самостоятельно, то следует знать последовательность действий. Настройка конструкции состоит из следующих этапов:

Схема источника питания инвертора

Рисунок 3. Схема источника питания инвертора.

  1. Прежде всего понадобится подключить сварочный аппарат к электросети. После этого блок должен начать издавать громкие звуки. Это означает, что приспособление передает ток. Электричество должно подаваться на емкостный вентилятор. Только в таком случае будет возможность уменьшить нагреваемость аппарата и громкость его работы.
  2. Для того чтобы замкнуть резистор, понадобится подключить реле. Данный элемент следует подключать исключительно после зарядки конденсаторов. Подобные действия способны существенно уменьшить перепады тока в процессе включения аппарата для сварки в сеть 220 В.
  3. Следует помнить, что если подсоединить трансформатор без резистора, то может произойти взрыв. Все изготавливаемые инверторы будут пропускать по 100 А и более, точный уровень определяется исходя из того, какая плата использовалась в процессе разработки. Для определения уровня следует использовать мультиметр. Понадобится выполнить следующие действия: первым делом устройство включается в режиме амперметра, после чего выполняется замер периодичности поступающих импульсов.
  4. Сварку понадобится проверить на усилителе, который будет проводить сигнал к блоку. Средняя амплитуда составляет 15 В (если изготавливается сварочный аппарат небольшой мощности). Далее, нужно будет проверить правильность сборки моста. Для этого на инвертор нужно подать питание 16 В. Следует помнить, что холостой ход сможет преобразовывать только 100 мА. Чтобы произвести правильные контрольные замеры, понадобится учитывать данный показатель.
  5. Проверить работу инвертора для сварки можно с помощью осциллографа. Импульсы, которые исходят от обмоток, должны быть одинаковыми.
  6. Понадобится проконтролировать трансформатор для сварки под управлением силовых конденсаторных приспособлений. Необходимо изменить пропускной уровень на больший, после чего подключить осциллограф. Важно следить за формой сигнала, который исходит от коллектора.

Схема источника питания инвертора изображена на рис. 3.

Как правильно использовать инвертор для сварки?

Способы подключения сварочного инвертора

Способы подключения сварочного инвертора.

При включении инвертора в электросеть контроллер автоматически выставит величину задания тока сварки на 120 А. Если после включения напряжение в проводах конструкции не превысит 100 В, то на индикаторе можно будет увидеть много восьмерок. Подобные цифры указывают на неисправность устройства. При нормальном запуске данные цифры должны смениться значением тока 120 А. Величина задания тока может изменяться с помощью кнопок.

Чтобы контролировать температуру конструкции в процессе работы, нужно нажать все кнопки одновременно. При нажатии индикатор должен показывать заданную температуру радиаторной конструкции.

Если температура радиаторного устройства в процессе работы превысит 75 °С, то индикатор начнет отображать температуру конструкции, после чего включится звуковой сигнал. Работа инверторной конструкции не заблокируется, но ток автоматически снизится до 20 А.

Как только температура будет составлять менее 65 °С, звуковой сигнал выключится. Ток в данном случае будет составлять 20 А. Индикация будет такой, как до превышения температуры.

Если оборвется температурный датчик, то индикатор должен выдать код ошибки Ert1. После этого включится звуковой сигнал. Работа инверторного приспособления заблокирована не будет, но величина тока автоматически изменится до 20 А. Если температурный датчик замкнется, то индикатор должен выдать код ошибки Ert0. После этого включится звуковой сигнал, а ток снизится до 20 А.

Нюансы, которые следует учитывать в процессе изготовления сварочного инвертора

Таблица требуемых технических характеристик для сварочного инвертора

Таблица требуемых технических характеристик для сварочного инвертора.

  1. При намотке в качестве термопрослойки можно использовать обыкновенную бумагу с кассового аппарата. Подойдет и бумага для ксерокса, однако она имеет плохие механические характеристики. Материал должен быть прочным.
  2. Нельзя наматывать толстый провод. Приспособление работает на высоких токах, которые не смогут задействовать сердцевину в проводнике большой толщины. В результате произойдет сильный перегрев трансформаторной конструкции. Лучше всего использовать медную ленту небольшой толщины.
  3. Вторичная обмотка компонуется из нескольких полос меди, которые отделяются друг от друга. В данном случае также понадобится произвести обмотку бумагой из кассового аппарата. Альтернативным вариантом является использование провода ПЭВ сечением до 0,7 мм. Данный элемент имеет большое количество жил, что является дополнительным преимуществом. Однако провода имеют большие зазоры воздуха, следовательно, площадь сечения будет приблизительно на 30% меньше, чем в случае применения медного провода.
  4. В конструкции понадобится обязательно предусмотреть вентилятор для охлаждения, так как обмотка сильно нагревается в процессе работы. В данном случае можно использовать обыкновенный кулер от системного блока компьютера.

