Для того чтобы изготовить шунт, надо рассчитать его сопротивление. Заходим на страницу «Карта сайта», выбираем категорию «Программы», заходим в заметку «Программы» и скачиваем «Программу для работ с проволокой». Так, программа есть. Теперь берем измерительную головку, лучше, если она будет с током полного отклонения стрелки 50 или 100 микроампер. Эти параметры называются чувствительностью измерительной головки. Произведем расчет для головки с током в 50 микроампер. Зададимся измеряемым током, допустим 10А. 1) Замеряем сопротивление прибора (головки), для моей оно равно 1454 Ома.2) В формулу 1 подставляем все имеющиеся данные: Ток прибора — Iприбора=0, 00005А; Ток измеряемый — Iизмеряемый=10А. Сопротивление прибора Rприбора= 1454 Ома.3) Определили сопротивление шунта Rш=0,00727 Ом. Открываем программу. Нажимаем вверху на вторую клавишу для определения длины шунта. Справа из выпадающего списка выбираем материал для шунта. Я для таких амперметров в качестве материала всегда использую светлую луженую жесть от консервных банок из-под сгущенного молока. И так, выбираем сталь. Если будет уж очень сильно греться, то ширину можно увеличить и пересчитать шунт. Определяем площадь сечения нашего шунта S=0,2×9=1,8 квадратных мм. Выбираем величину ввода — «площадь поперечного сечения». Вводим это значение в соответствующее окно. Вводим величину необходимого сопротивления шунта. Нажимаем на «Результат» и получаем длину проводника равной 74 миллиметрам. Берем банку 1 (Фото 1) и вырезаем из ее жести соответствующую полоску. На фото я показал, какие формы можно придавать шунту. Под номером 4 шунт для печатного монтажа, концы полоски припаиваются к печатным площадкам. Вообще я всегда немного увеличиваю длину таких шунтов, что ведет к увеличению их сопротивления и в следствии с этим увеличению падения напряжения на на данном шунте при одном и том же токе. Зато появляется возможность точно отрегулировать показания амперметра с помощью добавочного резистора, включенного последовательно с измерительной головкой. См. фото2. Фото_2 Конечно, в качестве шунтирующего резистора можно использовать и медный обмоточный провод, но тогда шунт будет очень длинным. Хотя давайте попробуем. Вводим новые данные в соответствующие окна. Смотрим следующий скиншот_2. Получаем шунт в виде проволоки длиной 51см. Не стоит сматывать проволоку в катушку и концентрировать тепло в одном месте. Просто проденьте этот кусок проволоки во Скриншот_2 фторопластовую трубочку и используйте его, как монтажный провод к выходной клемме вашего блока питания. Естественно от концов этого шунта пойдут два провода к измерительной головке. Просмотров:56 759 www.kondratev-v.ru Определение многих параметров радиоэлектронной аппаратуры в конечном итоге сводится к измерению переменных напряжений различной формы. На практике радиолюбителю приходится сталкиваться со всеми четырьмя значениями переменного напряжения: средним значением — Uо, средневыпрямленным — Uср.в, среднеквадратичным — U и пиковым — Um. Среднее значение напряжения равно его постоянной составляющей; средневыпрямленное значение — среднему значению абсолютной величины переменного напряжения; среднеквадратичное — корню квадратному из среднеарифметического значения квадратов мгновенных значений напряжений за данный отрезок времени, а пиковое — наибольшему мгновенному значению напряжения за время измерения Т. Естественно, что и вольтметры переменного напряжения также подразделяются на линейные, показания которых пропорциональны Uср.в, квадратичные, показания которых пропорциональны U, и импульсные, показания которых пропорциональны Um. Но наибольший интерес для радиолюбителей представляет среднеквадратичное значение напряжения, так как именно ему пропорциональна мощность выделяемая на нагрузке. Поэтому шкалы вольтметров всех типов градуируются в среднеквадратичных значениях напряжения синусоидальной формы. И нельзя забывать, что показания такого вольтметра будут верны только при измерении напряжения данной формы. Типичными случаями ошибочного применения линейных вольтметров являются измерение уровня помех и шумов, пульсации постоянных питающих напряжений, напряжения гармоник, напряжений импульсной формы и т. п. В большинстве случаев результаты измерений оказываются существенно заниженными что приводит к искусственному завышению параметров качества (т.е. уменьшению уровня помех, шумов, напряжения пульсаций, коэффициента гармоник и т. д.) исследуемых устройств.