интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Солнечные батареи своими руками. Подбор оборудования для солнечных электростанций. Контроллер для солнечной батареи своими руками схема


Схема контроллера для солнечных батарей, контроллер заряда своими руками

Одним из важнейших компонентов домашней солнечной электростанции является контроллер заряда аккумуляторов. Именно это устройство следит за процессом заряда/разряда аккумуляторов, поддерживая оптимальный режим их работы. Существует множество схем контроллеров для солнечных батарей – от самых простых, выполненных порою кустарным способом, до очень сложных, с применением микропроцессоров. Причем контроллеры заряда для солнечных батарей, сделанные своими руками, частенько работают лучше аналогичных промышленных устройств такого же типа.

Для чего нужны контроллеры заряда аккумуляторов

Если аккумулятор подсоединить напрямую к клеммам солнечных батарей, то заряд его будет происходить непрерывно. В конечном итоге на уже полностью заряженный аккумулятор будет продолжать поступать ток, что вызовет повышение напряжения на несколько вольт. В результате происходит перезаряд АКБ, повышается температура электролита, причем эта температура достигает таких значений, что электролит закипает, происходит резкий выброс паров из банок аккумулятора. Как следствие, может произойти полное испарение электролита и высыхание банок. Естественно, это не добавляет «здоровья» аккумулятору и резко снижает ресурс его работоспособности.

КонтроллерКонтроллер в системе солнечного заряда аккумуляторов

Вот, чтобы не допустить подобных явлений, чтобы оптимизировать процессы заряда/разряда, и нужны контроллеры.

Три принципа построения контроллеров заряда

По принципу действия различают три типа солнечных контроллеров.Первый, самый простой тип – это устройство, выполненное по принципу «On/Off» («Вкл./Выкл.»). Схема такого аппарата представляет собой простейший компаратор, который включает или выключает цепь заряда в зависимости от значения напряжения на клеммах аккумулятора. Это самый простой и дешевый тип контроллеров, но и способ, которым он производит заряд, самый ненадежный. Дело в том, что контроллер отключает цепь заряда по достижении предельного значения напряжения на клеммах аккумуляторной батареи. Но при этом не происходит полного заряда банок. Максимально достигается не более 90% заряда от номинального значения. Вот такой постоянный недобор заряда значительно уменьшает работоспособность аккумулятора и срок его работы.

Вольт-амперная характеристикаВольт-амперная характеристика солнечного модуля

Второй тип контроллеров – это устройства, построенные по принципу ШИМ (широтно-импульсной модуляции). Это более сложные аппараты, в которых кроме дискретных компонентов схемы имеются уже и элементы микроэлектроники. Аппараты на базе ШИМ (англ. – PWM) осуществляют зарядку аккумуляторов ступенчато, выбирая оптимальные режимы заряда. Эта выборка производится автоматически и зависит от того, как глубоко разряжены АКБ. Контроллер повышает напряжение, одновременно понижая силу тока, обеспечивая тем самым полную зарядку аккумуляторной батареи. Большой недостаток ШИМ-контроллера – заметные потери в режиме зарядки аккумулятора – теряются до 40%.

ШИМ – контроллерШИМ – контроллер

Третий тип – это контроллеры MPPT, то есть работающие по принципу отыскания точки максимальной мощности солнечного модуля. В процессе работы устройства этого типа используют максимально доступную мощность для любого режима заряда. По сравнению с другими, аппараты этого типа отдают на заряд аккумуляторных батарей примерно на 25% - 30% больше энергии, чем другие аппараты.

MPPT - контроллерMPPT - контроллер

Заряд АКБ производится меньшим напряжением, чем это делают контроллеры других типов, но большей силой тока. Коэффициент полезного действия аппаратов MPPT достигает 90% - 95%.

Простейший самодельный контроллер

При самостоятельном изготовлении любого контроллера необходимо обязательно соблюдать определенные условия. Во-первых, максимальное напряжение на входе должно быть равным напряжению АКБ без нагрузки. Во-вторых, должно быть выдержано соотношение: 1,2P

Схема простейшего контроллераСхема простейшего контроллера

Этот аппарат предназначен для работы в составе солнечной электростанции малой мощности. Принцип работы контроллера предельно прост. Когда напряжение на клеммах аккумуляторов достигнет заданного значения, заряд прекращается. В дальнейшем производится только так называемый капельный заряд.

собранный контроллерКонтроллер, смонтированный на печатной плате

При падении напряжения ниже установленного уровня подача энергии на аккумуляторы возобновляется. Если при работе на нагрузку в отсутствии заряда напряжение АКБ будет ниже 11 вольт, контроллер отключит нагрузку. Тем самым исключается разряд аккумуляторов в период отсутствия солнца.

Аналоговый контроллер для маломощных гелиевых систем

Аналоговые устройства используются, в основном, в гелиевых системах, имеющих небольшую мощность. В мощных системах целесообразно применять цифровые последовательные аппараты типа MPPT. Эти контроллеры прерывают зарядный ток, когда аккумулятор будет полностью заряжен. В предлагаемой схеме аналогового контролера используется параллельное подключение. При таком подключении солнечный модуль всегда соединен с аккумулятором через специальный диод. Когда напряжение на аккумуляторе достигнет заданного значения, контроллер параллельно солнечному модулю включает цепь нагрузочного сопротивления, которое принимает на себя избыток энергии от модуля.

Это устройство было разработано и собрано под конкретную систему, состоящую из солнечной панели с 36 ячейками, с выходным напряжением холостого хода 18 вольт и с током короткого замыкания до одного ампера. Емкость аккумулятора до 50 ампер-часов, при номинальном напряжении 12 вольт. Перед тем, как включить собранный аппарат в рабочую конфигурацию системы, необходимо произвести его настройку. Для быстрой настройки нужно взять предварительно заряженный аккумулятор. Солнечную батарею с соблюдением полярности нужно подключить к клеммам PV по схеме, а аккумулятор – к клеммам ВАТ. К клеммам аккумулятора необходимо также подключить цифровой вольтметр.