Инвертор для сварки является популярной и необходимой конструкцией, которая достаточно часто используется как в условиях промышленности, так и дома.

moyasvarka.ru

Электрическая схема сварочного инвертора

В статье представлен обзор схемотехники силовой части источников сварочного тока инверторного типа, рассмотрены общие принципы работы, недостатки и преимущества каждой из схем. Приведены несколько запатентованных способов стимулирования зажигания дуги, представлена синтезированная типовая структурная схема инверторного сварочного аппарата. Инверторные преобразователи напряжения на мощности от единиц ватт до десятков киловатт давно и успешно применяются при построении источников питания различного назначения. Особенностью этого класса преобразователей является работа на статическую нагрузку. В последнее десятилетие прошлого века инверторные преобразователи стали применяться при построении электросварочных аппаратов, где нагрузкой является сварочная дуга. Если первые модели таких инверторов выполнялись на тиристорах, то сейчас в качестве коммутирующих активных элементов применяются исключительно силовые МДП транзисторы. Абсолютное большинство сварочных инверторов предназначено для осуществления сварки на постоянном токе. Их структурная схема представлена на рис. 1 Электрическая схема сварочного инвертораРис. 1. Структура электросварочного аппарата инверторного типа.1 – входной выпрямитель с емкостным накопителем энергии;2 – инверторный модуль;3 – выходной выпрямитель. При питании от однофазной сети бестрансформаторный входной выпрямитель заряжает накопительную емкость до напряжения величиной около 300В. Инверторный модуль, выполненный на ключевых активных элементах, осуществляет преобразование энергии постоянного тока в энергию тока высокой частоты с последующим его выпрямлением для питания сварочной дуги. Причем частота преобразования составляет несколько десятков килогерц. Инверторный модуль кроме ключевых элементов и системы управления ими обязательно содержит высокочастотный импульсный трансформатор. Понятно, что схемотехническое построение нверторного модуля во многом определяет качественные и количественные параметры всего сварочного аппарата. Анализ схемотехнического построения (топологии) сварочных инверторов зарубежных и отечественных производителей дает основание полагать, что число вариантов таких решений весьма ограниченно и все их можно разделить на однотактные и двухтактные. Однотактные схемы формируют импульсы одной полярности, двухтактные - двухполярные импульсы. Во всех схемах транзисторы работают в ключевом режиме, причем время включенного состояния может регулироваться, что дает возможность изменять величину нагрузочного тока. Наиболее распространенные схемотехнические решения инверторных модулей представлены на рис. 2 Электрическая схема сварочного инвертораРис. 2. Схемы инверторных модулей сварочных аппаратова) Двухтактная схема – «полный мост»б) Двухтактная схема – «полумостовая схема»в) Однотактная схема – «косой полумост» В двухтактной мостовой схеме формирование двухполярных импульсов происходит за счет попарного отпирания транзисторов (VT1 и VT3), (VT2 и VT4). При номинальной мощности нагрузки через транзисторы протекает лишь половина полного тока моста, а напряжение на каждом из них составляет половину напряжения на емкости С. Однако здесь требуется обеспечить полную симметрию плеча моста для исключения возможности протекания через первичную обмотку трансформаторе тока подмагничивания. Кроме того, для предотвращения опасности сквозного короткого замыкания через транзисторы необходимо задать некоторое «мертвое время», т.е. паузу между началом процесса отключения одной пары транзисторов и включения другой. В полумостовой схеме за счет наличия емкостного делителя (С2, С3) напряжение на каждом из транзисторов и на первичной обмотке трансформатора составляет 0.5Uвх т.