Вольтметры истинных среднеквадратичных значений, показания которых верны для напряжений любой формы, значительно сложнее линейных. Это обусловлено необходимостью применения для выпрямления квадратичных детекторов. Построить такой вольтметр можно используя операционные усилители. Измерение тока различной формы сводится в итоге тоже к измерению падения напряжения на сопротивлении шунта. Схема среднеквадратичного амперметра, предназначенного для калибровки измерительных головок для амперметров импульсных зарядных устройств (тиристорных, транзисторных), представлена на рисунке. Измеряемый ток прибора 15 ампер. Выбор данного предела был обусловлен наличием у меня головки от тестера Ц4313, у которого шкала имеет тридцать делений, 15-ть кратно 30-ти. Сложность схемы кажущаяся и при правильном монтаже начинает работать сразу. Напряжение падающее на сопротивлении шунта Rш поступает на каскад выделения абсолютной величины напряжения, выполненного на элементе DA1.1 микросхемы К1401УД2А по схеме двухполупериодного выпрямителя. Положительна волна напряжения со входа проходит на преобразователь через резистор R4 напрямую, а отрицательная полуволна инвертируется и подается через резистор R7. На элементах DA1.2 и DA1.3 собран непосредственно сам среднеквадратичный преобразователь. С выхода преобразователя постоянное напряжение, соответствующее среднеквадратичному входного, с движка подстроечного резистора R9, подается на вольтметр (R10, измерительная головка.) Можно подключить и внешний вольтметр, например мультиметр. В качестве шунта я использовал десять двухваттных резисторов включенных параллельно (что было в наличии) Фото 1. Можно конечно поставить один проволочный на 0,1 Ома. При прохождении через него среднеквадратичного тока величиной 15А, на нем будет выделяться мощность Р = I2•R = 225•0,1 = 22,5Вт. Не забывайте это. Рассчитать сопротивление добавочного резистора R10 для вашей измерительной головки, можно заглянув сюда. Рассчитывайте сопротивление на напряжение 0,1 вольта, недочеты компенсируете резистором R9. Калибровка прибора проста. Пропускаете через прибор постоянный ток в любом направлении известной величины (например 3 ампера) и резистором R9 устанавливаете стрелку вашего прибора на третье деление шкалы. Показания прибора, при изменении полярности подключения, должны быть примерно одинаковы. В противном случае, изменяя величину резистора R4, можно выровнять напряжения полуволн. Шкала линейная, поэтому хватит и одного раза калибровки. Лучше в середине шкалы. Литература:Среднеквадратичный милливольтметр. Н. Сухов Радио 1981 №11 стр.53Регулируемый регулятор мощности В.Тушнов Схемотехника 2003 №3 стр.4Гутников В.С. Интегральная электроника в измерительных устройствах (1988) стр.117-120 Просмотров:18 274 www.kondratev-v.ru Cтраница 1 Схемы амперметров и миллиампер-вателем изображена на рис. метР в термоэлектрической системы. [1] Схема амперметра строится таким образом, чтобы по обмоткам неподвижных катушек проходил почти весь измеряемый ток, а по рамке - только малая часть его ( пропорциональная измеряемой величине. С этой целью рамка амперметра шунтируется ( рис. 5 6), вследствие чего как температурная, так и частотная погрешности определяются главным образом параметрами разветвленной цепи и могут быть значительными. Эти погрешности ограничиваются рациональным выбором параметров схемы. Последовательно с рамкой включается компенсационное сопротивление из манганиновой проволоки, поэтому с изменением температуры суммарное сопротивление цепи рамки изменяется незначительно. [2] Схема амперметров Д570 подобна схеме прибора Д553 ( см. рис. 20), только переключение производится с помощью зажимов и рамки не зашунтиро-ваны. [4] Такая схема амперметра не нарушает режим работы цепи и предохраняет выпрямитель В от пробоя. Чувствительность таких приборов выше, и, в отличие от приборов с однополупериодным выпрямлением, они позволяют правильно измерять токи, содержащие постоянную составляющую. В сочетании с шунтами схема двухполупериодного выпрямления образует различные измерительные цепи выпрямительных амперметров. [6] На рис. 19 показаны схемы четырехпредельного амперметра с шунтами. [8] На рис. 104 изображена схема автомобильного амперметра. [9] Точное определение тока может быть получено при использовании для измерений схемы амперметра с нулевым сопротивлением. При помощи реостата 