интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Электромагнит - устройство и принцип работы. Схема электромагнита


Грузоподъемные электромагниты: устройство, схема включения

Грузоподъемные круглые электромагнитыВнедрение грузоподъемных электромагнитов позволяет уменьшить продолжительность операций зацепления и снятия ферромагнитных материалов при транспортировке.

Грузоподъемные круглые электромагниты

Грузоподъемные круглые электромагниты типа М-22, М-42, М-62 русского производства (ранешние аналоги — М-41, М-61 либо поздние аналоги — М-23, М-43, М-63) созданы для захвата и перемещения крановыми механизмами скрапа, металлолома, блюмса, поковок, пакетированного лома, рулонного проката.Но с фуррором применяются при переносе листового проката, длиномерного и при работе на траверсе.В СССР выполнялись легкой серии (М-22, М-21), средней серии (М-42, М-41) и тяжеленной серии (М-62, М-61).

Грузоподъемные прямоугольные электромагниты

Грузоподъемные прямоугольные электромагнитыГрузоподъемные прямоугольные электромагниты типа ПМ-15, ПМ-25 русского производства (поздние аналоги — ПМ-16, ПМ-26) созданы для подъема и перемещения поковок, листового проката, блюмса. При установке на траверсу способны переносить длинномерный груз до 25 метров, (к примеру рельсы).А так же употребляются для извлечения ферромагнитного материала (металловключений) из сыпучего груза транспортируемого по конвейерным лентам (транспортеру) при краткосрочном включении металлоуловителем форсированного режима.

Грузоподъемные электромагниты с теплостойкой изоляцией

Есть также грузоподъемные электромагниты с теплостойкой изоляцией,которые  созданы для захвата и перемещения жарких грузов температурой до 500оС. Эти же магнитные шайбы могут переносить грузы температурой до 700оС, но при условии понижения ПВ (длительности включения) до 10-30% и с сокращением времени включения электромагнита до 1-ой — 2-х минут.Следует учитывать, что магнитные характеристики перемещаемого груза существенно ухудшаются при достижении 750оС.

Подъемные электромагниты рассчитываются на повторно-кратковременный резким работы с ПВ=50% при длительности цикла менее 10 мин.

Выбор подъемных электромагнитов делается по напряжению, режиму работы, подъемной силе, потребляемой мощности, форме груза и его температуре.

Устройство грузоподъемных электромагнитов ( на примере электромагнитакруглой формы типа М-42)

Грузоподъемные электромагниты: устройство, схема включенияСнутри железного корпуса грузоподъемного электромагнита помещается катушка, залитая компаундной массой. К корпусу болтами крепятся полюсные ботинки. Снизу катушка защищена кольцом из немагнитного материала. Токоподвод к катушкегрузоподъемного электромагнита осуществляется гибким кабелем, который автоматом наматывается на кабельный барабан при подъеме и сматывается с него при спуске.Грузоподъемный электромагнит подвешивается к крюку цепями.

Подъемная сила грузоподъемного электромагнита находится в зависимости от нрава и температуры поднимаемого груза: при большой плотности груза (плиты, болванки) подъемная сила возрастает, при наименьшей плотности (скрап, стружка) существенно миниатюризируется.С ростом температуры понижается магнитная проницаемость, достигая нуля при 720° С, вследствие чего подъемная сила также падаетдо нуля.

Катушки таких электромагнитов питаются неизменным током, имеют огромную индуктивность и значимый поток остаточного магнетизма. Потому при выключении электромагнита должны быть приняты меры для ограничения перенапряжений, также для резвого освобождения электромагнита от груза.

Схема управления грузоподъемным электромагнитом

Грузоподъемные электромагниты: устройство, схема включенияУправление подъемным электромагнитом делается обычно при помощи магнитного контроллера, панель которого с аппаратурой помещается в шкафу и устанавливается в кабине крановщика.

На рисунке показана принципная электронная схема магнитного контроллера ПМС-50, имеющего: вводной выключатель (рубильник) ВВ, предохранители Пр1 и Пр2, включающий контактор KB, контактор размагничивания КР, резисторы ПС и PC.

Неизменный ток к катушке электромагнита Эм подводится от сети 220 В либо от преобразовательного агрегата, установленного на кране.

Для захвата груза электромагнитом ручку командоконтроллера ставят в положение В. Замыкается контакт КК командоконтроллера. Получает питание контактор KB, который своими контактами подключает электромагнит Эм к источнику питания, и груз захватывается.

Схема электронная принципная управления грузоподъемным электромагнитом

Схема электронная принципная управления грузоподъемным электромагнитом

Чтоб высвободить электромагнит от груза, ручку командоконтроллера переводят в положение О. Размыкается контакт КК, теряет питание контактор KB и отключается от источника катушки Эм но ток в ней одномоментно не исчезает, а под действием ЭДС самоиндукции продолжает протекать в том же направлении по цепи с резисторами ПС и PC. При всем этом напряжение меж точками1 и 2 оказывается достаточным, чтоб включился контактор КР. В итоге катушка Эм оказывается под напряжением оборотной полярности, ток в ней активно миниатюризируется, а потом растет в оборотном направлении до значения, нужного для ликвидации остаточного магнетизма. Электромагнит освобождается от груза, даже очень легкого, к примеру от стружки.

В процессе конфигурации тока электромагнита напряжение на катушке КР миниатюризируется, и при неком его значении контактор КР отключается, что приводит к разрыву цепи размагничивания, но катушка Эм остается замкнутой на резисторы. Это исключает недопустимые перенапряжения на электромагните.

кран с грузоподъемным электромагнитом

elektrica.info

Электромагнит

Электромагнит и опилкиЭлектромагнит – это устройство, которое при прохождении через него тока, создает магнитное поле.

Электромагниты очень широко используются в промышленности, медицине, быту, электронике в качестве компонентов различных двигателей, генераторов, реле, аудиоколонок, устройств магнитной сепарации, подъемных кранов и др.

 

История

В 1820 году Эрстед обнаружил, что электрический ток создаёт магнитное поле. А затем, в 1824 году, Уильям Стёржден, создал первый электромагнит. Он представлял из себя кусок железа, который был согнут в форме подковы и на котором было намотано 18 витков медного провода. При подключении к источнику тока, эта конструкция начинала притягивать железные предметы. Причем было замечено, что хотя весил этот электромагнит около 200 гр., он мог притянуть предметы до 4 кг!

 

Принцип действия

При протекании тока через проводник, вокруг него создается магнитное поле. Это магнитное поле можно усилить, если придать проводнику форму катушки. Но все же это еще не электромагнит. Вот если в эту катушку поместить сердечник из ферромагнитного материала (например, железа), тогда он станет электромагнитом.

Когда ток протекает по обмотке электромагнита, он создает магнитное поле, линии которого пронизывают сердечник, то есть ферромагнитный материал. Под действием этого поля, в сердечнике, мельчайшие области,  которые обладают миниатюрными магнитными полями, называющиеся доменами, принимают упорядоченное положение. В результате, их магнитные поля складываются, и образуется одно большое и сильное магнитное поле, способное притянуть большие предметы. Причем, чем сильнее ток, тем сильнее магнитное поле, которое образуется электромагнитом. Но так будет происходить только до магнитного насыщения. Затем при увеличении тока, магнитное поле будет увеличиваться, но незначительно.

Если ток в электромагните убрать, то домены снова примут безупорядоченное положение, но часть их все же останется направленными одинаково. Эти оставшиеся направленными домены, будут создавать небольшое магнитное поле. Это явление называется магнитным гистерезисом.

 

УстройствоЭлектромагнит из катушки и сердечника

Простейший электромагнит представляет из себя катушку с сердечником из ферромагнитного материала. В нем также присутствует якорь, который служит для передачи механического усилия. Например, в реле, якорь притягивается к электромагниту, и одновременно замыкает контакты.

Так как линии магнитного поля замыкаются на якоре, это еще больше усиливает это магнитное поле.

 

Классификация

Электромагниты по способу создания магнитного потока делятся на три вида

  • Электромагниты переменного тока
  • Нейтральные электромагниты постоянного тока
  • Поляризованные электромагниты постоянного тока

В электромагнитах переменного тока, магнитный поток изменяется, как по направлению, так и по значению, разница только в том, что изменяется он с удвоенной частотой тока.