е при питании схемы от бестрансформаторного сетевого выпрямителя оно не превышает 150В. Обеспечение сварочного тока величиной 120 – 150 А при относительном малом коэффициенте трансформации приводит к необходимости применения мощных транзисторов (либо их группового соединения) и увеличению тока, потребляемого из питающей сети. В такой схеме так же необходимо задавать «мертвое время». Косой полумост является однотактным инвертором. Транзисторы VT1 VT2 открываются и закрываются одновременно и здесь нет опасности сквозного КЗ. На транзисторах в запертом состоянии напряжение не превышает 0,5 Uвх. Энергия выбросов, возникающих при запирании транзисторов, сбрасывается во входную емкость С через диоды VD1 и VD2. Недостатком схемы является подмагничивание сердечника трансформатора постоянной составляющей выходного тока. Эту проблему можно решить, например, путем изготовления сердечника с зазором или выбором магнитного материала сердечника с большими значениями индукции насыщения. Схема позволяет без увеличения напряжения на транзисторах и при приемлемом значении потребляемого из сети тока за счет увеличения коэффициента трансформации получить требуемое значение выходного тока. Схема проста в управлении, не требовательна к жесткому симметрированию плеч, исключает возможность возникновения «сквозного тока», обеспечивает высокий КПД за счет рекуперации энергии. Поэтому она нашла широкое применение в сварочных инверторах. Проектирование сварочных инверторов имеет ряд особенностей. Одна из них заключается в необходимости надежного возбуждения электрической дуги. Известно, что при ручной сварке в воздушной среде на постоянном токе или на токе промышленной частоты напряжение холостого хода должно быть порядка 60-90В. В сварочных аппаратах максимальное значение напряжения холостого хода и номинальное значение сварочного тока связаны между собой и обусловлены свойствами силового контура инвертора. Учитывая, что при питании инвертора от бестранформаторного выпрямителя входное напряжение не может быть больше 310В, при Uхх порядка 70В – 80В коэффициент трансформации по напряжению (и по току) не может быть больше 4,5. При таком коэффициенте трансформации и сварочном токе 150-160А потребляемый из сети ток будет порядка 40А, что при использовании бытовой сети недопустимо. Поэтому разработчики сварочных аппаратов ищут различные способы стимулирования зажигания дуги при высоком значении коэффициента трансформации сварочного трансформатора. Для зажигания дуги необходимо осуществить ионизацию разрядного промежутка. Сделать это можно повышением напряжения холостого хода, стимулированием промежутка высоковольтными импульсами от отдельного генератора, воздействием маломощного лазерного луча, применением вольтодобавочных схем и др. Так, предложено ввести в схему полумостового инвертора дополнительную ёмкость С4 и диод VD1 (рис. 3). При работе инвертора на холостом ходу за счёт добротности первичного контура трансформатора ёмкость С4 заряжается до напряжения, превышающего выходное напряжение сетевого выпрямителя. При зажигании дуги добротность силового контура падает, подзаряд ёмкости С4 прекращается, и напряжение на ней определяется только выходным напряжением выпрямителя. Авторы изобретения утверждают, что такое решение позволяет при питании от однофазной цепи получать токи сварки для использования электродов с диаметром до 4 мм при напряжении холостого хода 70-75 В. Электрическая схема сварочного инвертораРис.3 Сварочный источник питания по патенту № 2053069 Интересное решение для стимулирования зажигания дуги путем ионизации разрядного промежутка предложено в [2]. Сварочный ток здесь представляет собой последовательность однополярных прямоугольных импульсов следующих с частотой ультразвукового частотного диапазона. На переднем и заднем фронтах этих импульсов за счет имеющих место в сварочном трансформаторе паразитных резонансных контуров формируются высокочастотные затухающие колебания достаточно большой амплитуды (рис. 4). Электрическая схема сварочного инвертораРис. 4. Эпюры напряжения и тока в схеме по патенту № 2253551 [2].а – напряжение на первичной обмотке трансформатора инвертораб –форма сварочного тока Авторы утверждают, что за счет такой формы сварочного тока обеспечивается непрерывная ионизация газового промежутка между электродами, поэтому достигается «чрезвычайно высокая стабильность горения дуги». Такой процесс сварки авторы назвали электро-импульсным. При всей заманчивости этого способа, на наш взгляд, он имеет ряд недостатков. Во-первых, из-за большой частоты следования импульсов (50-70кГц) сварка фактически осуществляется на квазипостоянном токе со всеми присущими ему недостатками. Во-вторых значительная амплитуда напряжения ударного возбуждения создает опасность повреждения ключевых транзисторов, которые и так работают в предельных режимах по току и напряжению. Поэтому к такому способу возбуждения дуги следует относится с осторожностью. В сварочных инверторах ключевые элементы работают в импульсном режиме с ШИМ регулированием. Спектр тока такой последовательности импульсов весьма широк и достигает по разным оценкам 20 МГц. А поскольку токи в сварочном источнике и сварочных кабелях значительны, амплитуда высокочастотных так же может быть значительной, что создает опасность передачи радиопомех в питающую сеть и окружающую среду. Поэтому в большинстве импульсных источников на входе устанавливаются сетевые фильтры, задача которых – предотвращение попадания помех в питающую сеть. Менее проработаны вопросы снижения радиоизлучения сварочных кабелей. Почему-то считается, что если на выходе импульсного источника стоит диодный выпрямитель, то никаких высокочастотных составляющих в сварочном токе быть не должно. Однако у диодов существует время обратного восстановления, поэтому утверждение, что сварочные кабели (до и сама дуга) не являются источниками высокочастотных помех, преждевременно. Кроме того, в моменты зажигания дуги, изменении её длины и обрыве, нагрузка на инверторный преобразователь изменяется в широких пределах. Поэтому режим работы сварочного инвертора является в принципе нестационарным, что создает опасность перегрузки и повреждения транзисторов. Классический прием снижения уровня перенапряжений на транзисторах путем подключения различных демпфирующих цепей далеко не всегда дает нужный эффект. Значительным разнообразием отличаются схемы управления сварочными инверторами. К основным их функциям следует отнести: • формирование импульсов, обеспечивающих надежное отпирание и запирание ключевых транзисторов; • обеспечение возможности регулирования длительности импульсов (ШИМ) при заданной частоте их следования; • возможность задания требуемой величины сварочного тока и его поддержание на заданном уровне в процессе сварки; • защита аппарата от перегрева, перегрузки по току, «залипания» электрода; • исключение токовой перегрузки питающей сети переменного тока при запуске сварочного аппарата. С учетом всех этих требований типовую структурную схему инверторного сварочного аппарата можно представить в виде рис. 5. Сетевой фильтр (1) служит для исключения прохождения помех, возникающих в процессе работы сварочного инвертора, в питающую сеть. Входной выпрямитель с емкостным накопителем (2) необходим для питания инверторного модуля и исключения импульсной нагрузки на питающую сеть. Поскольку емкость накопителя достаточно велика (до 1500 мкФ), чтобы исключить появление пика зарядного тока, первичный заряд осуществляют через управляемый токовый ограничитель, который в процессе нормальной работы аппарата отключается блоком управления зарядом (БУЗ). Инвертор (3) преобразует энергию постоянного напряжения накопителя в энергию импульсов килогерцового диапазона путём использования широтно-импульсной модуляции (ШИМ). Формирование отпирающих импульсов для транзисторов инвертора осуществляется в системе управления состоящей из тактового генератора (10), ШИМ – котроллера (11) и драйвера (12). Требуемая величина сварочного тока задается в блоке задания режима (13) путем установления определенной ширины отпирающих импульсов. Поддержание заданной величины сварочного тока осуществляется по сигналу датчика тока (9). В ряде схем сварочных аппаратов путем задания соответствующего алгоритма управления обеспечивается стабилизация режима сварки за счет поддержания определенного соотношения между сварочным током и напряжением на дуге. Для этого кроме датчика тока вводится еще и датчик напряжения (8). Температурный режим внутри аппарата или его наиболее загруженных узлов контролируется с помощью датчика перегрева (7). Электрическая схема сварочного инвертораРис. 5. Типовая структурная схема инверторного сварочного аппарата Путём соответствующего программирования микроконтроллера ряд фирм обеспечивает реализацию дополнительных результатов: форсирование тока при пуске, предотвращение «залипания» сварочных электродов и ряд других функций. Таким образом, повышение уровня «интеллектуальности» схемотехнических решений позволяет создавать сварочную технику с широкими функциональными возможностями.

Автор: Борисов Д.А., ГОУВПО «Мордовский государственный университет им. Н. П. Огарева», г. Саранск

Кроме статьи "Электрическая схема сварочного инвертора" смотрите также:

nanolife.info


Каталог товаров
    .