Схема аналогового контроллераСхема аналогового контроллера

Теперь для получения максимальной отдачи от солнечной батареи, нужно сориентировать ее на солнце. После этого медленно поворачивать винт двадцатиоборотного переменного резистора номиналом в 100 кОм. Вращение винта производится до тех пор, пока светодиод не начнет мигать. После того, как начнется мигание, винт следует продолжать медленно поворачивать до тех пор, пока вольтметр не покажет значение напряжения на клеммах аккумулятора, равное желаемому. На этом настройка устройства завершена.

В процессе эксплуатации системы при достижении напряжением на клеммах аккумулятора предельного значения светодиод начинает выдавать краткие световые импульсы с длительными промежутками. При продолжении заряда аккумулятора длительность световых импульсов увеличивается, а интервал между ними, наоборот, сокращается.

Разумеется, при наличии определенных знаний и навыков можно собрать и более сложное устройство, например, MPPT, но если речь заходит о покупке дорогостоящего оборудования для домашней электростанции, то, вероятно, есть смысл все-таки купить промышленный аппарат, на который распространяется к тому же и гарантия изготовителя. И не подвергать аккумуляторные батареи риску повреждения.

solarb.ru

Солнечные батареи своими руками

Попытаемся понять подход к выбору автономной солнечной системы, какие факторы имеют большее, а какие меньшее значение.

Выбор контроллера

Солнечный контроллер, подключенный к солнечным батареям и аккумулятору, обеспечивает своевременную подзарядку аккумуляторной батареи (АКБ), защищает ее от преждевременной деградации и выполняет следующие функции:

  • Автоматическое подключение АКБ к фотоэлектрическим модулям для подзарядки.
  • Автоматическое отключение аккумулятора от фотоэлектрических панелей (ФЭП) при достижении максимального уровня зарядки (защита аккумулятора от перезаряда).
  • Автоматическое отсоединение АКБ от потребителей электроэнергии при достижении недопустимого уровня разряда (защита аккумулятора от глубокого разряда).
  • Повторное подключение нагрузки к аккумулятору при восполнении уровня его заряда.

Контроллер способен автоматически отключать нагрузку, подключаемую на выход «Load» устройства. К этому выходу подключаются маломощные потребители постоянного тока (например, светодиодные лампы). 

Максимально допускаемая нагрузка на выход «Load» указывается производителем в паспорте устройства.

Все потребители переменного тока (бытовые электроприборы, электроинструмент и т. д.) не имеют прямого подключения ни контроллеру, ни к солнечным панелям. Они через инвертор подключаются к аккумуляторной батарее.

При такой схеме подключения от глубокого разряда аккумулятор защищается не контроллером, а инвертором. К вопросам переразряда АКБ и способов защиты от него с помощью инвертора мы вернемся чуть позже.

Разновидности контроллеров

Основная задача солнечного контроллера состоит в том, чтобы обеспечивать режимы зарядки аккумуляторной батареи (силу тока и уровень напряжения), соответствующие типу АКБ и ее состоянию. Простейший контроллер типа "on-off" способен выполнять лишь 2 операции: автоматически включать или отключать аккумулятор от фотоэлектрических панелей. Но простейшие устройства в наше время активно вытесняются с рынка более продвинутыми контроллерами. Наиболее популярны сегодня контроллеры двух типов: ШИМ (PWM) – устройства широтно-импульсной модуляции, и МРРТ – устройства отслеживания точки максимальной мощности. Рассмотрим особенности перечисленных контроллеров.

Контроллеры типа "on-off"

Рассмотрим рабочий цикл простейшего контроллера типа "on-off", который подключен к автомобильному аккумулятору – 12 В. Когда напряжение аккумулятора упадет ниже номинала, а напряжение СБ достигнет зарядных значений, контроллер подключит аккумулятор к солнечной батарее. В этот момент начнется процесс зарядки АКБ (накопления), который будет продолжаться, пока напряжение на аккумуляторе не вырастет до 14,4 В. Определив, что напряжение на клеммах АКБ достигло указанного значения, контроллер отключит аккумулятор от солнечных батарей. Затем цикл повторится. Контроллер типа "on-off" не позволяет полностью зарядить аккумуляторную батарею, ведь для полного заряда на ее клеммы необходимо подавать напряжение – 14,4 В, в течение нескольких часов (этот период называется стадией абсорбции). Максимальный уровень зарядки при таком цикле не превысит 60–70%, а регулярный недозаряд приведет к значительному сокращению срока службы АКБ. Как видим, недостатки контроллеров типа "on-off" – налицо.

Контроллеры ШИМ

Контроллеры ШИМ позволяют заряжать АКБ на 100% благодаря оптимизированному рабочему циклу, который подразделяется на 4 стадии.

  1. На начальной стадии зарядки аккумулятор получает всю мощность, генерируемую фотоэлектрическими панелями.
  2. Стадия накопления характеризуется постепенным ростом напряжения на клеммах АКБ. Накопление заряда осуществляется при постоянной силе тока.
  3. Когда напряжение на клеммах АКБ достигнет своего максимального значения, контроллер переведет зарядные параметры в режим абсорбции. Подаваемое напряжение на этой стадии остается постоянным, а зарядный ток постепенно уменьшается. Это позволяет аккумулятору накопить максимальное количество энергии, избежав перегрева и закипания.
  4. Уравновешивающий заряд (режим float). На этой стадии аккумулятор поддерживается в заряженном состоянии.

Параметры зарядного тока и напряжения устанавливаются контроллером автоматически.

По типу регулировки существуют контроллеры двух типов: регулируемые и с неизменными заводскими настройками. Для своей системы лучше выбирать устройства с возможностью настройки по типу и емкости АКБ, а также по другим зарядным параметрам, рекомендованным производителями аккумуляторов.

ШИМ контроллеры рекомендуется использовать в системах с небольшой мощностью солнечных батарей (ориентировочно: от 100 Вт до 500 Вт). Это условие вполне соответствует параметрам домашних фотоэлектрических панелей. Тем не менее, контроллеры ШИМ в настоящее время постепенно вытесняются с рынка более совершенными устройствами МРРТ, изначально создаваемыми для мощных солнечных батарей.