14 ток батареи, направленный противоположно току протекторной установки, регулируют до тех пор, пока стрелка гальванометра, включенная на наиболее чувствительной шкале, не установится на нуль. При этом ток, проходящий через амперметр, будет равен измеряемому току установки, с исключением падения напряжения в амперметре и соединительных проводах за счет компенсации этого падения током батареи. [10] Перед настройкой фильтра на минимальный небаланс необходимо сверить три используемых в схеме амперметра, для чего пропускают через них один и тот же ток, равный ( 2 - - 3) / ном, при котором будет производиться настройка. [11] В последние годы стали отказываться от применения показывающего прибора, включенного по схеме амперметра, и переходить на измерение напряжения на контактах пирометрической лампы, так как этот способ позволяет лучше использовать шкалу электроизмерительного прибора. Такое использование имеет место в приборе ОППИР, выпускаемом нашей приборостроительной промышленностью. [12] Исходные данные для инерционного метода могласно (2.6) определяются по инерционным графикам, в связи с чем квадратор в схеме инерционного амперметра становится лишним. Применительно к [6] постоянная инерции принимается равной 10 мин ( Т 600 с), но при измерениях целесообразно устанавливать фактическое значение постоянной нагрева проводника или электроприемника. [14] Выпрямительные приборы могут работать по одно-и двухполупериодной схеме выпрямления. Такая схема амперметра не нарушает режим работы цепи и предохраняет выпрямитель В от пробоя. [15] Страницы: 1 2 www.ngpedia.ru На рисунке 1 представлена схема цифрового амперметра и вольтметра, которая может быть использована, как дополнение к схемам блоков питания, преобразователей, зарядных устройств и т.д. Цифровая часть схемы выполнена на микроконтроллере PIC16F873A. Для отображения информации используются светодиодные индикаторы с общим катодом. Один из операционных усилителей микросхемы LM358 используется в качестве повторителя напряжения и служит для защиты контроллера при внештатных ситуациях. Все-таки цена контроллера не так уж и мала. Измерение тока производится косвенным образом, при помощи преобразователя ток-напряжение, выполненного операционном усилителе DA1.2 микросхемы LM358 и транзисторе VT1 — КТ515В. Почитать о таком преобразователе еще можно здесь и здесь. Датчиком тока в этой схеме служит резистор R3. Преимуществом такой схемы измерения тока состоит в том, что здесь отпадает необходимость точной подгонки миллиомного резистора. Скорректировать показания амперметра можно просто триммером R1 и в довольно широких пределах. Сигнал тока нагрузки для дальнейшей оцифровки снимается с нагрузочного резистора преобразователя R2. Напряжение на конденсаторе фильтра стоящем после выпрямителя вашего блока (вход стабилизатора, точка 3 на схеме)питания не должно быть более 32 вольт, это обусловлено максимальным напряжением питания ОУ. Максимальное входное напряжение микросхемного стабилизатора КР142ЕН12А — тридцать семь вольт. Регулировка вольтамперметра заключается в следующем. После всех процедур — сборки, программирования, проверки на соответствие на собранное вами произведение подают напряжение питания. Резистором R8 выставляют на выходе стабилизатора КР142ЕН12А напряжение 5,12 В. После этого вставляют в панельку запрограммированный микроконтроллер. Измеряют напряжение в точке 2 мультиметром, которому вы доверяете, и резистором R7 добиваются одинаковых показаний. После этого к выходу (точка 2) подключают нагрузку с контрольным амперметром. Равенства показаний обоих приборов в данном случае добиваются при помощи резистора R1. Резистор-датчик тока можно изготовить самому, используя для этого, например, стальную проволоку. Для расчета параметров этого резистора можно использовать программу «Программа для работы с проволокой» Программу скачали? Открыли? Значит так, нам нужен резистор номиналом в 0,05 Ом. Для его изготовления выберем стальную проволоку диаметром 0,7мм — у меня она такая, да еще и не ржавеющая. С помощью программы вычисляем необходимую длину отрезка, имеющего такое сопротивление. Смотрим скрин окна данной программы. АРХИВ:Скачать cxema.my1.ru Амперметр и вольтметр, имея одинаковые по устройству измерительные механизмы, отличаются параметрами и внутренними измерительными схемами и, кроме того, они различным образом включаются в испытываемую цепь. Для измерения