В нейтральных электромагнитах постоянного тока, направление магнитного потока не зависит от направления тока.

В поляризованных электромагнитах постоянного тока, как вы уже поняли, направление магнитного потока зависит от направления тока. При этом эти электромагниты обычно состоят из двух. Один – постоянный магнит, создает поляризующий магнитный поток, который нужен при отключении основного, рабочего электромагнита.

 

Сверхпроводящий электромагнит

Отличие сверхпроводящего электромагнита от обычного в том, что в его обмотке, вместо обычно проводника, используется сверхпроводник. При этом его обмотка охлаждена с помощью жидкого гелия до очень низких температур. Его преимущество в том, что ток в нем достигает очень больших значений, благодаря тому, что у сверхпроводника, практически отсутствует сопротивление. Поэтому магнитное поле приобретает  большую силу. Эксплуатация таких электромагнитов обходится дешевле, так как в них отсутствуют тепловые потери в обмотке. Сверхпроводящие магниты используются в аппаратах МРТ, ускорителях частиц и в другом научном оборудовании.

 

Самый мощный электромагнит

На данный момент известно, что самый мощный электромагнит в мире удалось создать в Лос-Аламосе (США). Только представьте, сила этого магнита 100 Тл! Это больше силы магнитного поля Земли в два миллиона раз! Его масса составляет 8200 кг. 

electroandi.ru

Электромагнит - устройство и принцип работы

Всем привет! Сегодня я собираюсь рассказать вам о очень лёгком, но зрелищном эксперименте, и имя его: «Электромагнит»! Я больше чем уверен что каждый начинающий радиолюбитель знает его, но для начала он как раз подойдёт. Я сделал этот обзор самоделки для тех кому интересно как устроен магнит.

Перед инструкцией давайте посмотрим принцип работы электромагнита. Что говорит нам Википедия:

Электромагнит — устройство, создающее магнитное поле при прохождении электрического тока через него. Обычно электромагнит состоит из обмотки и ферромагнитного сердечника, который приобретает свойства магнита при прохождении по обмотке электрического тока.Вики простой электромагнит
  • Не понятно? Объясню просто:
Когда электричество проходит по проводам и крутится вокруг гвоздя (сердечника), и гвоздь приобретает свойства природного магнита (как на холодильнике (сделанного из магнитной руды)). И без гвоздя магнит может работать только значительно слабее.
  • Где используются электромагниты:

Сильные электромагниты используются в разных механизмах для разных целей. К примеру, электромагнитный подъемный кран используется на металлургических и металлообрабатывающих заводах для перемещения металлического лома и готовых деталей. На заводах часто работают со станками которые ещё называют "магнитные столы", на которых можно работать с железным или стальным изделиями которые закрепляются магнитами с помощью мощных электромагнитов. Нужно только включить ток, чтобы крепко закрепить деталь в любом нужном положении на столе, выключите ток, чтобы освободить изделие. При расфасовке магнитных руд от немагнитных, к примеру при очистке кусков железной руды от пустой породы , используют магнитные сепараторы, при которых очищаемая руда проезжает через мощное магнитное поле электромагнитов, собирающее из него все магнитные элементы.

Нам потребуется:

  • Железный гвоздь
  • Тонкая изолированная проволка (чем больше тем лучше)
  • Батарейка (любой мощности, не меньше 1.5V)
  • Обьекты для проверки магнита (скрепки, кнопки, булавки)
  • Устройство зачистки проводов (Необязательно)
  • Клейкая лента

Правила безопасности:

  1. Не пытайтесь подключать провода к розетке 220V. Наш электромагнит использует электричество, и когда вы подсоедините его к стандартному высокому напряжению, то тогда вас будет короткое замыкание во всём доме.
  2. У вас должно быть много свободной проволоки до батарейки. Если так будет, у вас не будет сильного электрического сопротивления, и батарейка самоуничтожится!
  3. Нашему электромагниту нужно только низкое напряжение. Если вы будете использовать высокое напряжение вас ожидает удар током.

А сейчас к инструкции:1.Обмотайте медную проволоку вокруг гвоздя, но так чтобы с каждого конца осталось где-то 30 см, следите за тем, чтобы проволока была закручена только в одну сторону или у вас будет два маленьких поля которые будут мешать друг-другу. ВАЖНО: Проволока должна быть накручена так, чтобы она лежала не далеко от предыдущего мотка, но и не была на нём.Подсказка: Чем больше слоев тем сильнее магнит, можно сделать даже многослойную.

2.Сейчас давайте очистим концы медной проволоки (где-то 3 см), желательно делать с устройством очистки проводов. Их надо очистить для лучшего прохождения тока. После очистки, концы будут выглядеть светлее чем неочищенная. 3.Возьмите один конец проволоки и подключите его к плюсу батарейки, а затем склейте их с помощью клейкой ленты, так чтобы они касались друг-друга. И если прижать пальцем то мы запустим магнит. ВАЖНО: Проволока и плюс батарейки должны соединяться постоянно. Что мы сделали: Мы соединили контакты в одну цепь (по сути это короткое замыкание) и образуют магнитное поле (об этом я уже написал выше). Чтобы ее выключить надо отпустить проволоку.

ГОТОВО!

Чему мы научились: Мы узнали как устроен простой электромагнит и как его сделать и где он применяется.Всем спасибо за то что вы прочитали это до конца! С вами был kompik92. Источник Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Электромагниты

Электромагниты

Подробности Категория: Электротехника

Электромагниты и их применение (реле, контактор)

В 1820 г. датский физик Х.К. Эрстед (1777-1851) обнаружил действие электрического тока на магнитную стрелку. Однако магнитное поле отдельного проводника очень слабое. Наиболее сильным магнитным действием обладает проводник с током, свернутым в виде спирали, если в нее вставлен стальной сердечник. Катушка со стальным сердечником получила название электромагнита.

  elmagnit

На рисунке изображен электромагнит(а) и его условное изображение на электрических схемах(б).Электромагниты создают сильные магнитные поля. Первый электромагнит был изготовлен в 1825 г. английским изобретателем Уильямом Стердженом (1783-1850). Он имел вид подковы из мягкого железа, на который был намотан изолированный медный провод. С помощью этого электромагнита, подключавшегося к химическому источнику тока, поднимали до трех килограммов железа.Более мощные подковообразные электромагниты сконструировал американский физик Джозеф Генри (1797-1878) в 1828 г., применив многослойную обмотку из изолированной проволоки, обеспечивая грузоподъемность до одной тонны. В настоящее время электромагниты могут поднимать груз от долей грамма до сотен тонн, потребляя электрическую мощность от долей ватт до десятков мегаватт.Используются электромагниты очень широко и имеют различные размеры (муфты сцепления, тормоза, выключатели, электрические машины, измерительные приборы и т.д.). Например, электромагнит Серпуховского ускорителя протонов длиною 1320 м состоит из 120 блоков общим весом 20 тыс. т. Несмотря на конструктивное разнообразие, все электромагниты состоят из следующих основных частей: катушки с токопроводящей обмоткой, намагничивающегося сердечника и якоря, передающего усилие деталям механизма.

  elmagnit2

Для снижения потерь энергии на нагревание сердечники выполняют из набора листов специальной стали. Подъемная сила электромагнита равна силе, которая необходима для отрыва от электромагнита притянутого им куска стали. Она определяется числом витков катушки, силой тока проходящего по катушке, магнитными свойствами сердечника.Электромагнит нашел широкое применение в устройстве электромагнитного реле (термин реле происходит от французского геlауег — сменять, заменять), которое построил впервые американский физик Джозеф Генри. Первоначально реле предназначалось для усиления сигнала электротелеграфа. Линия связи делилась на несколько участков, в конце каждого из них помещался электромагнит с подвижным якорем и контактами, позволяющими подключить новый участок линии связи с более мощным источником тока. Это была как бы «перепряжка» тока в пути — по аналогии с конной почтой, когда на промежуточных станциях происходила смена лошадей.Электромагнитное реле представляет собой электромеханический прибор, реагирующий на изменение величины или направления какого-либо параметра и позволяющий включать и выключать электрические устройства соответствующих участков электрической цепи. Реле широко применяется в системах автоматики, телеуправления, в аппаратах связи и т.п.  elmagnit3

С помощью установки, изображенной на рис. справа, а, выясняют принцип действия реле, контакты которого работают на замыкание цепи. Основная часть реле — электромагнит с сердечником П-образной формы, стальная пластинка (якорь), закрепленная на одном конце, и контакты, выполняющие роль выключателя другой электрической цепи (управляемой) со своим источником тока. Схема реле (рис. б) имеет две электрические цепи: цепь управления (1) и исполнительную или управляемую цепь (2). Первая состоит из электромагнита, источника тока и выключателя, вторая — из источника тока, лампы накаливания, замыкающих контактов реле.Как действует эта установка? При замыкании выключателя в цепи управления идет электрический ток, который, протекая по обмотке электромагнита, намагничивает его сердечник; к сердечнику притягивается якорь, замыкающий контакты и включающий исполнительную цепь со своим отдельным источником тока и потребителем (лампа накаливания, электродвигатель и др.). Кроме реле с разомкнутой контактной парой широко применяется электромагнитное реле с нормально замкнутой контактной парой.