 

Контроллеры МРРТ

Алгоритм работы контроллеров МРРТ следующий: устройство в реальном времени отслеживает параметры электрического тока на выходе из солнечной батареи, определяя значения в паре ток-напряжение, при которых мощность, получаемая от фотоэлектрических панелей, будет максимальна. Одновременно контроллер отслеживает стадию зарядки аккумулятора и подает на его клеммы ток с необходимыми параметрами.

Автоматическое определение точки максимальной эффективности заряда помогает увеличить коэффициент использования солнечной энергии на 20-30%. При этом контроллеры МРРТ позволяют подключать к системе солнечные батареи, номинальное напряжение которых значительно выше напряжения АКБ. Это гарантирует, что даже в пасмурную погоду напряжение СБ будет превышать зарядное напряжение аккумулятора. То есть в солнечный день контроллер будет автоматически понижать высокое входное напряжение, а при недостатке солнечного света АКБ будет заряжаться за счет запаса по напряжению СБ.

Используя контроллеры МРРТ, солнечные модули целесообразно соединять между собой последовательно. Это позволяет получить на выходе из СБ более высокое напряжение и за счет снижения сопротивления уменьшить сечение кабелей, соединяющих фотоэлектрические панели с контроллером.

Для того чтобы правильно выбрать контроллер для той или иной солнечной электростанции, необходимо знать характеристики источника тока и аккумулятора. Но есть по этому поводу и общие рекомендации, разработанные производителями:

  • Контроллеры МРРТ, учитывая их сравнительно высокую стоимость, следует использовать при мощности солнечных батарей – от 500 Вт и выше (это будет экономически целесообразно).
  • Контроллер ШИМ подойдет для солнечных батарей небольшой мощности, у которых номинальное напряжение соответствует номиналу АКБ (например, для 12-ти вольтовых АКБ подходят панели с номиналом 17-22 В, а для 24-ти вольтовых АКБ – панели номиналом 34-45 В).
  • Контроллер МРРТ разработан для СБ, напряжение которых гораздо выше напряжения АКБ (это позволяет создавать запас напряжения и обеспечивать заряд аккумулятора даже в пасмурную погоду).

Допустимые величины входного напряжения и силы тока указаны в технических характеристиках контроллера. Ими следует руководствоваться, выбирая устройство для своей системы.

Недостаток мощности в системах, работающих на контроллерах ШИМ, можно компенсировать установкой дополнительной солнечной панели. Это может быть дешевле, чем установка более производительного контроллера МРРТ.

 

Выбор аккумулятора

Выбирая аккумуляторы для солнечных батарей можно руководствоваться разными соображениями:

  • Те, у кого есть средства и возможности, приобретают долговечные и, в то же время, дорогостоящие щелочные аккумуляторы – никелево-кадмиевые (НК) или никелево-железные (НЖ).
  • Кто-то приобретает специализированные гелевые батареи, изготовленные по технологии GEL, которые в сравнении с привычными стартерными АКБ служат гораздо дольше, но и стоят дороже.
  • Те же, кто предпочитает наиболее доступный вариант, используют стартерные автомобильные АКБ.

Учитывая, что выбор АКБ во многом зависит от реальных возможностей владельца СБ, то давать какие-либо рекомендации в этом плане очень трудно. Тем не менее, перечислить преимущества и недостатки различных батарей следует.

Кислотные (автомобильные) АКБ

Стартерные АКБ – самые дешевые и доступные для большинства покупателей батареи. Несмотря на довольно внушительную емкость, эти АКБ являются буферными: они изначально рассчитаны на кратковременный неглубокий разряд и быструю подзарядку до полной емкости. При этом они совершенно не предназначены для работы в условиях циклического режима и глубокой разрядки. Отсюда вытекают недостатки представленных аккумуляторов.

Для того чтобы срок службы автомобильного аккумулятора приблизить к максимальному, необходимо создать условия, при которых его разряд не будет превышать 20-30% от номинальной емкости. Одновременно следует обеспечить немедленную подзарядку АКБ. Реализовать подобный цикл в системах автономного питания довольно сложно, поэтому на практике АКБ разряжают не более чем на 50%. Разряжать батарею более чем на 80% нельзя, т.к. это очень быстро приводит к выходу аккумулятора из строя.

В таблице представлена зависимость напряжения холостого хода от степени разряда свинцово-кислотной батареи.

Таблица дает примерное понимание величины напряжения, при котором следует отключать нагрузку от АКБ (напряжение отсечки). Примерным оно считается потому, что напряжение аккумулятора, подключенного к нагрузке, всегда ниже напряжения холостого хода батареи. Параметры холостого хода замеряются, спустя несколько часов после отключения нагрузки. Устанавливая напряжение отсечки, лучше руководствоваться рекомендациями производителей АКБ и показаниями контроллера (большинство устройств показывает процент заряженности батареи).

 

Щелочные аккумуляторы

Щелочные АКБ рассчитаны на циклический режим работы (что оптимально для автономных систем электроснабжения): они способны постепенно отдавать свою энергию, пока не наступит их полный разряд.

И чем глубже будет разряжена такая батарея, тем большую емкость она наберет во время подзарядки (это называется эффектом памяти).

Существенный недостаток щелочных аккумуляторов состоит в том, что при малых токах они плохо заряжаются или не заряжаются вовсе. Решить подобную проблему можно, правильно рассчитав мощность солнечных панелей и установив подходящий контроллер.

Вывод: если есть такая возможность, то для солнечных панелей лучше приобретать щелочные аккумуляторы.

 

Гелевые аккумуляторы

Если недостатки автомобильных аккумуляторов для потребителя неприемлемы, а приобрести подходящий щелочной аккумулятор у него нет возможности, то выбор делается в пользу свинцово-кислотных гелевых батарей. По своим характеристикам они оптимально подходят для автономных систем солнечной и ветровой энергетики, не требуют обслуживания, а срок их службы составляет 10 лет. Недостатком гелевых батарей считается их высокая стоимость.

Существуют еще литий-железо-фосфатные АКБ (литий-ионные). Они, кстати, признаны самыми лучшими батареями для автономных систем.