тока в приемнике энергии необходимо амперметр включить в разрыв цепи последовательно сприемником (рис.). В этом случае токи через амперметр и приемник одинаковы . Ток Iа, проходящий по амперметру, создает вращающий момент и вызывает поворот его подвижной части на угол, по которому определяют ток амперметра. Как и всякий измерительный прибор, амперметр не должен изменять параметры цепи и режим ее работы. Следовательно, сопротивление амперметра rа должно быть малым по сравнению с сопротивлением приемника rа<<Rпр. В этом случае токи в приемнике до включения амперметра и после его включения , будут приближенно равны . Кроме того, необходимо, чтобы мощность, потребляемая амперметром , была незначительна по сравнению с мощностью, потребляемой приёмником . Для измерения напряжения на приемнике энергии его зажимы необходимо соединить с зажимами вольтметра (рис.) так, чтобы напряжение на приемнике и на вольтметре было одинаковым, то есть Ux=Unp. По закону Ома ток вольтметра . Ток Ix вызывает поворот подвижной части прибора на угол α, зависящий от Ix, и, следовательно, от Ux, то есть . Таким образом, по углу поворота подвижной части вольтметра α определяют напряжение на его зажимах. В противоположность амперметру сопротивление вольтметра должно быть большим по сравнению с сопротивлением приемника энергии, с тем, чтобы его включение не изменило режим работы цепи, а потребляемая мощность , как и в случае амперметра, должна быть малой по сравнению с мощностью, потребляемой приемником . Два расширения предела измерения тока измерительного механизма применяется шунт. Шунт представляет собой сопротивление, включаемое в цепь измеряемого тока параллельно измерительному механизму. Очевидно, что I=Iи+Iш, а токи в параллельных ветвях обратно пропорциональны сопротивлениям . Ток через шунт Iш=I–Iи. Тогда , где - шунтирующий множитель, показывающий во сколько раз измеряемый ток I больше тока Iи измерительного механизма, или во сколько раз расширяется предел измерения тока. Таким образом, измеряемый ток определяется произведением цены деления измерительного механизма, показания прибора и шунтирующего множителя. Из приведенного выражения шунтирующего множителя следует, что , то есть для расширения предела измерений в p раз необходим шунт с сопротивлением в (p-1) раз меньшим сопротивления измерительного механизма. Шунты изготавливаются из манганина и снабжаются двумя парами зажимов: токовыми для включения в цепь и потенциальными для присоединения измерительного механизма. Такое включение устраняет погрешности от контактных явлений (рис.). По точности шунты делятся на классы 0,02; 0,05; 0,10; 0,20; 0,50 и 1,00. Число класса точности обозначает допустимое отклонение сопротивления в процентах от его номинального значения. Добавочные сопротивления применяются для расширения предела измерения напряжения и для исключения влияния температуры на сопротивление вольтметра. Добавочные сопротивления изготавливаются из манганина и включаются последовательно с измерительным механизмом (рис.). Если предел измерения напряжения измерительного механизма необходимо расширить в p раз, то можем записать: , откуда добавочное сопротивление: , то есть, оно должно быть в (p-1) раз больше сопротивления измерительного механизма. Величину p называют множителем добавочного сопротивления. . Добавочное сопротивление не только расширяет предел измерения напряжения, но и уменьшает температурную погрешность вольтметра, так как температурный коэффициент всего вольтметра α связан с температурным коэффициентом медной обмотки измерительного механизма (с учетом того, что αманганина=0) соотношением . Калиброванные добавочные сопротивления, как и шунты, делятся на классы точности: 0,02; 0,05; 0,10; 0,20; 0,50 и 1,00. Они изготовляются на номинальные токи 0,5; 1,0; 3.0; 5,0; 7,5; 15 и 30 мА. megaobuchalka.ru Радио 2001 №1 Применив синхронное выпрямление переменного тока, автор линеаризовал шкалу шунтового амперметра магнитоэлектрического типа без какого-либо усилителя. В статье предлагаются варианты схем с однополупериодным и кольцевым синхронным выпрямителем, применяемым обычно в кольцевых модуляторах. Шкала амперметра переменного тока, построенного с использованием магнитоэлектрического стрелочного прибора с шунтом и простого выпрямителя, обычно нелинейна. Это связано с тем. что при уменьшении напряжения ниже некоторого порога (0,2...0,6 В) выпрямительные свойства