Разновидностью реле являются электромагнитные контакторы,   которые  предназначены  для  дистанционного включения и отключения электрических цепей, рассчитанных на сравнительно большее значение силы тока (например, для управления работой мощных      электродвигателей троллейбусов, электрооборудования кранов и т.д.).

Контактор состоит из подвижных и неподвижных контактов и электромагнита, замыкающего контакты при прохождении тока по обмотке его катушки.  elmagnit4На рис. справа показана конструктивная схема однополюсного контактора. Контактор устанавливается на изоляционной панели 1. Он состоит из катушки 2 со стальным сердечником 3, подвижного  якоря   4,   силовых контактов 5, а также дугогасительной камеры и системы блокировочных контактов (нормально открытых и нормально закрытых).

Силовые контакты рассчитаны на включение и выключение значительных токов (десятки и сотни ампер). Блокировочные контакты используются для различного рода переключений в цепях управления и рассчитаны на относительно небольшую силу тока (доли и единицы ампера).

Если катушку электромагнита включают в цепь источника тока, то якорь контактора притягивается к сердечнику и замыкает силовые контакты. Одновременно с этим замыкаются нормально открытые и размыкаются нормально закрытые контакты.При отключении катушки электромагнита главные и блокировочные контакты возвращаются в исходное положение. В зависимости от числа контактных пар различают одно-, двух- и трехполюсные контакторы.

 elmagnit5Управление контактором производят с помощью кнопочной станции (рис. слева), состоящей из двух кнопок «Пуск» (черная) и «Стоп» (красная).

Кнопка «Пуск» в начальном положении разомкнута, а кнопка «Стоп» — замкнута. Кнопки соединены с металлическими пластинками 1, на которых установлены подвижные контакты 2. При нажатии кнопки «Пуск» неподвижные контакты 3 замыкаются, а при отпускании пружина 4 возвращает кнопку и контакты в исходное положение. При нажатии кнопки «Стоп» неподвижные контакты 3 размыкаются, а при отпускании кнопки они вновь замкнутся.Контактор вместе с кнопочной станцией представляет собой магнитный пускатель, применяемый для управления работой станков и других электротехнических устройств.

 

 

 

technologys.info

21. Электромагнитные исполнительные устройства » Бауманки.НЕТ

Глава 21

ЭЛЕКТРОМАГНИТНЫЕ   ИСПОЛНИТЕЛЬНЫЕ УСТРОЙСТВА

§ 21.1.  Назначение электромагнитных исполнительных устройств

Исполнительные устройства в системах автоматики предназначены для приведения в действие (т. е. для привода) раз­личных регулирующих органов, оказывающих непосредственное воздействие на объект управления с целью достижения выходной величиной этого объекта требуемого значения. Существует боль­шое разнообразие регулирующих органов: для изменения подачи жидкостей и газов в трубопроводах устанавливаются заслонки, клапаны, шиберы и краны; в подъемно-транспортных устройствах это различные контакторы, муфты, тормоза, вариаторы скорости; в осветительных и нагревательных электроустановках это различ­ные коммутационные аппараты.

Для воздействия па регулирующие органы необходимо выпол­нить механическую работу: повернуть заслонку или крап, соеди­нить две половинки муфты, переместить шестерню на валу короб­ки передач, замкнуть контакты и т. д. Входным сигналом испол­нительного устройства в электрических системах автоматики яв­ляется электрический ток или напряжение, а выходным сигна­лом — механическое перемещение.

Для преобразования электрической энергии в механическую служат электромагниты и электродвигатели. В данной главе будут рассмотрены только электромагнитные исполнительные устройст­ва. Электродвигатели являются электрическими машинами и изу­чаются  в  соответствующем  курсе.   Следует отметить,  что  почти всегда, когда ставится вопрос о разработке привода для регули­рующего органа, приходится делать выбор между двумя вариан­тами: электромагнит или электродвигатель. Основное преимуще­ство электромагнита — простота конструкции. У электродвигателя достоинств больше: высокий КПД, возможность получения любых скоростей и перемещений. Однако эти преимущества проявляются только в сравнительно сложных системах автоматики и при про­должительном режиме работы. При необходимости иметь неболь­шие перемещения (несколько миллиметров) и усилия (несколько десятков—сотен ньютон) электромагниты выгоднее, чем электро­двигатель с редуктором.

В предыдущих главах уже рассматривались электромагниты, используемые как составная часть электромагнитных реле и кон­такторов. В данной главе будут рассмотрены общие вопросы клас­сификации электромагнитов, их расчета, конструирования, приме­нения в качестве исполнительных элементов систем автоматики.

§ 21.2. Классификация электромагнитов

В зависимости от вида тока в обмотке электромагниты подразделяют на электромагниты постоянного и переменного то­ков, по скорости срабатывания — на быстродействующие, нор­мальные и замедленного действия. По назначению электромагни­ты разделяют на приводные и удерживающие.

Приводные электромагниты служат для выполнения механиче­ской работы. При подаче питания они перемещают различные ис­полнительные устройства: клапаны, толкатели, заслонки, золотни­ки, железнодорожные стрелки. Они перемещают контакты реле и контакторов, печатающие и перфорирующие устройства. Для выполнения этой работы электромагниты должны быть рассчита­ны на определенную силу и перемещение.

Удерживающие электромагниты служат не для перемещения, а лишь для удерживания ферромагнитных деталей. Например, электромагнит, используемый при подъеме железного металлоло­ма, только удерживает его, а перемещение осуществляется подъ­емным крапом. В этом случае, электромагнит выполняет лишь роль крюка подъемного крана. В металлообработке используются эле­ктромагнитные плиты для фиксации обрабатываемой детали на станке. Известны также электромагнитные замки. Поскольку удерживающие электромагниты не совершают работы, они рассчи­тываются лишь на определенное усилие. В некоторых случаях электромагнит имеет две катушки: одна, более мощная, исполь­зуется для перемещения якоря, а другая — лишь для удерживания якоря в притянутом положении.

Велико разнообразие электромагнитов специального назначе­ния. Они используются для фокусировки электронных пучков в телевидении, в ускорителях элементарных частиц, в разнообразных   измерительных   приборах,   в   медицинской   аппаратуре   и т. д.

По конструктивному выполнению различают клапанные (по­воротные), прямоходовые и электромагниты с поперечным движе­нием. Клапанные электромагниты имеют" небольшое перемещение якоря (несколько миллиметров) и развивают большое тяговое усилие.

Прямоходовые электромагниты имеют большой ход якоря и большее быстродействие; по размерам они меньше, чем клапан­ные. Часто они представляют собой соленоид (цилиндрическую катушку, втягивающую в себя ферромагнитный стержень), поэто­му их иногда называют соленоидными электромагнитами.