Беря во внимание «заоблачную стоимость этих устройств, в самодельных системах их используют лишь единицы.

Расчет емкости аккумуляторов

Рассчитать требуемую емкость аккумуляторных батарей для автономной системы электроснабжения довольно просто. Для этого нам понадобятся следующие исходные параметры:

  1. Емкость аккумуляторов (А*ч), которые планируется использовать в системе.
  2. Напряжение на рабочих клеммах АКБ (В).
  3. Суммарная нагрузка на аккумуляторы (Вт).

Чтобы вычислить параметры АКБ, которая понадобится для вашей системы, емкость аккумулятора и нагрузку на батарею целесообразно перевести в одну систему измерений. То есть Ампер*час нам нужно перевести в кВт*час.

Переводить емкость АКБ в количество энергии принято следующим образом: нужно умножить номинальное напряжение батареи (например, 12 В) на ее паспортную емкость (например, 190А*ч).

12(В) * 190(А*ч) = 2280 Вт*ч = 2,28 кВт*ч.   Расчеты показывают, что одна свинцово-кислотная автомобильная батарея емкостью 190А*ч при разряде сможет отдать примерно 1,14 кВт*ч электроэнергии, разрядившись при этом на 50% (с учетом потерь электроэнергии это значение можно округлить до 1 кВт*ч). При этом щелочной аккумулятор с аналогичной емкостью (который не боится полного разряда) за один цикл сможет отдать в 2 раза больше электроэнергии.

Много это или мало – все зависит от нагрузки на батарею. Например, если нагрузка на 12-ти вольтовый аккумулятор емкостью 190 А*ч будет равна 100 Вт, то все потребители, подключенные к батарее, смогут непрерывно работать в течение 10-ти часов. После чего аккумулятору потребуется обязательная подзарядка.

Оптимальным запасом емкости считается запас электроэнергии, позволяющий в течение суток обеспечивать питание нагрузки без дополнительной подзарядки аккумулятора. Минимальным запасом считается количество энергии, позволяющее потребителям «пережить» темное время суток (если за ночь потребляется 1 кВт*ч, то и в АКБ должно накапливаться соответствующее количество электроэнергии).

Рассчитывая параметры АКБ, следует соотносить их с техническими характеристиками солнечных панелей. При этом всегда необходимо учитывать неизбежные потери электричества и природные факторы:

  • Ток, потребляемый инвертором без нагрузки – зависит от КПД устройства (например, если инвертор, подключаемый к 12-ти вольтной АКБ, без нагрузки потребляет 2А, то за 10 часов работы он потребит 20А*ч, или 0,24 кВт).
  • Сопротивление проводников.
  • Естественное снижение паспортной емкости АКБ в процессе эксплуатации (когда показатель емкости снижается до 60% от первоначальной величины, ресурс батареи считается исчерпанным).
  • Потери, отражающие КПД аккумулятора (например, свинцово-кислотные АКБ в процессе зарядки потребляют примерно на 20% больше электроэнергии, чем потом отдают) – эти потери должны быть учтены при расчете мощности фотоэлектрических панелей.
  • Неравномерное количество солнечных дней в разное время года и т. д.

Внимательного расчета требуют аккумуляторы, к которым подключаются приборы с большими пусковыми токами.

На практике для расчета емкости АКБ целесообразно использовать онлайн калькуляторы солнечной энергии, учитывающие совокупность перечисленных параметров.

Увеличить емкость можно, используя несколько аккумуляторных батарей, соединенных параллельно.

Если батарей много, то следует использовать последовательно-параллельное соединение.

Выбирая тип соединения АКБ, нельзя выпускать из вида два немаловажных параметра: выходное напряжение контроллера и входное напряжение инвертора. Они должны соответствовать суммарному напряжению аккумуляторных батарей.

Если в одной системе используются несколько аккумуляторов, то все они должны быть из одной партии (с одинаковой емкостью и одинаковым внутренним сопротивлением). Несоблюдение этой рекомендации может привести к разбалансу отдельных батарей и к их преждевременному выходу из строя.

Объединяя несколько аккумуляторов в одну батарею, следует придерживаться еще одного правила.

Раз в месяц желательно тестером проверять емкость всех аккумуляторов. Это поможет вовремя обнаружить испорченный аккумулятор и принять меры для того, чтобы избежать угрозы разбаланса.

Аккумуляторы открытого типа следует устанавливать в вентилируемом помещении. Это убережет ваше здоровье от едких испарений. Если такой возможности нет, то необходимо использовать закрытые батареи (герметичные).

Температура в помещении, где установлены аккумуляторы, должна соответствовать определенным значениям. Если, к примеру, щелочные никель-кадмиевые АКБ менее прихотливы (их можно использовать при температурах от -20ºС до +45ºС без потери емкости), то для эксплуатации свинцово-кислотных (СК) аккумуляторов оптимальная температура окружающей среды равна +20ºС. А вот что касается герметичных свинцово-кислотных батарей: повышение их эксплуатационной температуры на каждые 10ºС сокращает срок службы АКБ в 2 раза (инструкция по эксплуатации свинцово-кислотных батарей п. 10.10).

Для того чтобы уберечь аккумуляторы от глубокого разряда в облачные дни, батареи можно периодически подзаряжать от другого источника (например, от дизельного генератора или ветрогенератора).

Системы автономного электроснабжения, работающие от солнечных панелей и генератора, принято называть гибридными. Гибридные электростанции являются самым оптимальным решением для организации автономного электроснабжения.

Выбор инвертора

Основная функция инвертора заключается в преобразовании стандартного напряжения и постоянного тока аккумуляторных батарей в бытовой переменный ток напряжением 220В. График напряжения на выходе из инвертора имеет синусоидальную форму. И в зависимости от того, какие потребители будут подключены к питанию от СБ, инвертор должен выдавать напряжение либо с правильной синусоидальной формой графика (чистый синус), либо с модифицированным синусом (меандр). Как именно ведет себя график напряжения на выходе из инвертора? Это зависит от особенностей устройства.