германиевых и кремниевых диодов резко ухудшаются. В результате требуется увеличивать падение напряжения на шунте либо применять линейные выпрямители на основе усилителей переменного напряжения. Однако повышение падения напряжения на шунте неизбежно приводит к потерям мощности и росту выходного сопротивления источника питания. К тому же этот способ лишь уменьшает нелинейность, но не устраняет её полностью. Правда, применение усилителей позволяет практически полностью устранить нелинейность, но сильно усложняет измеритель. Между тем линейность простых измерительных выпрямителей на полупроводниковых диодах можно значительно улучшить без особого усложнения, если использовать синхронное выпрямление. На рис. 1 приведена схема однополупериодного синхронного выпрямителя для амперметра с линеаризованной шкалой. В положительный полупериод переменного напряжения (плюс на верхних концах обмоток II и III) открываются диоды VD1 и VD2, подключая микроамперметр к шунту Rш. В отрицательный полупериод диоды закрыты. В открытом состоянии диоды имеют малое дифференциальное сопротивление, и нелинейность этого сопротивления невелика, поэтому шкала получается практически линейной. При использовании микроамперметров со шкалой 50...200 мкА с максимальным падением напряжения на рамке не более 150 мВ минимальное напряжение на обмотке III может составлять 1,5...2 В для германиевых и 2...2,5 В для кремниевых диодов (при меньшем напряжении его нестабильность заметно сказывается на показаниях амперметра). Максимальное напряжение ограничивается максимально допустимым обратным напряжением используемых диодов. Минимальный ток диодов должен в 10...20 раз превышать максимальный ток микроамперметра. Дополнительную обмотку можно изготовить самостоятельно, намотав несколько витков тонкого изолированного про вода на катушку трансформатора, если его конструкция позволяет это сделать. Резисторы R3 и R4 служат для подстройки нуля амперметра, сдвиг которого возникает за счёт тока диода VD2. протекающего через шунт, и разброса параметров диодов. Синфазность подключения обмоток II и III важна при сравнительно низком напряжении обмотки III (менее 2 В), так как при противофазном включении этих обмоток (в этом случае полярность подключения микроамперметра нужно изменить) в приборе появляется нелинейность шкалы (цена деления в конце шкалы плавно увеличивается), что, кстати, иногда может оказаться полезным. Однако при напряжении на обмотке III выше 4...5 В эта нелинейность практически не заметна и на фазу включения обмоток можно не обращать внимания. Для защиты микроамперметра от случайных перегрузок параллельно его выводам полезно включить кремниевый диод Д220, КД522 или КД521 в прямом направлении, предварительно убедившись, что он не влияет на показания микроамперметра в конце шкалы. Добавлением ещё двух диодов и одного резистора синхронный выпрямитель можно преобразовать в двухполупериодный (рис. 2). В качестве источника, открывающего диоды, здесь использована рабочая обмотка трансформатора. Преимущество двухполупериодной схемы выпрямления перед однополупериодной состоит в том. что требуемое падение напряжения на Rш, примерно в два раза меньше при одинаковом токе полного отклонения микроамперметра Так, если в однополупериодном выпрямителе с диодами Д220 для полного отклонения стрелки микроамперметра на 200 мкА (с сопротивлением рамки около 670 Ом) требовалось падение напряжения на Rш около 0,4 В, то в двухполупериодном это напряжение не превышало 0,2 В. Приведённая схема является модификацией обычного кольцевого модулятора. При увеличении напряжения на Rш до 0,4 В (амплитудное значение) для германиевых и 1,2 В для кремниевых диодов через диоды VD1, VD3 и VD2, VD4 начинает протекать сквозной ток нагрузки. Поэтому резисторы R3-R5 служат не только для балансировки моста. Они ограничивают ток через диоды при перегрузке. Исходя из этих соображений, в двухполупериодном выпрямителе лучше использовать кремниевые диоды и рассчитывать амперметр на максимальное падение напряжения на Rш не более 0,5...0,6 В. На случай перегрузки или К3 можно принять дополнительные меры по ограничению тока через диоды. Это может быть увеличение сопротивления резисторов R3-R5, гасящего резистора и шунтирующих диодов или стабилитронов. Для открывания диодов измерительного моста амперметра с линейной шкалой не обязательно использовать трансформатор. На рис. 3 показан способ получения