Рис. 21.1. Варианты конструктивных схем электромагнитов

Различные конструкции электромагнитов показаны на рис. 21.1. Несмотря на большое их многообразие (далеко не все возможные конструкции показаны на этом рисунке), все они состоят из ка­тушки 1, якоря (подвижного магнитопровода) 2, неподвижного магнитопровода (сердечника 3 и ярма 4). Кроме того, они имеют различные пружины, крепежные, фиксирующие и передающие де­тали, корпус. По конструкции магнитной цепи различают электро­магниты с разомкнутым (рис. 21.1, г, е) и замкнутым магнитопроводом (рис. 21.1, а, б, в, д, ж, з). По форме магнитопровода различают электромагниты с П-образным, Ш-образным и цилинд­рическим магнитопроводом.

Магнитопроводы электромагнитов постоянного тока обычно выполняются сплошными из магнитомягких материалов: обычных конструкционных сталей и низкоуглеродистых электротехнических сталей. Высокочувствительные электромагниты имеют магнитопровод из пермаллоев (сплавов железа с никелем и кобальтом). В быстродействующих электромагнитах стремятся к уменьшению вихревых токов, для чего используют электротехнические кремни­стые стали с повышенным электрическим сопротивлением и ших­тованный (наборный) магнитопровод.

Для уменьшения потерь на вихревые токи магнитопровод эле­ктромагнитов переменного тока собирают (шихтуют) из изолиро­ванных пластин толщиной 0,35 или 0,5 мм. В качестве материала используются горячекатаные и холоднокатаные электротехниче­ские стали. Отдельные части магнитопровода, которые трудно вы­полнить шихтованными, изготовляют из сплошного материала тол­щиной 2—3 мм.

Катушки электромагнитов по своей конструкции бывают кар­касные и бескаркасные, а по форме сечения — круглые и прямо­угольные. Провод каркасной катушки наматывают па каркас из изоляционного материала (текстолит, гетинакс, пластмасса). Про­вод бескаркасной катушки наматывают прямо на сердечник, об­мотанный изоляционной лентой, или па специальный шаблон. Для обеспечения прочности катушки, выполненной на шаблоне, ее об­матывают лентой (бапдажируют) и пропитывают компаундным лаком. Катушки, как правило, наматывают медным проводом с изоляцией, выбираемой исходя из назначения и условий работы электромагнита.

В зависимости от способа включения различают последова­тельные и параллельные катушки. Параллельные катушки име­ют большое число витков и наматываются тонким проводом. Обычно они включаются на полное напряжение сети. Последова­тельные катушки имеют сравнительно малое сопротивление, так как выполняются толстым проводом и с малым числом витков. Ток такой катушки определяется не ее сопротивлением, а зависит от тех устройств, с которыми катушка включена последовательно.

Различают также электромагниты, предназначенные для дли­тельной, кратковременной и повторно-кратковременной работы.

§ 21.3. Порядок проектного расчета электромагнита

Исходными данными для расчета электромагнита обыч­но являются требуемое тяговое усилие Fэ, ход (или угол поворо­та) якоря и напряжение питания U. Кроме того, в задании на проектирование указываются режим работы электромагнита и ус­ловия эксплуатации. Могут быть заданы требуемые быстродейст­вие, габариты, вес, стоимость.

В результате расчета необходимо выбрать конструкцию элект­ромагнита, материал магнитопровода, определить геометрические размеры магнитопровода и катушки, обмоточные данные.

На первом этапе проектного расчета необходимо выбрать кон­струкцию электромагнита, используя понятие конструктивного фактора А. Эта величина определяется в зависимости от тягового усилия  и хода якоря :

                                                  (21.1)

где — в Н; — в см.

При   используют прямоходовый электромагнит соленоидного типа; при  —прямоходовый с коническим стопой; при  -прямоходовый с плоским стопом; при 2,6<<26 — с поворотным якорем клапанного типа.

Форму электромагнита   выбирают  с учетом   необходимой  тя­говой характеристики.  На рис. 21.2 показаны типичные тяговые

характеристики электромагнитов. Если не­обходимо иметь пологую тяговую характе­ристику 1, то следует применять прямохо­довый электромагнит, если крутую 2 — кла­панный электромагнит. Ш-образпая форма электромагнита (5) используется преиму­щественно в схемах переменного тока.

На втором этапе выбирается индукция и определяется сечение магнитопровода.

Сила притяжения якоря в основном соз­дается магнитным потоком    в    воздушном зазоре.  Поэтому при    проектном    расчете влияние на тяговую силу потоков рассея­ния обычно не учитывается. Оптимальный магнитный поток и индукция    в    рабочем воздушном зазоре может находиться в весьма широких пределах и зависит от соотношения между тяговым усилием и величиной хода, т. е. от конструктивного фактора А. На рис. 21.3 приведены зависимости  индукции   от конструктивного  фактора для  трех конструкций электромагнитов (с плоским стопом, с коническим стопом, клапанного типа). После выбора по этим кривым индук­ции можно определить площадь сечения полюсного наконеч­ника. Напомним формулу (17.13), связывающую тяговое усилие  синдукцией в зазоре  и сечением полюсного наконечника При определении диаметра сердечника необходимо предвари­тельно задаться индукцией в стали   и коэффициентом рассея­ниямагнитной системы. Для мощных электромагнитовпри­нимается в пределах , для небольших магнитных си­стем реле — в пределах от . Коэффициент рассеяния  Меньшие значения берутся при малых ходах якоря, большие — для перемещений в несколько сантиметров. Сечение сердечника определяется по формуле

                                               (21.2)

Сечение ярма обычно принимается равным сечению сердечника , а сечение якоря — меньшим:

                                                              (21.3)

На следующем этапе определяются геометрические размеры электромагнита, связанные с размещением катушки. При протека­нии по катушке с числом витков тока  катушка должна соз­дать МДС, обеспечивающую индукцию в зазоре . Так как часть этой МДС теряется в паразитных зазорах и в стали магнитопро­вода, то следует учесть долю МДС, не участвующую в создании

Рис. 21.3. Зависимость индукции  в зазоре электромагнита и размеров катушки от величины конструктивного фактора

требуемого тягового усилия. Введем коэффициент , представляю­щий собой отношение МДС, не участвующей в создании тягового усилия, к общей МДС катушки. Тогда, полагая проводимость воз­душного зазора , определяем полную МДС катушки:

                                              (21.4)

 Ее можно уточнить при расчете магнитной цепи с использованием кривых намагничивания для выбранного материа­ла магнитопровода.

Соотношение  высоты  обмоточного пространства  катушки  к его ширине обычно выбирается    по    конструктивному фактору (нижняя кривая на рис. 21.3). Конкретные размеры ка­тушки выбирают на основании условий нагрева катушки. При этом учитываются режим работы, коэффициент теплоотдачи , способ намотки, влияющий на коэффициент заполнения  , изоляция про­вода, определяющая допустимую температуру . Кроме того, необходимо учесть и возможность снижения напряжения питания   до

С учетом этих факторов ширина обмоточного пространства ка­тушки определяется по формуле

                     (21.5)

Зная размеры катушки, можно определить все размеры магнитопровода электромагнита: высоту сердечника и ярма, расстояние между ними и т. д.

§ 21.4. Особенности расчета электромагнитов переменного тока

В электромагнитах переменного тока индукция в маг­нитной цепи изменяется по синусоидальному закону. Так как мак­симальное (амплитудное) значение индукции враз больше действующего значения, а величина тягового усилия пропорцио­нальна квадрату индукции, то электромагнит переменного тока при одинаковой степени насыщения магнитопровода развивает в два раза меньшее значение тягового усилия. Поэтому при опреде­лении конструктивного фактора для электромагнита переменного тока принимается удвоенное значение тягового усилия"

                            (21.6)

Оптимальные соотношения между высотой и шириной обмоточ­ного пространства катушки t = h/a получаются меньшими, чем для электромагнитов постоянного тока. Поэтому катушки элект­ромагнитов переменного тока будут короче и толще. Более корот­кая катушка уменьшает длину сердечника и его объем, что при­водит к снижению потерь в стали, вызванных гистерезисом и вих­ревыми токами. Этих потерь не было в электромагнитах постоян­ного тока. Там стремились к уменьшению потерь в меди, что обе­спечивалось уменьшением средней длины витка катушки за счет малой ее толщины. В электромагнитах переменного тока надо стремиться к уменьшению суммарных потерь (и в меди, и в ста­ли).