Некоторые электроприборы стабильно работают и на «модифицированном синусе»: электронагреватели, компьютеры, устройства с импульсными источниками питания (например, определенные модели телевизоров). Тем не менее, опытные рекомендуется приобретать инверторы, дающие на выходе «чистый синус». Форма выходного сигнала, как правило, указывается в характеристиках устройства.

Выбирая инвертор, следует обращать внимание не только на форму выходного сигнала, но и на мощность устройства. Рабочая (номинальная) мощность должна быть на 25-30% выше суммарной мощности постоянно задействованных в работу потребителей. При этом пиковая мощность инвертора должна превышать мощность возможной кратковременной нагрузки на прибор. Речь идет о нагрузке, которая возникнет в случае одновременного включения нескольких потребителей, обладающих большой пусковой мощностью (холодильник, электродвигатель насоса и т. д.).

В характеристиках инвертора, как правило, указывается еще и максимальная мощность. Она меньше пиковой, но больше номинальной. Этот параметр обозначает допускаемую кратковременную нагрузку, при которой устройство проработает в течение нескольких минут (5-10 мин) и при этом не выйдет из строя.

КПД инвертора также имеет большое значение при выборе устройства. Он определяет потери электроэнергии во время работы устройства и может варьироваться в следующих пределах: 85-95% (в зависимости от модели). Рекомендуется выбирать устройство с КПД – от 90% и выше. Ведь за инвертор мы заплатим один раз, а за его низкий КПД платить придется постоянно.

Инверторы, подключаемые напрямую к свинцово-кислотным аккумуляторам, должны защищать АКБ от глубокого разряда. В большинство современных инверторов подобная функция встроена. При этом порог отсечки нагрузки может быть установлен заводом-изготовителем, а может регулироваться пользователем.

Помимо обычных преобразователей, в системах автономного питания часто используются гибридные и комбинированные инверторы. Комбинированные – способны совмещать функции контроллера и инвертора. Гибридные – позволяют осуществлять питание потребителей как от сети, так и от аккумуляторов. опубликовано econet.ru 

 

P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet

econet.ru

Контроллер заряда для солнечной системы бесплатно —

Дата публикации: 13 декабря 2013

Одним из важнейших компонентов солнечной системы является контроллер заряда. Он может поставляться отдельно либо в комплекте с инвертором. Как понятно из названия, это устройство предназначено для контроля заряда АКБ, то есть контроллеры заряда для солнечной батареи следят за уровнем напряжения на аккумуляторе и служат для предотвращения полного разряда или перезаряда батареи.

Век глобальной доступности, когда можно найти абсолютно любой товар и информацию, позволяет не только приобрести контроллеры в любом специализирующемся магазине, но и собрать его своими руками. Для этого Вам понадобится схема устройства, которое Вы планируете изготовить, в нашем случае – это контроллер зарядки, и умение разбираться в электронике. Попытаемся снабдить Вас и тем, и другим.

Контроллеры зарядки для СБ: краткое описание

Существует несколько разновидностей описываемого устройства. Самые простые из них выполняет лишь одну функцию: включает и выключает батареи в зависимости от их заряда. Более «продвинутые» модели снабжены функцией отслеживания точки максимального значения мощности, что обеспечивает более высокий выходной ток по сравнению с током солнечной батареи. А это, в свою очередь, повышает КПД всей установки в целом.

Более усовершенствованные модели – способны понижать напряжение на СБ и поддерживать его на требуемом уровне. Наличие данной функции способствует более полной зарядке АКБ.

Любой контроллер, в том числе и самодельный, должен отвечать определенным требованиям:

  • 1,2P ≤ I×U, где P – суммарная мощность солнечных батарей всей системы; I – выходной ток контроллера; U – напряжение системы при разряженных аккумуляторах.
  • 1,2Uвх = Uх.х, где Uвх – максимально допустимое входное напряжение, Uх.х – суммарное напряжение холостого хода всех солнечных батарей системы.

Если нет возможности купить…

Конечно, зачастую прибор, собранный своими руками, будет хуже, чем аналогичное устройство, произведенное на заводе. Но сегодня мало кому можно доверять. И дешевые контроллеры для солнечной батареи, поставляемые из Китая, также могли быть собраны в какой-нибудь подсобке. Так зачем покупать устройство, в качестве которого Вы не уверены, если есть возможность соорудить его дома.

На рисунке 1 приведена простейшая схема, воспользовавшись которой Вы сможете своими руками собрать контроллер, пригодный для зарядки свинцово-кислотного аккумулятора 12 В с помощью маломощной СБ с током в несколько ампер. Изменив номиналы используемых элементов, Вы сможете адаптировать собранный прибор под АКБ с другими техническими характеристиками. Следует отметить, что данная схема предполагает использование вместо защитного диода полевого транзистора, управляемого компаратором.

Видео Вам в помощь:

Принцип работы достаточно прост: когда напряжение на АКБ достигнет заданного значения, контроллер остановит зарядку, в случае его снижения ниже порогового значения, зарядка будет вновь включена. При напряжении меньше 11 В нагрузка будет отключаться, а при напряжении больше 12,5 В, наоборот, подключаться к аккумулятору. Этот небольшой прибор спасет Ваш аккумулятор от самопроизвольного разряда в отсутствие солнца. На рисунке 2 представлен уже собранный комплект, состоящий из двух аккумуляторов, DC/DC-конверторов и индикации.

Контроллеры заряда солнечной батареи, собранные своими руками по более сложным схемам, смогут гарантировать Вам надежную и стабильную работу. Поэтому, если Вы чувствуете в себе силы, то ниже представлена еще одна схема. Она состоит из большего числа компонентов, зато и функционирует без «глюков» (рисунок 3).

Самодельный контроллер, собранный по данной схеме, подойдет для системы энергообеспечения, работающей, как от СБ, так и от ветрогенератора. Сигнал, который приходит от используемого источника альтернативной энергии, коммутируется реле, которое в свою очередь управляется полевым транзисторным ключом. Для регулировки порогов переключения режимов используются подстроечные резисторы.

Не бойтесь экспериментировать, ведь у самых лучших умов человечества тоже случались ошибки и падения, поэтому, если с первого раза Вам не удалось собрать своими руками надежный контроллер, не отчаивайтесь. Попробуйте еще раз, и, возможно, со второго раза у Вас все получится. Зато Вас будет «греть» само осознание того, что Вы сделали его сами.

Статью подготовила Абдуллина Регина

Как доработать устройство для контроля заряда:

altenergiya.ru

Какой контроллер для солнечных батарей установить с вашими панелями

Основной сложностью использования солнечной энергии в быту является ее накопление. Солнечная батарея вырабатывает электричество только в период воздействия света, но пользоваться электрикой приходится и вечером и ночью. Напрямую подключать солнечные батареи к аккумуляторам нельзя – сломается и то и другое. Используются специальные устройства – контроллеры солнечных батарей, которые можно собрать своими руками или приобрести готовые.

Виды контроллеров

Существует три типа контроллеров для солнечных батарей, отличающиеся своей функциональностью и ценой соответственно.

  • ON/OFF контроллер – самый простой из существующих. Редко применяется в современных системах, т.к. имеет массу недостатков. Суть его работы заключается в том, что он просто отключает поступление электричества с солнечной панели при достижении максимального заряда батареи. Напряжение и сила тока при этом будет изменяться в зависимости от интенсивности работы самих панелей. АКБ при этом сама регулирует сколько «взять» тока.Разъемы контроллера ON/OFF

    Контроллер ON/OFF

    В итоге, максимальный ток достигается при 70% уровня заряда, контроллер срабатывает. Батарея быстро приходит в негодность. Двумя ощутимыми достоинствами такого устройства является его стоимость и возможность собрать такой контроллер солнечных батарей своими руками.
  • ШИМ или PWM – контроллеры обеспечивают ступенчатую зарядку АКБ путем переключения между различными режимами заряда. Эти режимы, в свою очередь, выбираются автоматически в зависимости от степени разряженности аккумулятора. АКБ заряжается до 100% за счет повышения напряжения и понижения силы тока. Недостатком такого контроллера являются потери при зарядке аккумулятора – до 40%
  • MPPT контроллер. Наиболее экономичный и современный способ организовать зарядку аккумуляторной батареи от солнечных панелей. Этот вид контроллеров работает по вычислительной технологии. В каждый момент времени он сравнивает напряжение, подаваемое с солнечных панелей с напряжением на аккумуляторе и выбирает оптимальные преобразования для того, чтобы получить максимальный заряд АКБ.

Какой выбирать

Как видно из описаний, первый вариант (ON/OFF контроллер) – совсем не подходит для длительного использования. Т.е. если он у вас имеется, то его можно поставить для тестирования работы системы, но затем заменить на ШИМ (PWM) контроллер или MTTP.

Последний – предпочтительнее. Технология MTTP предусматривает КПД контроллера солнечных батарей на уровне 93-97%, тогда как ШИМ дает только 65-70%. Если учитывать стоимость солнечных панелей, то покупка более дорогого контроллера оправдывается эффективностью их использования.

Стоимость

Система электроснабжения от солнечных батарей собирается, прежде всего, для экономии средств, поэтому цена на отдельные детали – очень важный момент. Предлагаемые варианты прошли испытание временем и являются оптимальным по сочетанию цена/качество:

  • Solar controller 20a ссылка на алиэкспресс (откроется в новом окне) – стоимость 20,75$ - простое управление, яркий ЖК дисплей, понятный интерфейс. Отлично справляется с задачей по заряду АКБ. Технология ШИМ (PWM). Имеется возможность подключения через USB к компьютеру для настройки.
  • MPPT Tracer 2210RN Solar Charge Controller Regulator ссылка на алиэкспресс (в новом окне), цена 75$ – MTTP контроллер на 20А – качественный и надежный, сертифицированный, распознает день/ночь. Высокий КПД – 97%

Видео, контроллер своими руками

Контроллер для солнечных батарей можно собрать своими руками, однако это тоже требует определенных вложений. Так, на сборку простенького ШИМ контроллера вам придется потратить 10$ на детали и 2-3 часа работы с паяльником. При стоимости готового изделия 20$ - такая перспектива уже не кажется раумной. Собрать качественный MPPT - контроллер в домашних условиях - вообще занятие невозможное, нужно и оборудование и соответствующий софт. Ролик будет полезен тем, кто любит и умеет пользоваться паяльником.

 Дополнения к видео: схема контроллера, расположение деталей на печатной плате:

Загрузка...

Facebook

Вконтакте

Одноклассники

Google+

Крыша из солнечных панелей Как устроена солнечная батарея и принцип ее работы доступными словами Самодельный генератор бесплатной энергии Бестопливный генератор дает свободу... Свободу от денег Автомобильный аккумулятор не используется Как подсчитать емкость аккумулятора для солнечной электростанции Солнечные панели экология Подбираем солнечную панель для дома без переплаты за ненужное

electricadom.com

КОНТРОЛЛЕР ЗАРЯДА СОЛНЕЧНОЙ БАТАРЕИ

   В наше прогрессивное время, когда технологии постоянно совершенствуются, а производственные мощности постоянно увеличиваются, для простого самодельщика становятся все более доступными материалы и компоненты, о которых раньше приходилось только мечтать. Одними из таких компонентов являются солнечные фотоэлектрические элементы. Все большее число доморощенных Кулибиных создают свои солнечные батареи из фотоэлектрических элементов купленных по приемлемой цене на Ebay, в Dealextreme или других местах.

солнечные батареи из фотоэлектрических элементов

   Но как извесно, введение в эксплуатацию нового технического устройства, такого как солнечная батарея, провоцирует на создание устройства управления этим полезным девайсом. Если раньше для этого применялись простейшие схемы с ограничивающими диодами или релейные, то сейчас, разрабатываются все более прогрессивные устройства. С одним из таких устройств,контроллеров заряда для солнечной батареи, изготовление которого вполне по силам даже начинающим, мы и предлагаем ознакомиться. Суть работы всех контроллеров заряда (как заводских так и самодельных) заключается в следующем: нагрузкой солнечной батареи является чаще всего АКБ, которая накапливает полученную энергию Солнца, а для того чтобы соблюсти все параметры заряда аккумулятора,не допустить его перезаряда (и таким образом продлить срок его службы) и утилизировать ''лишнюю'' энергию. Итак, рассмотрим схему контроллера заряда для солнечной батареи.

   Оно предназначено для зарядки герметичного кислотно-свинцового (гелевого) аккумулятора на 12V от маломощной солнечной панели, с током отдачи до нескольких ампер. Последовательный защитный диод, который раньше устанавливался для предотвращения разряда аккумуляторов в темное время суток, здесь заменен полевым транзистором, который в свою очередь управляется компаратором.

   Более качественный рисунокпечатной платы контроллера находится в архиве. Контроллер останавливает заряд аккумулятора, когда напряжение на нем достигает заданного предела и переключает панель на дополнительный потребитель (нагрузку)для утилизации лишней энергии. Когда же напряжение на аккумуляторе опустится ниже заданного предела, контроллер переключает солнечную панель с нагрузки на заряд АКБ. Основные характеристики схемы:

-Напряжение заряда Vbat=13,8V (настраивается), измеряется при наличии тока заряда;-Отключение нагрузки происходит когда Vbat мене 11V (настраивается), включение нагрузки когда Vbat=12,5V;-Температурная компенсация режима заряда;-Экономичный компаратор TLC339 можно заменить на более распространенный TL393 или TL339;-Падение напряжения на ключах менее 20mV при заряде током 0,5А.

изготовление контроллера заряда для солнечной батареи

   Настраивать устройство на включение/отключение заряда лучше исходя из паспортных данных на применяемую батарею; зарядный ток ограничен только возможностями солнечной батареи - схема контроллера никак на него не влияет. Данное устройство эксплуатировалось автором в течении года. За это время никаких нареканий и нарушений в работе выявлено не было. На фото печатной платы устройства помимо разводки непосредственно под сам контроллер (справа) разведены еще места под 3 DC/DC конвертера на 3,6 и 9вольт выхода.

самодельный контроллер заряда солнечной батареи

   Фото готового устройства со всеми компонентами, включая аккумуляторы, контроллер, конверторы и дополнительный блок индикации и коммутации. Конструктор контроллера - Oscar den Uijl.

el-shema.ru

КОНТРОЛЛЕР ПОВОРОТА СОЛНЕЧНОЙ ПАНЕЛИ

Попросил недавно друг собрать ему "гелиостат" для ориентации солнечной панели за солнцем, под использование небольших моторов. Схема была взята из просторов интернета, проверена авторская плата, работает. Но я нарисовал также свою печатную плату, покомпактней, в которой резисторы и конденсаторы можно ставить планарного типа SMD.

Схема гелиостата

Схема гелиостата

Далее идёт описание схемы от автора. Это устройство использует импульсное регулирование и автоматически способно ориентировать солнечную батарею по наилучшей освещенности. Принципиальная схема состоит из тактового генератора (DD1.1, DD1.2), двух интегрирующих цепей (VD1R2C2, VD2R3C3), такого же числа формирователей (DD1.3, DD1.4), цифрового компаратора (DD2), двух инверторов (DD1.5, DD1.6) и транзисторного коммутатора (VT1—VT6) направления вращения электродвигателя М1, управляющего поворотом платформы, на которой установлена солнечная батарея.

С подачей питания (от самой солнечной батареи или от аккумулятора) генератор на элементах DD1.1, DD1.2 начинает вырабатывать тактовые импульсы, следующие с частотой около 300 Гц. При работе устройства сравниваются длительности импульсов, сформированных инверторами DD1.3, DD1.4 и интегрирующими цепями VD1R2C2, VD2R3C3. Их крутизна меняется в зависимости от постоянной времени интегрирования, которая, в свою очередь, зависит от освещенности фотодиодов VD1 и VD2 (ток зарядки конденсаторов С2 и СЗ пропорционален их освещенности).

Сигналы с выходов интегрирующих цепей поступают на формирователи уровня DD1.3, DD1.4 и далее — на цифровой компаратор, выполненный на элементах микросхемы DD2. В зависимости от соотношения длительностей импульсов, поступающих на входы компаратора, сигнал низкого уровня появляется на выходе элемента DD2.3 (вывод 11) или DD2.4 (вывод 4). При равной освещенности фотодиодов на обоих выходах компаратора присутствуют сигналы высокого уровня.

Инверторы DD1.5 и DD1.6 необходимы для управления транзисторами VT1 и VT2. Высокий уровень сигнала на выходе первого инвертора открывает транзистор VT1, на выходе второго — VT2. Нагрузками этих транзисторов являются ключи на мощных транзисторах VT3, VT6 и VT4, VT5, которые коммутируют напряжение питания электродвигателя М1. Цепи R4C4R6 и R5C5R7 сглаживают пульсации на базах управляющих транзисторов VT1 HVT2. Направление вращения двигателя меняется в зависимости от полярности подключения к источнику питания. Цифровой компаратор не позволяет одновременно открыться всем ключевым транзисторам, и, таким образом, обеспечивает высокую надежность системы.

С восходом солнца освещенность фотодиодов VD1 и VD2 окажется различной, и электродвигатель начнет поворачивать солнечную батарею с запада на восток. По мере уменьшения разницы в длительностях импульсов, вырабатываемых формирователями, будет уменьшаться длительность результирующего импульса, и скорость поворота солнечной батареи плавно замедлится, что обеспечит ее точное позиционирование. Таким образом, при импульсном управлении вращение вала электродвигателя можно передавать платформе с солнечной батареей непосредственно, без применения редуктора.

В течение дня платформа с солнечной батареей будет поворачиваться вслед за движением солнца. С наступлением сумерек длительности импульсов на входе цифрового компаратора окажутся одинаковыми, и система перейдет в дежурный режим. В этом состоянии потребляемый устройством ток не превышает 1,2 мА (в режиме ориентации он зависит от мощности двигателя).

Аккумулятор гелиостата используется для накопления энергии, вырабатываемой солнечной батареей, и питания самого электронного блока. Поскольку электродвигатель включается лишь для поворота батареи (на короткое время), выключатель питания не предусмотрен. Данная схема ориентирует солнечную батарею в горизонтальной плоскости. Однако при ее позиционировании следует учитывать географическую широту местности и время года. Если дополнить конструкцию блоком вертикального отклонения, собранным по аналогичной схеме, можно полностью автоматизировать ориентацию батареи в обеих плоскостях.

Для защиты фотодиодов от избыточного облучения применен зеленый светофильтр. Между фотодатчиками помещают непрозрачную шторку. Ее закрепляют перпендикулярно плате с таким расчетом, чтобы при изменении угла освещения она затеняла один из фотодиодов. Подробнее читайте в статье в прилагаемом архиве. Общий вид печатной платы:

КОНТРОЛЛЕР ПОВОРОТА СОЛНЕЧНОЙ БАТАРЕИ - плата

После сборки проверил работу прибора - всё срабатывает как надо, при засвете одного и второго светодиода срабатывает мотор по часовой и против часовой стрелки. 

Сборка КОНТРОЛЛЕРА ПОВОРОТА СОЛНЕЧНОЙ БАТАРЕИ

Радиатор несколько великоват, столь большого размера не требуется, но другу такой понравился, потом сказал порежет на две половины для двух готовых плат, тестирует пока, поскольку с мощностью моторов ещё не определился.

КОНТРОЛЛЕР ПОВОРОТА СОЛНЕЧНОЙ ПАНЕЛИ

Эти радиаторы всё сняты с блоков питания АТХ, у меня их много накопилось, а люди всё несут и несут. Разработка - И. Цаплин. Сборка и испытание схемы - Igoran.

   Форум

   Обсудить статью КОНТРОЛЛЕР ПОВОРОТА СОЛНЕЧНОЙ ПАНЕЛИ

radioskot.ru

Как выбрать контроллер заряда солнечных батарей

Солнечные батареи, преобразующие энергию солнца в электрический ток, не имеют движущихся частей, поэтому экономичны, надежны и находят все более широкое применение. В составе таких устройств несколько компонентов, каждый из которых выполняет свою функцию.

Наиболее «продвинутые» комплекты содержат инвертор, преобразующий постоянное напряжение 12в в переменное 220в. Это позволяет подключать к автономной системе питания обычные сетевые приборы, такие, как телевизор и радиоприемник.

Обязательным элементом, необходимым для эффективной работы всей системы, является контроллер заряда.

Главная задача контроллера заряда – распределение потоков электрической энергии, полученной от солнечной панели. Поддержание стабильного напряжения на выходе, а также исключения перезаряда или полного разряда встроенного в систему аккумулятора.

Таким образом, значительно увеличивается срок службы дорогостоящей аккумуляторной батареи.

Основные функции

Энергосистема с использованием контроллера. (Для увеличения нажмите)

Контроллер осуществляет:

  1. Выбор оптимального тока заряда аккумулятора.
  2. Отключение аккумулятора при заряде до установленного предела.

Не обязательно покупать такой контроллер в специализированном магазине. Имея паяльник и минимальные знания в электротехнике, можно собрать схему начального уровня самостоятельно.

Есть несколько типов таких устройств. Простейшие имеют только одну функцию: подключает и отключает батарею в зависимости от уровня заряда.

Сложные устройства отслеживают пиковую мощность, поэтому гарантируют больший выходной ток, что увеличивает КПД системы.

Каждый контроллер обязан соответствовать требованиям:1,2P ≤ I×U, где P – общая мощность панелей; I – ток на выходе контроллера; U – напряжение на выходе под нагрузкой.

Разбор конкретной схемы

В качестве примера рассмотрим гибридный источник для питания аварийного освещения или системы охранной сигнализации дома, которая должна работать круглосуточно.

Питание на основе солнечной панели в дневное время позволяет не только значительно сократить потребление электроэнергии от сети, но и обезопасить оборудование от веерных отключений.

В темное время суток схема переходит на питание от сети 220в. Резервным источником питания является аккумуляторная батарея (АКБ) на 12 в, 4.5 А/ч. Такая система будет работать эффективно в любую погоду.

Схема простого контроллера

Цоколевка транзистора.

Фоторезистор LDR управляет транзисторами T1 и T2. На рисунке слева приводится цоколевка транзисторов, где Е (1) – эмиттер, С (2) – коллектор, В (3) – база.

В светлое время суток фоторезистор освещен и транзисторы закрыты. Поэтому питание 12 вольт подается на АКБ от панели (Solar pаnеl) через диод D2.

Он же препятствует разряду аккумулятора через панель. При хорошем освещении панель мощностью 15 Вт обеспечивает ток в 1 А.

Когда батарея полностью зарядится до 11,6 в, стабилитрон ZD пробивается и зажигается светодиод красного цвета (LED Red). При уменьшении напряжения на клеммах аккумулятора до 11в, светодиод гаснет. Это значит, что аккумулятор нуждается в зарядке. Резисторы R1, R3 ограничивают ток стабилитрона и светодиода.

В темное время суток сопротивление фоторезистора LDR уменьшается, включаются транзисторы T1, T2 . АКБ заряжается через блок питания. Зарядный ток от сети 220в через трансформатор, диодный мост D3 — D6, резистор R4, транзистор T2 и диод D1 поступает на аккумулятор. Конденсатор C2 сглаживает пульсации сетевого напряжения.

Порог освещенности, при которой срабатывает фотодатчик LDR, настраивается с помощью переменного резистора VR1.

Советы по установке солнечных батарей

  1. Устанавливать батареи лучше в наиболее освещенных местах и как можно выше, чтобы получить максимальную отдачу.
  2. Лицевая сторона должна быть направлена на юг, отклонение не должно превышать 20 градусов.
  3. Угол возвышения над горизонтом должен быть равен географической широте места установки. Самые совершенные системы оснащаются электроприводом, который меняет угол в зависимости от положения солнца.
Оцените статью: Поделитесь с друзьями!

teplo.guru


Каталог товаров
    .