открывающего напряжения непосредственно от сети 220 В. стабилитрон VD1 ограничивает и стабилизирует это напряжение. Диод VD2 уменьшает нагрев гасящего резистора R5 Такую схему питания целесообразно использовать и в случае питания от трансформатора, если его выходное напряжение превышает несколько десятков вольт. При использовании в подобном случае двухполупериодного выпрямителя диод VD2 необходимо исключить, а последовательно со стабилитроном VD1 включить встречно ещё один (того же типа) или использовать двуханодный стабилитрон. При расчёте элементов однополупериодного выпрямителя и проведении измерений нужно помнить об особенностях измерения несинусоидального тока или напряжения, учитывая коэффициент формы. При изготовлении многопредельного амперметра с пределами измеряемого тока менее 0,2...0,4 А необходимо учитывать следующую особенность этих мостовых схем. Ток, открывающий диод VD1 на рис. 1 (или VD1, VD2 на рис. 2), замы кается непосредственно на источник питания, а ток диода VD2 (или VD3, VD4 на рис. 2) проходит через резистор Rш и создаёт на нем падение напряжения, которое, как указывалось выше, компенсируется подстройкой резистора R4. Когда сопротивление резистора Rш не более 0,1...0,2 Ом, падение напряжения на нём от тока диода VD2 (1...2 мА) не превышает 0,1...0,4 мВ При максимальном падении напряжения на шунте 100...200 мВ его можно не учитывать. Если же на минимальном пределе измерения сопротивление Rш имеет большее значение, то необходимо принимать меры по поддержанию нуля при переключении пределов измерения. Если питание моста производится от дополнительной обмотки, то на минимальном пределе можно составить шунт из двух половин и подключить вывод обмотки питания моста к средней точке шунта. Возможно также использовать дополнительную секцию безразрывного переключателя, чтобы при переключении пределов ток в цепи питания отдельных плеч измерительного моста не прерывался. При изготовлении амперметров по приведённым схемам необходимо принять меры к повышению температурной стабильности показании прибора, которая в основном определяется равенством температур диодов измерительного моста. Для этого целесообразно использовать диодные сборки в одном корпусе либо разместить диоды рядом друг с другом и обеспечить хороший тепловой контакт, залив их компаундом. В. АНДРЕЕВ, г. Тольятти, Самарская обл. nice.artip.ruАмперметр переменного тока с линейной шкалой. Схема амперметра
Самодельный шунт для амперметра | Все своими руками
Опубликовал admin | Дата 29 ноября, 2011 Амперметр для самодельного блока питания.
Ее удельное сопротивление примерно в 10 раз больше чем у меди, поэтому геометрические размеры шунта будут меньше. Замеряем микрометром толщину жестянки, у моей она равна 0,2мм. Выбираем ширину полоски жести, девяти миллиметров для тока в десять ампер я думаю хватит, тем более, что плоский проводник имеет большую площадь охлаждения.
Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".
Среднеквадратичный амперметр | Все своими руками
Опубликовал admin | Дата 29 сентября, 2012 Питание прибора у меня сетевое, но можно сделать его и от батареек, например применить две «Кроны». Внешний вид прибора и его внутренности показаны на фото1. Времени на дизайн у меня нет, поэтому я обошелся без предохранителя, без выключателя сети, без индикатора включения и т.д. Вы я надеюсь доведете прибор до ума. Старайтесь делать лучше – хреново само получится. Теперь имея такой прибор вы можите спокойно рисовать нелинейные и довольно точные шкалы для своих зарядных устройств, а если не лень, то просто спаять эту платку и вставить в зарядное, домотав на трансформатор две обмотки для ее питания. Скачать рисунок печатной платы. Успехов всем. До свидания. К.В.Ю.
Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".
Схема - амперметр - Большая Энциклопедия Нефти и Газа, статья, страница 1
Схема - амперметр
Цифровой амперметр и вольтметр на PIC16F873A - Измерительная техника - Инструменты
И так нам нужен отрезок стальной нержавеющей проволоки диаметром 0,7мм и длиной всего 11 сантиметров. Не надо этот отрезок свивать в спираль и концентрировать все тепло в одной точке. Вроде все.
Схемы включения амперметра и вольтметра. Шунты. Добавочные сопротивления
Амперметр переменного тока с линейной шкалой
Рис.1 Схема амперметра переменного тока
Рис.2 Схема амперметра переменного тока
Рис.3 Схема амперметра переменного тока
Поделиться с друзьями: