интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Электронная схема. Схема электронная


Электронная схема — с русского

См. также в других словарях:

  • электронная схема — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN electronic network …   Справочник технического переводчика

  • Электронная схема — Интегральная схема Intel 8742, 8 ми битный микроконтроллер, включающий в себя ЦПУ, 128 байт RAM …   Википедия

  • электронная схема — elektroninė grandinė statusas T sritis fizika atitikmenys: angl. electronic circuit vok. elektronische Schaltung, f rus. электронная схема, f pranc. circuit électronique, m …   Fizikos terminų žodynas

  • электронная схема со сварными соединениями — suvirintoji elektroninė grandinė statusas T sritis radioelektronika atitikmenys: angl. welded electronic circuit vok. Schaltung mit Schweißverbindungen, f rus. электронная схема со сварными соединениями, f pranc. circuit à connections soudées, m …   Radioelektronikos terminų žodynas

  • электронная схема (какая) — ▲ преобразователь ↑ электрический, сигнал ♥ резистор, сопротивление. резистивный (# усилитель). гиратор. триммер. ▼ усилитель. усилительный. дискриминатор. триггер. мультивибратор. свип генератор. синхрогенератор. блокинг генератор. гетеродин.… …   Идеографический словарь русского языка

  • функциональная электронная схема — funkcinė elektroninė grandinė statusas T sritis automatika atitikmenys: angl. functional electronic network vok. Funktionalelektronikschaltung, f rus. функциональная электронная схема, f pranc. circuit de électronique fonctionnel, m …   Automatikos terminų žodynas

  • схема — сущ., ж., употр. сравн. часто Морфология: (нет) чего? схемы, чему? схеме, (вижу) что? схему, чем? схемой, о чём? о схеме; мн. что? схемы, (нет) чего? схем, чему? схемам, (вижу) что? схемы, чем? схемами, о чём? о схемах 1. Схемой называется… …   Толковый словарь Дмитриева

  • Электронная фотография — Цифровой зеркальный фотоаппарат Canon EOS 350D Цифровой фотоаппарат Canon PowerShot A95 Цифровая фотография фотография, результатом которой является изображение в виде массива цифровых данных файла, а в качестве светочувствительного материала… …   Википедия

  • Электронная коммерция — (от англ. e commerce)  это сфера экономики, которая включает в себя все финансовые и торговые транзакции, осуществляемые при помощи компьютерных сетей, и бизнес процессы, связанные с проведением таких транзакций.[1][2] К электронной… …   Википедия

  • ЭЛЕКТРОННАЯ ПУШКА — вакуумное устройство (обычно диод) для получения пучков эл нов. Эл ны в Э. п. вылетают из катода И ускоряются электрич. полем (рис. 1). Испускание эл нов из катода происходит Рис. 1. Схема электронной пушки: 1 катод; 2 модулятор; 3 первый анод; 4 …   Физическая энциклопедия

  • электронная пересчетная схема — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electronic counter …   Справочник технического переводчика

translate.academic.ru

Реферат Электронная схема

скачать

Реферат на тему:

План:

    Введение
  • 1 Аналоговые схемы
  • 2 Цифровые схемы
  • 3 Гибридные схемы
  • Примечания

Введение

Интегральная схема Intel 8742, 8-ми битный микроконтроллер, включающий в себя ЦПУ, 128 байт RAM, 2048 байт EPROM, и порты ввода-вывода.

Печатная плата с электронной схемой.

Электронная схема — это сочетание отдельных электронных компонентов, таких как резисторы, конденсаторы, индуктивности, диоды и транзисторы, соединённых между собой. Различные комбинации компонентов позволяют выполнять множество как простых, так и сложных операций, таких как усиление сигналов, обработка и передача информации и т. д.[1] Электронные схемы строятся на базе дискретных компонентов, а также интегральных схем, которые могут объединять множество различных компонентов на одном полупроводниковом кристалле. Соединения между элементами могут осуществляться посредством проводов, однако в настоящее время чаще применяются печатные платы, когда на изолирующей основе различными методами (например, фотолитографией) создаются проводящие дорожки и контактные площадки, к которым припаиваются компоненты.[2]

Для разработки и тестирования электронных схем применяются макетные платы, позволяющие при необходимости быстро вносить изменения в электронную схему.

Обычно, при рассмотрении, электронные схемы классифицируются на аналоговые, цифровые, а также гибридные (смешанные).

1. Аналоговые схемы

Принципиальная схема простого усилителя — пример аналоговой схемы.

В аналоговых электронных схемах напряжение и ток могут изменяться непрерывно во времени, отражая какую-либо информацию. В аналоговых схемах существуют два базовых понятия: последовательное и параллельное соединения. При последовательном соединении, примером которого может быть новогодняя гирлянда, через все компоненты в цепочке течёт один и тот же ток. При параллельном соединении на выводах всех компонентов создаётся одно и то же электрическое напряжение, но токи через компоненты различаются: суммарный ток делится в соответствии с сопротивлением компонентов.

Простая схема, содержащая батарею, резистор и соединительные провода, демонстрирует применение законов Ома и Кирхгофа для расчёта электрической цепи

Основными элементами для построения аналоговых устройств являются резисторы (сопротивления), конденсаторы, индуктивности, диоды, транзисторы, а также соединительные проводники. Обычно аналоговые схемы представляются в виде принципиальных электрических схем. За каждым элементом закреплено стандартное обозначение: например, проводники обозначаются линиями, резисторы — прямоугольниками и т. д..

Электрические цепи подчиняются законам Кирхгофа:

  • алгебраическая сумма токов в любом узле цепи равна нулю;
  • алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю.

При анализе реальных схем следует учитывать паразитные элементы: так, у реальных соединительных проводников существует сопротивление и индуктивность, несколько лежащих рядом проводников образуют ёмкость и т. д.

2. Цифровые схемы

В цифровых схемах сигнал может принимать только несколько различных дискретных состояний, которые обычно кодируют логические или числовые значения. [3] В подавляющем большинстве случаев используется бинарная (двоичная) логика, когда одному определённому уровню напряжения соответствует логическая единица, а другому — ноль. В цифровых схемах крайне широкое применение находят транзисторы, из которых строятся логические ячейки (вентили): И, ИЛИ, НЕ и их различные комбинации. Также, на базе транзисторов создаются триггеры — ячейки, которые могут находится в одном из нескольких устойчивых состояний, и переключатся между ними при подаче внешнего сигнала. Последние могут быть использованы как элементы памяти: например, SRAM (статическая оперативная память с произвольным доступом) сделана на их основе. Другой тип памяти — DRAM — основан на способности конденсаторов запасать электрический заряд.

Цифровые схемы по сравнению с аналоговыми той же сложности значительно проще в разработке и анализе. Это связано с тем, что логические ячейки на выходе выдают только определённые уровни напряжений, и разработчику не надо заботится о искажениях, усилении, смещении напряжения и прочих аспектах, которые необходимо учитывать при разработке аналоговых устройств. По этой причине, на основе логических элементов могут создаваться сверхсложные схемы с огромной степенью интеграции элементов, содержащие на одном кристалле миллиарды транзисторов, стоимость каждого из которых получается ничтожно малой. Именно это во многом и определило развитие современной электроники.

3. Гибридные схемы

Гибридные схемы объединяют элементы, относящиеся к аналоговой и цифровой схемотехнике. Среди прочих, к нем относятся компараторы, мультивибраторы, ФАПЧ, ЦАП, АЦП. Большинство современных радиоприборов и устройств связи используют гибридные схемы. К примеру, приёмник может состоять из аналоговых усилителя и преобразователя частот, после чего сигнал может быть преобразован в цифровую форму для дальнейшей обработки.

Примечания

  1. Charles Alexander and Matthew Sadiku (2004). «Fundamentals of Electric Circuits».
  2. Richard Jaeger (1997). «Microelectronic Circuit Design».
  3. John Hayes (1993). «Introduction to Digital Logic Design».

wreferat.baza-referat.ru

Электронная схема Википедия

Электронная схема — это сочетание отдельных электронных компонентов, таких как резисторы, конденсаторы, индуктивности, диоды, транзисторы и интегральные микросхемы, соединённых между собой. Различные комбинации компонентов позволяют выполнять множество как простых, так и сложных операций, таких как усиление сигналов, обработка и передача информации и т. д.[1] Электронные схемы строятся на базе дискретных компонентов, а также интегральных схем, которые могут объединять множество различных компонентов на одном полупроводниковом кристалле. Соединения между элементами могут осуществляться посредством проводов, однако в настоящее время чаще применяются печатные платы, когда на изолирующей основе различными методами (например, фотолитографией) создаются проводящие дорожки и контактные площадки, к которым припаиваются компоненты[2].

Для разработки и тестирования электронных схем применяются макетные платы, позволяющие при необходимости быстро вносить изменения в электронную схему.

Раздел электроники, изучающий проектирование и создание электронных схем, называется схемотехника.

Обычно, при рассмотрении, электронные схемы классифицируются на аналоговые, цифровые, а также гибридные (смешанные).

В аналоговых электронных схемах напряжение и ток могут изменяться непрерывно во времени, отражая какую-либо информацию. В аналоговых схемах существуют два базовых понятия: последовательное и параллельное соединения. При последовательном соединении, примером которого может быть новогодняя гирлянда, через все компоненты в цепочке течёт один и тот же ток. При параллельном соединении на выводах всех компонентов создаётся одно и то же электрическое напряжение, но токи через компоненты различаются: суммарный ток делится в соответствии с сопротивлением компонентов.

ruwikiorg.ru

Электронная схема — википедия орг

Электронная схема — это сочетание отдельных электронных компонентов, таких как резисторы, конденсаторы, индуктивности, диоды, транзисторы и интегральные микросхемы, соединённых между собой. Различные комбинации компонентов позволяют выполнять множество как простых, так и сложных операций, таких как усиление сигналов, обработка и передача информации и т. д.[1] Электронные схемы строятся на базе дискретных компонентов, а также интегральных схем, которые могут объединять множество различных компонентов на одном полупроводниковом кристалле. Соединения между элементами могут осуществляться посредством проводов, однако в настоящее время чаще применяются печатные платы, когда на изолирующей основе различными методами (например, фотолитографией) создаются проводящие дорожки и контактные площадки, к которым припаиваются компоненты[2].

Для разработки и тестирования электронных схем применяются макетные платы, позволяющие при необходимости быстро вносить изменения в электронную схему.

Раздел электроники, изучающий проектирование и создание электронных схем, называется схемотехника.

Обычно, при рассмотрении, электронные схемы классифицируются на аналоговые, цифровые, а также гибридные (смешанные).

Аналоговые схемы

В аналоговых электронных схемах напряжение и ток могут изменяться непрерывно во времени, отражая какую-либо информацию. В аналоговых схемах существуют два базовых понятия: последовательное и параллельное соединения. При последовательном соединении, примером которого может быть новогодняя гирлянда, через все компоненты в цепочке течёт один и тот же ток. При параллельном соединении на выводах всех компонентов создаётся одно и то же электрическое напряжение, но токи через компоненты различаются: суммарный ток делится в соответствии с сопротивлением компонентов.

  Простая схема, содержащая батарею, резистор и соединительные провода, демонстрирует применение законов Ома и Кирхгофа для расчёта электрической цепи

Основными элементами для построения аналоговых устройств являются резисторы (сопротивления), конденсаторы, катушки индуктивности, диоды, транзисторы, а также соединительные проводники. Обычно аналоговые схемы представляются в виде принципиальных электрических схем. За каждым элементом закреплено стандартное обозначение: например, проводники обозначаются линиями, резисторы — прямоугольниками и т. д.

Электрические цепи подчиняются законам Кирхгофа:

  • алгебраическая сумма токов в любом узле цепи равна нулю;
  • алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю.

При анализе реальных схем следует учитывать паразитные элементы: так, у реальных соединительных проводников существует сопротивление и индуктивность, несколько лежащих рядом проводников образуют ёмкость и т. д.

Цифровые схемы

В цифровых схемах сигнал может принимать только несколько различных дискретных состояний, которые обычно кодируют логические или числовые значения[3]. В подавляющем большинстве случаев используется бинарная (двоичная) логика, когда одному определённому уровню напряжения соответствует логическая единица, а другому — ноль. В цифровых схемах крайне широкое применение находят транзисторы, из которых строятся логические ячейки (вентили): И, ИЛИ, НЕ и их различные комбинации. Также, на базе транзисторов создаются триггеры — ячейки, которые могут находиться в одном из нескольких устойчивых состояний, и переключаться между ними при подаче внешнего сигнала. Последние могут быть использованы как элементы памяти: например, SRAM (статическая оперативная память с произвольным доступом) сделана на их основе. Другой тип памяти — DRAM — основан на способности конденсаторов запасать электрический заряд.

Цифровые схемы по сравнению с аналоговыми той же сложности значительно проще в разработке и анализе. Это связано с тем, что логические ячейки на выходе выдают только определённые уровни напряжений, и разработчику не надо заботиться об искажениях, усилении, смещении напряжения и прочих аспектах, которые необходимо учитывать при разработке аналоговых устройств. По этой причине, на основе логических элементов могут создаваться сверхсложные схемы с огромной степенью интеграции элементов, содержащие на одном кристалле миллиарды транзисторов, стоимость каждого из которых получается ничтожно малой. Именно это во многом и определило развитие современной электроники.

Гибридные схемы

Гибридные схемы объединяют элементы, относящиеся к аналоговой и цифровой схемотехнике. Среди прочих, к ним относятся компараторы, мультивибраторы, ФАПЧ, ЦАП, АЦП. Большинство современных радиоприборов и устройств связи используют гибридные схемы. К примеру, приёмник может состоять из аналоговых усилителя и преобразователя частот, после чего сигнал может быть преобразован в цифровую форму для дальнейшей обработки.

См. также

Примечания

  1. ↑ Charles Alexander and Matthew Sadiku (2004). «Fundamentals of Electric Circuits» (McGraw-Hill).
  2. ↑ Richard Jaeger (1997). «Microelectronic Circuit Design» (McGraw-Hill).
  3. ↑ John Hayes (1993). «Introduction to Digital Logic Design» (Addison Wesley).

Ссылки

www-wikipediya.ru

Электронная схема — Machinepedia

Электронная схема — это сочетание отдельных электронных компонентов, таких как резисторы, конденсаторы, индуктивности, диоды и транзисторы, соединённых между собой. Различные комбинации компонентов позволяют выполнять множество как простых, так и сложных операций, таких как усиление сигналов, обработка и передача информации и т. д. Электронные схемы строятся на базе дискретных компонентов, а также интегральных схем, которые могут объединять множество различных компонентов на одном полупроводниковом кристалле. Соединения между элементами могут осуществляться посредством проводов, однако в настоящее время чаще применяются печатные платы, когда на изолирующей основе различными методами (например, фотолитографией) создаются проводящие дорожки и контактные площадки, к которым припаиваются компоненты.

Для разработки и тестирования электронных схем применяются макетные платы, позволяющие при необходимости быстро вносить изменения в электронную схему.

Обычно, при рассмотрении, электронные схемы классифицируются на аналоговые, цифровые, а также гибридные (смешанные).

Аналоговые схемы

В аналоговых электронных схемах напряжение и ток могут изменяться непрерывно во времени, отражая какую-либо информацию. В аналоговых схемах существуют два базовых понятия: последовательное и параллельное соединения. При последовательном соединении, примером которого может быть новогодняя гирлянда, через все компоненты в цепочке течёт один и тот же ток. При параллельном соединении на выводах всех компонентов создаётся одно и то же электрическое напряжение, но токи через компоненты различаются: суммарный ток делится в соответствии с сопротивлением компонентов.

Основными элементами для построения аналоговых устройств являются резисторы (сопротивления), конденсаторы, катушки индуктивности, диоды, транзисторы, а также соединительные проводники. Обычно аналоговые схемы представляются в виде принципиальных электрических схем. За каждым элементом закреплено стандартное обозначение: например, проводники обозначаются линиями, резисторы — прямоугольниками и т. д.

Электрические цепи подчиняются законам Кирхгофа:

  • алгебраическая сумма токов в любом узле цепи равна нулю;
  • алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю.

При анализе реальных схем следует учитывать паразитные элементы: так, у реальных соединительных проводников существует сопротивление и индуктивность, несколько лежащих рядом проводников образуют ёмкость и т. д.

Цифровые схемы

В цифровых схемах сигнал может принимать только несколько различных дискретных состояний, которые обычно кодируют логические или числовые значения. В подавляющем большинстве случаев используется бинарная (двоичная) логика, когда одному определённому уровню напряжения соответствует логическая единица, а другому — ноль. В цифровых схемах крайне широкое применение находят транзисторы, из которых строятся логические ячейки (вентили): И, ИЛИ, НЕ и их различные комбинации. Также, на базе транзисторов создаются триггеры — ячейки, которые могут находится в одном из нескольких устойчивых состояний, и переключатся между ними при подаче внешнего сигнала. Последние могут быть использованы как элементы памяти: например, SRAM (статическая оперативная память с произвольным доступом) сделана на их основе. Другой тип памяти — DRAM — основан на способности конденсаторов запасать электрический заряд.

Цифровые схемы по сравнению с аналоговыми той же сложности значительно проще в разработке и анализе. Это связано с тем, что логические ячейки на выходе выдают только определённые уровни напряжений, и разработчику не надо заботится о искажениях, усилении, смещении напряжения и прочих аспектах, которые необходимо учитывать при разработке аналоговых устройств. По этой причине, на основе логических элементов могут создаваться сверхсложные схемы с огромной степенью интеграции элементов, содержащие на одном кристалле миллиарды транзисторов, стоимость каждого из которых получается ничтожно малой. Именно это во многом и определило развитие современной электроники.

Гибридные схемы

Гибридные схемы объединяют элементы, относящиеся к аналоговой и цифровой схемотехнике. Среди прочих, к нем относятся компараторы, мультивибраторы, ФАПЧ, ЦАП, АЦП. Большинство современных радиоприборов и устройств связи используют гибридные схемы. К примеру, приёмник может состоять из аналоговых усилителя и преобразователя частот, после чего сигнал может быть преобразован в цифровую форму для дальнейшей обработки.

machinepedia.org

Электронная схема — википедия фото

Электронная схема — это сочетание отдельных электронных компонентов, таких как резисторы, конденсаторы, индуктивности, диоды, транзисторы и интегральные микросхемы, соединённых между собой. Различные комбинации компонентов позволяют выполнять множество как простых, так и сложных операций, таких как усиление сигналов, обработка и передача информации и т. д.[1] Электронные схемы строятся на базе дискретных компонентов, а также интегральных схем, которые могут объединять множество различных компонентов на одном полупроводниковом кристалле. Соединения между элементами могут осуществляться посредством проводов, однако в настоящее время чаще применяются печатные платы, когда на изолирующей основе различными методами (например, фотолитографией) создаются проводящие дорожки и контактные площадки, к которым припаиваются компоненты[2].

Для разработки и тестирования электронных схем применяются макетные платы, позволяющие при необходимости быстро вносить изменения в электронную схему.

Раздел электроники, изучающий проектирование и создание электронных схем, называется схемотехника.

Обычно, при рассмотрении, электронные схемы классифицируются на аналоговые, цифровые, а также гибридные (смешанные).

Аналоговые схемы

В аналоговых электронных схемах напряжение и ток могут изменяться непрерывно во времени, отражая какую-либо информацию. В аналоговых схемах существуют два базовых понятия: последовательное и параллельное соединения. При последовательном соединении, примером которого может быть новогодняя гирлянда, через все компоненты в цепочке течёт один и тот же ток. При параллельном соединении на выводах всех компонентов создаётся одно и то же электрическое напряжение, но токи через компоненты различаются: суммарный ток делится в соответствии с сопротивлением компонентов.

  Простая схема, содержащая батарею, резистор и соединительные провода, демонстрирует применение законов Ома и Кирхгофа для расчёта электрической цепи

Основными элементами для построения аналоговых устройств являются резисторы (сопротивления), конденсаторы, катушки индуктивности, диоды, транзисторы, а также соединительные проводники. Обычно аналоговые схемы представляются в виде принципиальных электрических схем. За каждым элементом закреплено стандартное обозначение: например, проводники обозначаются линиями, резисторы — прямоугольниками и т. д.

Электрические цепи подчиняются законам Кирхгофа:

  • алгебраическая сумма токов в любом узле цепи равна нулю;
  • алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю.

При анализе реальных схем следует учитывать паразитные элементы: так, у реальных соединительных проводников существует сопротивление и индуктивность, несколько лежащих рядом проводников образуют ёмкость и т. д.

Цифровые схемы

В цифровых схемах сигнал может принимать только несколько различных дискретных состояний, которые обычно кодируют логические или числовые значения[3]. В подавляющем большинстве случаев используется бинарная (двоичная) логика, когда одному определённому уровню напряжения соответствует логическая единица, а другому — ноль. В цифровых схемах крайне широкое применение находят транзисторы, из которых строятся логические ячейки (вентили): И, ИЛИ, НЕ и их различные комбинации. Также, на базе транзисторов создаются триггеры — ячейки, которые могут находиться в одном из нескольких устойчивых состояний, и переключаться между ними при подаче внешнего сигнала. Последние могут быть использованы как элементы памяти: например, SRAM (статическая оперативная память с произвольным доступом) сделана на их основе. Другой тип памяти — DRAM — основан на способности конденсаторов запасать электрический заряд.

Цифровые схемы по сравнению с аналоговыми той же сложности значительно проще в разработке и анализе. Это связано с тем, что логические ячейки на выходе выдают только определённые уровни напряжений, и разработчику не надо заботиться об искажениях, усилении, смещении напряжения и прочих аспектах, которые необходимо учитывать при разработке аналоговых устройств. По этой причине, на основе логических элементов могут создаваться сверхсложные схемы с огромной степенью интеграции элементов, содержащие на одном кристалле миллиарды транзисторов, стоимость каждого из которых получается ничтожно малой. Именно это во многом и определило развитие современной электроники.

Гибридные схемы

Гибридные схемы объединяют элементы, относящиеся к аналоговой и цифровой схемотехнике. Среди прочих, к ним относятся компараторы, мультивибраторы, ФАПЧ, ЦАП, АЦП. Большинство современных радиоприборов и устройств связи используют гибридные схемы. К примеру, приёмник может состоять из аналоговых усилителя и преобразователя частот, после чего сигнал может быть преобразован в цифровую форму для дальнейшей обработки.

См. также

Примечания

  1. ↑ Charles Alexander and Matthew Sadiku (2004). «Fundamentals of Electric Circuits» (McGraw-Hill).
  2. ↑ Richard Jaeger (1997). «Microelectronic Circuit Design» (McGraw-Hill).
  3. ↑ John Hayes (1993). «Introduction to Digital Logic Design» (Addison Wesley).

Ссылки

org-wikipediya.ru


Каталог товаров
    .