При уточненном расчете электромагнитов необходимо учиты­вать потоки рассеяния и падения МДС в нерабочих зазорах и в стали. Кроме того, в электромагнитах переменного тока необхо­димо учитывать потери на гистерезис  и на вихревые токи в магнитопроводе

Эти потери пропорциональны частоте питания, массе магнито­провода и индукции в квадрате. Для материалов, используемых в магнитной цепи электромагнита, в справочниках приводятся удельные потери (в зависимости от толщины листа и частоты) на единицу массы.

Число витков обмотки электромагнита переменного тока

                                            (21.7)

Диаметр провода определяется по допустимой с точки зрения нагрева плотности тока. При этом ток определяется с учетом по­терь в стали:

                                                               (21.8)

где —ток потерь в стали; —ток намагничивания.

Значения   и  можно определить с помощью электрической схемы замещения электромагнита (рис. 21.4). На схеме приняты следующие   обозначения:—активное   сопротивление   обмотки;

                  — индуктивное сопротивление, со­ответствующее рабочему потоку; — индуктивное сопротивление, соответ­ствующее потоку рассеяния; —ак­тивное сопротивление, обусловленное потерями в магнитопроводе на гисте­резис и вихревые токи.

Если пренебречь падением напря­жения на активном сопротивлении об­моткии потоком рассеяния, то ток потерь

                                                      (21.9)

 Намагничивающий ток, создающий рабочий магнитный поток, определяется по МДС   (). Если пренебречь падением МДС в стали и нерабочих зазорах, то

где—действующеезначение переменного магнитного потока в рабочем зазоре; —магнитная проводимость рабочего зазора.

Предварительный расчет электромагнита с короткозамкнутым витком проводится без учета экранирующего действия этого вит­ка. Точный расчет параметров короткозамкнутого витка довольно сложен. На практике его выполняют из меди или латуни таким образом, чтобы он охватывал примернополюса электромагни­та. При Ш-образном магнитопроводе короткозамкнутый виток 3 располагается на среднем (рис. 21.5, а) или на крайних стержнях (рис. 21.5, б). С витком на среднем стержне выполнены широко распространенные электромагниты серии МИС. Для уменьшения падения МДС в нерабочем зазоре между якореми сердечником 2 имеется так называемый воротничок 5. Номинальное тяговое усилие электромагнитов серии МИС изменяется от 15 до 120 Н при ходе якоря 15—30 мм. Механическая износостойкость состав­ляет примерно 106 циклов включений-отключений.

С витками на крайних стержнях (рис. 21.5, б) вы­ полнены       длинноходовые электромагниты серии ЭД. Они имеют Т-образный якорь 1. Тяговое усилие соз­дается во всех трех стерж­нях, т. е. магнитная цепь со­держит три рабочих зазора. Тяговое усилие электромаг­нитов серии ЭД достигает 250 Н при максимальном перемещении      якоря      до 40   мм.   Электромагниты   срабатывают   при   подаче   тока   в об­мотку 4.

§ 21.5. Электромагнитные муфты

Электромагнитная муфта предназначена для передачи вращающего момента двигателя к рабочему механизму. Муфта состоит из двух частей: ведущей и ведомой, — которые образуют замкнутую магнитную систему. Муфта выполнена из ферромагнит­ных материалов и имеет одну или несколько обмоток возбужде­ния.

Различают фрикционные муфты и асинхронные (индукцион­ные) муфты. Во фрикционных муфтах передача вращения проис­ходит за счет силы трения между ведущей частью, закрепленной на валу электродвигателя, и ведомой частью, которая может пе­ремещаться вдоль вала рабочего механизма на шлицах или шпон­ке. При подаче тока в обмотку возбуждения создается магнито­движущая сила и подвижная часть муфты прижимается к непо­движной. Такая муфта работает как электромагнит. Для передачи значительных моментов используются многодисковые конструкции электромагнитных муфт. Как на ведущем, так и на ведомом валу имеется несколько стальных дисков, которые под действием МДС притягиваются друг к другу и благодаря трению их поверхностей передается вращение. Соприкасающиеся поверхности фрикцион­ных муфт выполняют из специального материала — сплава фер-радо, имеющего коэффициент трения в 3—4 раза больший, чем у стали.

Различают конструкции электромагнитных фрикционных муфт с неподвижной катушкой электромагнита и с вращающейся ка­тушкой.

В маломощных муфтах (рис. 21.6, а) ведущая 1 и ведомая 2 полумуфты не имеют обмоток, но одна из них (обычно ведомая) может перемещаться вдоль вала по шпонке или шлицам. Обе муфты окружены неподвижной катушкой электромагнита 3, которая при подключении к напряжению создает магнитный поток. Воз­никающие электромагнитные силы прижимают ведомую полумуф­ту к ведущей. Момент трения между полумуфтами должен быть больше момента нагрузки на ведомом валу. При отключении ка­тушки муфты неподвижная полумуфта отжимается от подвижной с помощью пружины (на рисунке не показана). Обычно эта же пружина  прижимает полумуфту к тормозным поверхностям, что

обеспечивает быструю остановку ведомого вала. В мощных муф­тах (рис. 21.6, б) для увеличения величины передаваемого момен­та в подвижной части муфты используется несколько стальных дисков 2, имеющих свободу перемещения вдоль оси вращения ве­дущего и ведомого валов. Соответствующее количество стальных дисков 1 жестко закреплено на ведущем валу. На этом же валу закреплена катушка электромагнита 3, подача тока к которой осуществляется с помощью контактных колец и щеток. Электро­магнитные силы притягивают подвижные диски к неподвижным. Большая площадь соприкосновения обеспечивает большой момент трения.

В электромагнитных муфтах с ферромагнитным наполнителем (рис. 21.6, в) передача вращения осуществляется за счет того, что зазор между ведомой 1 и ведущей 2 полумуфтами заполнен смесью 4 из зерен ферромагнитного материала и наполнителя. При пропускании тока через катушку 3 муфты создается магнит­ный поток, заставляющий ферромагнитные зерна ориентироваться вдоль силовых линий и образовывать мостики, связывающие ве­дущую и ведомую полумуфты. Зерна ферромагнитного материала имеют размеры от 4 до 50 мкм. Наполнитель может быть сухим (тальк, графит) или жидким (трансформаторные и силиконовые масла, фтористые соединения).

Электромагнитные муфты с ферромагнитным наполнителем бо­лее надежны, чем фрикционные, имеют меньшее время срабаты­вания (до 20 мс). Необходима регулярная смена наполнителя.

В электромагнитных индукционных муфтах передача вращаю­щего момента происходит за счет индукционных токов, т. е. без непосредственного  механического  соприкосновения  обеих  частей муфты. Одна из частей муфты (рис. 21.7) имеет электромагнит­ные полюсы 1 с обмоткой возбуждения, питаемой постоянным то­ком. Она называется индуктором и конструктивно выполнена по­добно ротору синхронного генератора. Другая часть муфты имеет короткозамкнутую. обмотку 2, аналогичную роторной обмотке .асинхронного двигателя. Эта часть называется якорем. При вра­щении индуктора в обмотке якоря наводится ЭДС и идет ток. Взаимодействие этого тока с магнитным    потоком    возбуждения

создаст    электромагнитный    мо­мент,   приводящий   во   вращение якорь.   В  муфте    происходят те же физические процессы, что и в асинхронном     электродвигателе. Разница заключается в том, что вращение магнитного поля в дви­гателе   происходит   при   подаче трехфазного  переменного тока   в обмотку   неподвижного   статора, а в муфте вращение магнитного поля происходит за счет механи­ческого вращения индуктора, возбужденного   постоянным   током. Так же как и в асинхронном двигателе, вращающий момент возникает лишь при неодинаковой скорости индуктора и якоря. Ведомая   часть  муфты   вращается   с  частотой ,  где

 — частота вращения ведущего вала,—скольжение. Величина скольжения обычно составляет

Если момент нагрузки приводного механизма оказывается больше максимального момента муфты, то происходит опрокиды­вание— вращение ведомой части прекращается. Благодаря спо­собности к опрокидыванию муфта может защитить приводной двигатель от больших перегрузок. Величина вращающего момен­та, передаваемого муфтой, зависит от магнитного поля возбуж­дения. Изменяя ток возбуждения, можно регулировать величину критического момента муфты. Разница в скоростях вращения ве­домой и ведущей частей асинхронной муфты принципиально необ­ходима для создания вращающего момента на ведомой части. По­этому асинхронные муфты называют еще электромагнитными муф­тами скольжения. Они получили наибольшее распространение в качестве элемента регулируемого автоматизированного электро­привода переменного тока, включающего помимо муфты нерегу­лируемый электродвигатель и систему автоматического регули­рования тока возбуждения муфты. К достоинствам такого приво­да с муфтой скольжения относятся простота устройства и экс­плуатации, низкая стоимость, высокая надежность. Но с увеличе­нием скольжения растут потери мощности и КПД привода сни­жается.

studizba.com

Грузоподъемные электромагниты

Строительные машины и оборудование, справочник

Категория:

   Электрическое оборудование

Грузоподъемные электромагниты

Грузоподъемные электромагниты применяют в качестве грузозахватных приспособлений при разгрузке, погрузке и транспортировке изделий из ферромагнитных материалов (чугуна, магнитопроводящеи стали), которые представляют собой сплавы, обладающие высокой магнитной проницаемостью и малым сопротивлением магнитному потоку.

Преимущества грузоподъемных электромагнитов заключаются в следующем: – дистанционность управления, позволяющая производить захват грузов без непосредственного участия рабочего; – способность работать с горячими грузами, температура которых достигает 500 °С; удобство работы с грузами неопределенной формы, закрепление которых при других способах транспортировки представляет большие трудности и приводит к потере рабочего времени; – простота и быстрота захвата и опускания груза; – зависимость подъемной силы электромагнита от питающего напряжения и некоторых конструктивных факторов, что позволяет регулировать грузоподъемность в определенных пределах.

Грузоподъемные электромагниты типов М-22Б, М-40Б, М-42Б и М-62Б изготовляют круглыми, а типов ПМ-15 и ПМ-25А — прямоугольными. Электромагнит типа М-42Б представлен на рис. 5.27, а типа ПМ-15 — на рис. 5.28. Круглые электромагниты (кроме М-40Б) предназначены для транспортировки стальных и чугунных грузов относительно небольших размеров или неопределенной формы: плит, болванок, чугунных чушек, стружки, пакетов и рулонов листовой стали и т. п. Они применяются также на копровых участках металлургических предприятий для подъема бойных шаров, которыми дробят крупный чугунный металлолом. Для работы с бойным шаром используют как обычные круглые электромагниты, так и круглые со специальными сферическими полюсами типа М-40Б, которые при сохранении массы и мощности обладают большей грузоподъемностью и позволяют значительно повысить точность падения бойного шара.

Рис. 5.27. Электромагнит типа М-42Б1 — коробка контактных зажимов; 2 — контактная шпилька; 3 — выводная пластина; 4 — корпус; 5 — катушка; 6 — оболочка катушки; 7 — наружный полюс; 8 — асбестовая набивка; 9 — немагнитная шайба; 10 «— внутренний полюс; 11 — цепь; 12 — секция катушки

Круглые электромагниты могут служить также для транспортировки стальных и чугунных изделий, упакованных в деревянные ящики или бочки.

Прямоугольные электромагниты предназначены для транспортировки стальных и чугунных длинномерных грузов: рельсов, балок, труб, стали круглого и квадратного профилей, листовой стали и т.д. В зависимости от длины этих грузов применяют два, три и более прямоугольных электромагнитов, работающих одновременно на одной траверсе крана.

Рис. 5.28. Электромагнит типа ПМ-15

Рис. 5.29. Траверса крана с четырьмя попарно соединенными электромагнитами типа ПМ-15

В отдельных случаях, когда необходимо транспортировать рельсы или другой длинномерный прокат рядами, более широкими, чем длина электромагнитов (например, при погрузке рельсов на платформы), на траверсу крана целесообразно подвешивать по два спаренных по длине электромагнита. Так, подвесив по два спаренных электромагнита типа ПМ-15 (рис. 5.29), можно грузить рельсы рядами шириной, равной двум длинам электромагнита, т. е. 2200 мм. Чтобы сочленить два электромагнита, коромысла для их подвески достаточно заменить одним общим коромыслом или переоборудовать траверсу крана.

Круглые и прямоугольные электромагниты, кроме того, применяют:

1) на электрических станциях и в литейных цехах для сепарации металлических включений из каменного угля, перемещаемого на транспортерных лентах, и из формовочной земли.

В этих случаях электромагниты используют в длительном режиме работы (ПВ = 100 %), в связи с чем для ограничения чрезмерного нагрева катушек требуется снижать питающее напряжение до 140— 150 В. Чтобы повысить эффективность работы грузоподъемного электромагнита при сепарации, на транспортной ленте перед электромагнитом устанавливают металлоискатели. При появлении металлических включений металлоискатель подает импульс на форсировку электромагнита, после чего последний включается на повышенное напряжение в момент подхода к нему металла. В схеме с форсировкой приложенное длительно напряжение на электромагните следует дополнительно снизить по сравнению с указанными выше значениями. Такая схема позволяет существенно J усилить магнитное поле при ограниченном нагреве электромагнитов;

2) в местах, где требуется регулировать грузоподъемность.

Рис. 5.30. Кантовка слябов дость круглым электромагнитом

Электромагниты применяют для раскладки листовой стали на пачки по одному листу с последующим сбором их в пачку. Раскладку листов можно производить двумя способами:а) постепенным уменьшением тока в катушке электро магнита.Опыт раскладки круглым электромагнитом показал, что в поднятой пачке из 11 листов толщиной 5 мм каждый первый лист упал, когда ток составлял 37,5 % начального, второй — 26%, третий — 21%, четвертый — 10 %, девятый — 8,75 %, десятый — 7,5 %, одиннадцатый — 3,7 % ;б) сбросом отдельных листов с помощью коротких отключений электромагнитов.

Время отключения примерно 1 с. Таким способом раскладывают пачки до 10 листов. Второй способ раскладки более производительный. Чтобы собрать разложенные листы в пачку, необходимо задерживать электромагнит на 1—2 с над листами при расстоянии от листа 100—150 мм;

3) для кантования слябов и листов.

При кантовании лист захватывают за край, поднимают и, двигая 1 кран, опускают, при этом лист переворачивается. Сляб при кантовании захватывают на половину его ширины (рис. 5.30). Подняв его на высоту около 4 м, электромагнит отключают, сляб отрывается и, переворачиваясь в воздухе, падает. Можно кантовать два сляба одновременно.

Катушка электромагнита рассчитана на напряжение 220 В постоянного тока. Если кран питается от сети переменного тока, обычно для питания электромагнита используют двигатель-генераторную установку, мощность генератора которой должна быть не меньше максимальной мощности, потребляемой электромагнитами и разрядными сопротивлениями. В настоящее время начали применять выпрямительные установки вместо машинных.

Катушка электромагнита рассчитана на работу в повторно-кратковременном режиме с ПВ = 50 % при длительности цикла 10 мин. Если относительная продолжительность включения превышает 50 %, необходимо уменьшить напряжение на контактных зажимах электромагнита, чтобы ограничить чрезмерный нагрев его катушки. Но напряжение на аппаратуре управления должно сохраняться на уровне 220 В. Напряжение снижают, включая добавочное сопротивление последовательно с обмоткой электромагнита. Подъемная сила электромагнита при этом несколько уменьшается.

Значения напряжения на зажимах электромагнита при ПВ > 50 % приведены ниже.

ПВ, % 60 70 80 90 100

Напряжение, В …….. 200 185 173 164 155

Подъемная сила электромагнита зависит от формы, размеров, температуры и химического состава поднимаемых грузов, а также от следующих факторов.

1. С увеличением процентного содержания углерода и примесей (марганца, фосфора, серы) подъемная сила снижается.

2. Нагрев катушки увеличивает ее сопротивление, что приводит к уменьшению тока и числа ампер-витков, а значит, к снижению магнитного потока и подъемной силы электромагнита; поэтому грузоподъемность электромагнита в нагретом состоянии меньше, чем в холодном. В холодном состоянии сопротивление катушки в 1,4— 1,6 раза меньше, чем при достижении установившейся температуры (130—160 °С), а ток соответственно выше.

Степень снижения подъемной силы при уменьшении тока зависит от насыщения магнитной системы. С увеличением насыщения, что происходит при подъеме сплошной плиты, падение ее от нагрева обмотки менее заметно.

Следует помнить, что преждевременное включение электромагнита и задержка его отключения приводят к дополнительному нагреву катушки и снижению подъемной силы.

В начале работы или при работе с относительной продолжительностью включения менее 50 % температура катушки ниже допустимой, ток выше и грузоподъемная сила также выше.

3. Магнитная проницаемость в интервале температур 200—720 °С снижается, уменьшая подъемную силу, и в конце этого интервала достигает нуля. Кроме того, при длительном воздействии высокой температуры груза катушка дополнительно подогревается и увеличивается ее сопротивление, в связи с чем грузоподъемная сила снижается.

4. Грузоподъемность электромагнита в зависимости от формы, размеров и укладки груза изменяется в 50— 75 раз. Чем больше площадь сечения поднимаемого груза и чем меньше воздушные промежутки между его отдельными частями, а также между грузом и полюсами электромагнита, тем выше подъемная сила электромагнита. Значения подъемной силы электромагнитов типов М и ПМ в зависимости от вида груза приведены в табл. 5.9 и 5.10.

Таблица 5.9Наружный диаметр, масса и подъемная сила электромагнитов типа М

Таблица 5.10 Размеры, масса и подъемная сила электромагнитов типа ПМ

Конструкция электромагнитов отличается высокой прочностью. Электромагниты работают в тяжелых условиях и должны выдерживать удары при падении на груз и удары притягивающихся грузов.

Корпус круглого электромагнита выполнен в виде массивной стальной отливки с наружным и внутренним полюсами. Внутри корпуса помещена катушка. Снизу катушка защищена немагнитной шайбой из высокомар-ганцевистой стали, приваренной к корпусу.

Шайба вместе с корпусом обеспечивает надежную герметичность катушки и предотвращает попадание внутрь ее влаги. Катушка удерживается внутренним и наружным полюсами и немагнитной шайбой. Корпус и полюсы, являющиеся магнитопроводом электромагнита, отлиты из малоуглеродистой стали, обладающей относительно большой магнитной проницаемостью. Корпус обеспечивает механическую прочность магнита и защиту катушки. Для увеличения жесткости он выполнен с ребристой поверхностью, что несколько увеличивает площадь поверхности охлаждения и тем самым снижает нагрев.

Немагнитная шайба из высокомарганцовистой стали обладает высокой механической прочностью, благодаря чему защищает катушку от удара о груз, и значительной магнитной проницаемостью, что исключает шунтирование магнитного потока.

Обмотка электромагнита типа М-22Б изготовлена в виде одной секции из провода со стекловолокнистой изоляцией и пропитана теплостойкой эмалью. Обмотки электромагнитов типов М-40Б, М-42Б и М-62Б состоят соответственно из четырех и шести секций, намотанных голой медной лентой и пропитанных теплостойкой эмалью. Секции соединены последовательно и изолированы одна от другой теплостойким изоляционным материалом.

Обмотку электромагнита собирают в корпус, относительно которого по внутреннему и наружному диаметрам производят расклинку секций. После приварки нижней металлической шайбы все пустоты заполняют теплостойкой полимеризирующейся заливочной массой. Заливка и расклинка обмотки надежно закрепляют секции в корпусе, исключают их перемещение во время работы и тем самым повышают срок службы электромагнитов.

Полюсы электромагнитов типов М-22Б, М-40Б и М-42Б соединяют с корпусами при помощи электросварки. В электромагните типа М-62Б наружный полюс закреплен на корпусе электросваркой, а внутренний полюс, подверженный большему износу, — пятью шпильками, что несколько упрощает его замену.

Выводы катушки, выполненные из гибкого многожильного провода с надежной изоляцией из теплостойкой резины, выходят из корпуса через проходные изоляторы и присоединяются к контактным шпилькам, которые закреплены в коробке контактных зажимов, расположенной на верхней части корпуса. Коробка Контактных зажимов при достаточной надежности позволяет относительно быстро отключать и присоединять электромагнит. Она состоит из изоляционной панели с двумя контактными шпильками, к нижней квадратной части которых присоединены выводные концы катушки электромагнита, а к верхней части — подводящий кабель. Изоляционная панель закреплена на корпусе тремя болтами.

Контактные шпильки сверху закрыты изоляционной крышкой, защищающей зажимы от попадания металлической стружки и других мелких предметов. Крышка удерживается тайкой. Герметичность выводов обеспечивается резиновой прокладкой и уплотняющими шнурами.

В верхней части корпуса над секциями обмотки размещена выталкивающая стальная шайба, облегчающая разборку электромагнита при ремонте. При отжиме шайбы болтами, ввернутыми в резьбовые отверстия вместо пробок, выталкиваются одновременно все секции обмоток с сохранением их изоляции. В рабочем состоянии электромагнита отжимные отверстия герметически закрываются пробками. Немагнитная шайба имеет ячейки, заполненные асбестовой набивкой, служащей теплоизоляцией катушки при высокой температуре груза. Теплоизоляция катушки и обмотки позволяет использовать электромагнит для работы при нагретых до 500 °С грузах.

Электромагнит подвешивают на цепи, состоящей из трех элементов (смычек), закрепленных в проушинах корпуса. Одна из смычек имеет на одно звено меньше, чем две другие. Нижнее звено ее повернуто на 90° относительно остальных, что соответствует взаимному расположению проушин. Это приводит к устранению закручивания смычек, в результате чего электромагнит, подвешенный на цепи, висит строго горизонтально. Корпус электромагнита прямоугольной формы (см. рис. 5.28) закрыт с торцов двумя немагнитными крышками. Катушка, в отличие от круглого электромагнита, защищена снизу двумя немагнитными плитами, которые удерживаются внутренним и двумя наружными полюсами. Полюсы закреплены на корпусе при помощи шпилек и болтов, ввинченных в глухие отверстия полюсов и тем самым защищенных от повреждения грузом.

Немагнитные плиты снабжены карманами, заполненными асбестовой набивкой, которая имеет то же назначение, что и в круглых магнитах. Обмотка электромагнита типа ПМ-15 состоит из двух секций, намотанных медным проводом со стекловолокнистой изоляцией и пропитанных теплостойкой эмалью.Обмотка электромагнита ПМ-25А составлена из восьми секций, намотанных голой медной лентой с межвитко-вой изоляцией тонкой асбестовой бумагой. Обмотки электромагнитов ПМ-15 и ПМ-25А заключены в герметическую оболочку, сваренную из листовой стали, вместе с внутренним сердечником, являющимся частью магнитопро-вода. Пустоты оболочки после сварки заполняют теплостойкой полимеризующейся заливочной массой.

Выводы катушки выполнены так же, как в круглых электромагнитах. Подвешивают электромагнит, используя коромысло с отверстием для зацепления на траверсе крана.

Обмоточные данные электромагнитов приведены в табл. 5.11.

Аппаратура управления электромагнитами состоит из рубильника, командоконтроллера ВУ-501 и магнитного контроллера типа ПМС-50 или ПМС-150. Рубильник служит только как разъединитель и не предназначен для отключения рабочего тока электромагнита.

Таблица 5.11 Обмоточные данные катушек электромагнитов

Барабан с двумя кулачковыми шайбами командоконтроллера ВУ-501 расположен внутри силуминового корпуса. При повороте рукоятки барабана шайбы замыкают или размыкают два кулачковых контакта. Командоконтроллер имеет три фиксированных положения и допускает любую схему замыкания контактов путем перестановки кулачковых шайб.

Магнитный контроллер снабжен пылезащищенным шкафом, на изоляционной панели которого размещена аппаратура управления. На крышке шкафа смонтировано разрядное сопротивление, закрытое брызгозащищенным металлическим кожухом.

Разрядное сопротивление необходимо для того, чтобы снизить перенапряжение, возникающее при отключении электромагнита. Эти перенапряжения вызваны тем, что магнитный поток при разрыве цепи обмотки электромагнита индуктирует в ней ЭДС, которая достигает 5000 В и может пробить изоляцию обмотки. Разрядное сопротивление наглухо подключается параллельно к зажимам кабеля, питающего электромагнит, и на протяжении работы электромагнита оно потребляет дополнительно электрическую энергию.

Таким образом, разрядное сопротивление является лишней нагрузкой, не производящей полезной работы, но оно необходимо для защиты обмотки электромагнита от перенапряжений. С целью уменьшить расход энергии в разрядном сопротивлении нужно выбирать его возможно большим. Но с ростом разрядного сопротивления возрастают и перенапряжения на обмотке в момент выключения. В связи с этим выбирают такое разрядное сопротивление, чтобы перенапряжения на обмотке не превосходили 700—800 В.

Данные аппаратуры управления в зависимости от типа и числа электромагнитов представлены в табл. 5.12.

Принципиальные схемы управления электромагнитами приведены ниже: схема управления с реле времени — на рис. 5.31, схемы управления без реле времени — на рис. 5.32. Схема с реле времени работает следующим образом. При включении командоконтроллера SA замкнутся контакты К1 и К2, сработает реле КТ, открытый блок-контакт К1 замкнется, сработает реле КЗ, через электромагнит пойдет ток и он намагнитится.

Таблица 5.12 Данные аппаратуры управления электромагнитами

Замкнутый блок-контакт КТ разомкнётся, катушки контакторов К.4 и К5 не включатся, и эти контакторы будут открытыми.

При размыкании командо-контроллера SA сначала разомкнутся контакторы К1 и К2. Контактор К1 своим блок-контактом К1 отключит катушку im “ реле КЗ, но реле имеет выдержку времени на отключение около 3 с, и его контакты КЗ в цепи Катушек контакторов К4 и К5 останутся замкнутыми.

Рис. 5.31. Принципиальная схема управления электромагнитами с реле времени

Рис. 5.32. Принципиальная схема управления магнитными контроллерами ПМС-50 (слева) и ПМС-150 (справа)

Реле КТ разомкнётся с выдержкой времени 0,2 с, и питание к катушкам К4 и К5 будет подано через 0,2 с после размыкания контакта SA.

Через 0,2 с контакторы К4 и К5 замкнутся и начнется размагничивание, которое продолжится до тех пор, пока не разомкнутся контакты реле времени КЗ. После размыкания этих контактов контакторы размагничивания отключаются.

Реле КТ имеет выдержку времени на замыкание 0,2 с, чтобы контакторы К1 и К2 полностью разомкнулись, и только после этого будут включены втягивающие катушки контакторов К4 и К5.

Если почему-либо контакторы К1, К4, К2 и К5 замкнутся одновременно, то короткого замыкания не произойдет, так как будут включены сопротивления Rl—R4 между контактами К1 и К2 и сопротивления R2, R3 между контактами К4 и К2.

Недостатками этой схемы являются большое количество контакторов и два реле времени, которые требуется довольно часто регулировать и настраивать.Схема магнитного контроллера ПМС-50 без реле времени (см. рис. 5.32) работает следующим образом. Замыканием рубильника Q подают напряжение на контроллер. При повороте рукоятки командоконтроллера ВУ-501 на позицию «Подъем» замкнется контакт SA и напряжение будет подано на катушку контактора К1, он замкнется, замкнутся контакты К1 главной цепи и разомкнётся блок-контакт в цепи втягивающей катушки контактора К.2.

При полном размагничивании электромагнита автоматически отключается контактор К2, так как направление тока в катушке электромагнита и в сопротивлении 6—R4 меняется на обратное, и катушка контактора К2 оказывается включенной на разность падений напряжения на участках 6—R4 и R4—7, потому что ток на участке R4—7 сохранил прежнее направление. Контактор К2 отключается при токе размагничивания, равном 10—20 % рабочего тока холодной катушки, и груз отпадает.

Отключаясь, контактор К2 отключает от сети электромагнит, который остается замкнутым на разрядное сопротивление. При замкнутом блок-контакте контактора К1, включенном в цепь катушки контактора К2, невозможно одновременное включение контакторов К1 и К2.

Таблица 5. 13Аппаратура, входящая в комплект магнитных контроллеров типа ПМС

Рис. 5.33. Схема пуска защиты генератораКК — тепловое реле; KV — ле напряжения; КМ — магнитный пускатель; FU — предохра нитель; G — генератор двигатель

Корпус электромагнита, питающегося от выпрямителя, необходимо заземлять, а при питании его от двигателя-генератора заземления не требуется. С 1976 г. электромагниты выпускают с питанием от трехжильного кабеля, одна жила которого служит для его заземления.

Большинство кранов, снабженных грузоподъемными магнитами, работает на переменном токе, и поэтому для питания этих магнитов постоянным током необходимо иметь двигатель-генераторную установку. В состав этой установки входят генератор постоянного тока с параллельным возбуждением и асинхронный электродвигатель трехфазного тока с короткозамкнутьш ротором, соединенные между собой муфтой, магнитный пускатель для включения асинхронного электродвигателя и регулятор возбуждения генератора.

Примерные комплекты электрооборудования для питания некоторых электромагнитов нормального исполнения приведены в табл. 5.14.

Магнитные пускатели соответствуют мощности приводного двигателя при питании его от сети напряжением 380 В.

Для преобразования переменного тока в постоянный можно использовать также выпрямители селеновые, кремниевые и др. На кранах постоянного тока, работающих при напряжении 220 В, отпадает потребность в установке двигателя-генератора и аппаратуры его управления; нужны лишь схемы и аппаратура управления электромагнитами.

Таблица 5.14Электрооборудование для питания электромагнитов

При питании грузоподъемного электромагнита от двигатель-генераторной установки может возникнуть необходимость в защите генератора от короткого замыкания в кабеле, питающем электромагнит. Для этой цели рекомендуется использовать реле напряжения РЭВ-84 или аналогичное ему, включенное по схеме, приведенной на рис. 5.33.

Читать далее: Электрооборудование мостовых кранов

Категория: - Электрическое оборудование

Главная → Справочник → Статьи → Форум

stroy-technics.ru

Как работает электромагнит?

Открыв, что электрические токи создают магнитные поля, ученые разработали магниты, работающие на электричестве, которые, в отличие от постоянных, можно легко включать и выключать. Как показано на рисунке справа, такой электромагнит может состоять из электрической батареи, подсоединенной к проволочной катушке (соленоиду), внутри которой размещен ферромагнитный сердечник (обычно железный).

Магнитное поле, образованное текущим по проволоке электрическим током, намагничивает металлический сердечник точно так же, как постоянный магнит намагничивает кусок железа.

До тех пор, пока электрический ток течет по проволоке, электромагнит ведет себя аналогично постоянному магниту: силовые линии магнитного^ поля идут по дуге из северного полюса электромагнита в южный (как правило, под прямым углом^на-правлению электрического тока, в соответствии с законами электромагнетизма). Если направление электрического тока изменяется на противоположное, магнитные полюсы меняются местами и силовые линии также разворачиваются в противоположном направлении. Однако общая форма магнитного поля не изменяется. Конфигурация силовых линий магнитного поля остается постоянной, пока не изменится форма самой проволоки. Электродвигатели, генераторы и многие другие виды электрооборудования используют в своей работе законы электромагнетизма.

Формы магнитных полей

Электрический ток, текущий вверх по прямолинейному проводнику, создает магнитное поле, силовые линии которого образуют концентрические окружности, направленные против часовой стрелки. Изменение направления тока приведет к развороту силовых линий магнитного поля, и они станут направлены по часовой стрелке.

Одинарный виток проволоки с током, текущим против часовой стрелки, создает магнитное поле, силовые линии которого проходят непосредственно через свободный центр витка, затем идут вверх или в стороны и назад, образуя концентрические окружности.

Магнитное поле многовитковой катушки

Каждый виток проволочной катушки с током (соленоида) ведет себя аналогично одинарному витку. Общая конфигурация магнитного поля, окружающего соленоид, складывается из индивидуальных магнитных полей, создаваемых витками.

Определение направления поля

Для определения направления силовых линий магнитного поля вокруг проволочной катушки с током физики представляют, что обхватывают ее правой рукой так, чтобы ток входил в катушку со стороны ребра ладони. Отогнутый большой палец указывает направление магнитного поля.

information-technology.ru


Каталог товаров
    .