Нейтралями электроустановок называют общие точки обмотки генераторов или трансформаторов, соединенные в звезду. Вид связи нейтралей машин и трансформаторов с землей в значительной степени определяет уровень изоляции электроустановок и выбор коммутационной аппаратуры, значения перенапряжений и способы их ограничения, токи при однофазных замыканиях на землю, условия работы релейной защиты и безопасности в электрических сетях, электромагнитное влияние на линии связи и т.д. В зависимости от режима нейтрали электрические сети разделяют на четыре группы: В России к первой и второй группам относятся сети напряжением 3-35 кВ, нейтрали трансформаторов или генераторов которых изолированы от земли или заземлены через заземляющие реакторы. Сети с эффективно-заземленными нейтралями применяют на напряжение выше 1 кВ. В них коэффициент замыкания на землю не превышает 1,4. Коэффициентом замыкания на землю называют отношение разности потенциалов между неповрежденной фазой и землей в точке замыкания на землю поврежденной фазы к разности потенциалов между фазой и землей в этой точке до замыкания. В соответствии с рекомендациями Международного электротехнического комитета (МЭК) к эффективно-заземленным сетям относят сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землей непосредственно или через небольшое активное сопротивление. В Советском Союзе к этой группе относятся сети напряжением 110 кВ и выше. К четвертой группе относятся сети напряжением 220, 380 и 660 В. Режим работы нейтрали определяет ток замыкания на землю. Сети, в которых ток однофазного замыкания на землю менее 500 А, называют сетями с малыми токами замыкания на землю (в основном это сети с незаземленными и резонансно-заземленными нейтралями). Токи более 500 А соответствуют сетям с большими токами замыкания на землю (это сети с эффективно-заземленными нейтралями). В сетях с незаземленными нейтралями токи при однофазном замыкании на землю протекают через распределенные емкости фаз, которые для упрощения анализа процесса условно заменяют емкостями, сосредоточенными в середине линий (рис.1). Междуфазные емкости при этом не рассматриваются, так как при однофазных повреждениях их влияние на токи в земле не сказывается.
Рис.1. Трехфазная сеть с незаземленной нейтралью
а - нормальный режим;
б - режим замыкания фазы А на землю;
в - устройство для обнаружения замыканий на землю В нормальном режиме работы напряжения фаз сети относительно земли симметричны и равны фазному напряжению, а емкостные (зарядные) токи фаз относительно земли также симметричны и равны между собой (рис.1,а). Емкостный ток фазы (1) где С - емкость фазы относительно земли. Геометрическая сумма емкостных токов трех фаз равна нулю. Емкостный ток нормального режима в одной фазе в современных сетях с незаземленной нейтралью, как правило, не превышает нескольких ампер и практически не влияет на загрузку генераторов. В случае металлического замыкания на землю в одной точке напряжения неповрежденных фаз относительно земли возрастают в √з раз и становятся равными междуфазному напряжению. Например, при замыкании на землю фазы А (рис.1,б) поверхность земли в точке повреждения приобретает потенциал этой фазы, а напряжения фаз В и С относительно земли становятся соответственно равными междуфазным напряжениям . Емкостные токи неповрежденных фаз В и С также увеличиваются в соответствии с увеличением напряжения в √3 раз. Ток на землю фазы А, обусловленный ее собственной емкостью, будет равен нулю, так как эта емкость оказывается закороченной. Для тока в месте повреждения можно записать: (2) т.е. геометрическая сумма векторов емкостных токов неповрежденных фаз определяет вектор тока через место повреждения. Ток IС оказывается в 3 раза больше, чем емкостный ток фазы в нормальном режиме: (3) Согласно (1.3) ток IС зависит от напряжения сети, частоты и емкости фаз относительно земли, которая зависит в основном от конструкции линий сети и их протяженности. Приближенно ток Iс, А, можно определить по следующим формулам: для воздушных сетей (4) для кабельных сетей (5) где U - междуфазное напряжение, кВ; l - длина электрически связанной сети данного напряжения, км. В случае замыкания на землю через переходное сопротивление напряжение поврежденной фазы относительно земли будет больше нуля, но меньше фазного, а неповрежденных фаз - больше фазного, но меньше линейного. Меньше будет и ток замыкания на землю. При однофазных замыканиях на землю в сетях с незаземленной нейтралью треугольник линейных напряжений не искажается, поэтому потребители, включенные на междуфазные напряжения, продолжают работать нормально. Вследствие того что при замыкании на землю напряжение неповрежденных фаз относительно земли увеличивается в √з раз по сравнению с нормальным значением, изоляция в сетях с незаземленной нейтралью должна быть рассчитана на междуфазное напряжение. Это ограничивает область использования этого режима работы нейтрали сетями с напряжением 35 кВ и ниже, где стоимость изоляции электроустановок не является определяющей и некоторое ее увеличение компенсируется повышенной надежностью питания потребителей, если учесть, что однофазные замыкания на землю составляют в среднем до 65% всех нарушений изоляции. В то же время необходимо отметить, что при работе сети с замкнутой на землю фазой становится более вероятным повреждение изоляции другой фазы и возникновение междуфазного короткого замыкания через землю (рис.2). Вторая точка замыкания может находиться на другом участке электрически связанной сети. Таким образом, короткое замыкание затронет несколько участков сети, вызывая их отключение. Например, в случае, показанном на рис.2, могут отключиться сразу две линии. Рис.2. Двойные замыкания на землю в сети с незаземленной нейтралью В связи с изложенным в сетях с незаземленными нейтралями обязательно предусматривают специальные сигнальные устройства, извещающие персонал о возникновении однофазных замыканий на землю. Так, на рис.1, в показан способ контроля изоляции в сети с незаземленной нейтралью. Устройства контроля подключаются к сети через измерительный трансформатор напряжения типа НТМИ или через группу однофазных трансформаторов типа ЗНОМ. Вторичные обмотки измерительных трансформаторов (рис.1,в) соединяются по схемам: одна (I) - звезда, вторая (II) - разомкнутый треугольник. Обмотка I позволяет измерять напряжения всех фаз, обмотка II предназначена для контроля геометрической суммы напряжений всех фаз. Нормально на зажимах обмотки II напряжение равно нулю, поскольку равна нулю геометрическая сумма фазных напряжений всех трех фаз в сети с незаземленной нейтралью. При металлическом замыкании одной фазы в сети первичного напряжения на землю на зажимах обмотки II появляется напряжение, равное геометрической сумме напряжений двух неповрежденных фаз (рис.1,б) Число витков обмотки II подбирается так, чтобы напряжение на ее выводах при металлическом замыкании фазы первичной сети на землю равнялось 100 В. При замыкании на землю через переходное сопротивление напряжение на обмотке II в зависимости от сопротивления в месте замыкания будет 0-100 В. Реле напряжения, подключаемое к обмотке II, будет при соответствующей настройке реагировать на повреждения изоляции первичной сети и приводить в действие сигнальные устройства (звонок, табло). Персонал электроустановки может проконтролировать напряжение небаланса (вольтметром V2) и установить поврежденную фазу (вольтметром V1). Напряжение в поврежденной фазе будет наименьшим. Отыскание места замыкания на землю после получения сигнала должно начинаться немедленно, и повреждение должно устраняться в кратчайший срок. Допустимая длительность работы с заземленной фазой определяется Правилами технической эксплуатации (ПТЭ) и в большинстве случаев не должна превышать 2 ч. Более опасно однофазное замыкание на землю через дугу, так как дуга может повредить оборудование и вызвать двух- или трехфазное КЗ (последнее часто наблюдается при однофазных замыканиях на землю одной из жил трехфазного кабеля). Особенно опасны дуги внутри машин и аппаратов, возникающие при однофазных замыканиях на заземленные корпуса или сердечники. При определенных условиях в месте замыкания на землю может возникать так называемая перемежающаяся дуга, т.е. дуга, которая периодически гаснет и зажигается вновь. Перемежающаяся дуга сопровождается возникновением перенапряжений на фазах относительно земли, которые могут достигать 3,5 Uф. Эти перенапряжения распространяются на всю электрически связанную сеть, в результате чего возможны пробои изоляции и образование КЗ в частях установки с ослабленной изоляцией. Наиболее вероятно возникновение перемежающихся дуг при емкостном токе замыкания на землю более 5-10 А, причем опасность дуговых перенапряжений для изоляции возрастает с увеличением напряжения сети. Допустимые значения тока нормируются и не должны превышать следующих значений: В сетях 3-20 кВ, имеющих линии на железобетонных и металлических опорах, допускается Ic не более 10 А. В блочных схемах генератор-трансформатор на генераторном напряжении емкостный ток не должен превышать 5А. Работа сети с незаземленной (изолированной) нейтралью применяется и при напряжении до 1 кВ. При этом основные свойства сетей с незаземленной нейтралью сохраняются и при этом напряжении. Кроме того, эти сети обеспечивают высокий уровень электробезопасности и их следует применять для передвижных установок, торфяных разработок и шахт. Для защиты от опасности, возникающей при пробое изоляции между обмотками высшего и низшего напряжений, в нейтрали или фазе каждого трансформатора устанавливается пробивной предохранитель. В сетях 3-35 кВ для уменьшения тока замыкания на землю с целью удовлетворения указанных выше норм применяется заземление нейтралей через дугогасящие реакторы. В нормальном режиме работы ток через реактор практически равен нулю. При полном замыкании на землю одной фазы дугогасящий реактор оказывается под фазным напряжением и через место замыкания на землю протекает наряду с емкостным током IC также индуктивный ток реактора IL (рис. 3). Так как индуктивный и емкостный токи отличаются по фазе на угол 180°, то в месте замыкания на землю они компенсируют друг друга. Если IC=IL (резонанс), то через место замыкания на землю ток протекать не будет. Благодаря этому дуга в месте повреждения не возникает и устраняются связанные с нею опасные последствия. Рис.3. Трехфазная сеть с резонансно-заземленной нейтралью Суммарная мощность дугогасящих реакторов для сетей определяется из выражения Q = n IC UФ, (6) где n - коэффициент, учитывающий развитие сети; ориентировочно можно принять n = 1,25; IC - полный ток замыкания на землю, А; UФ - фазное напряжение сети, кВ. По рассчитанному значению Q в каталоге подбираются реакторы требуемой номинальной мощности. При этом необходимо учитывать, что регулировочный диапазон реакторов должен быть достаточным для обеспечения возможно более полной компенсации емкостного тока при вероятных изменениях схемы сети (например, при отключении линий и т.п.). При IC ≥ 50 А устанавливают два дугогасящих реактора с суммарной мощностью по (6). Рис. 4. Устройство дугогасящих реакторов
а - типа РЗДСОМ, б - типа РЗДПОМ В России применяют дугогасящие реакторы разных типов. Наиболее распространены реакторы типа РЗДСОМ (рис.4,а) мощностью до 1520 кВ А на напряжение до 35 кВ с диапазоном регулирования 1:2. Обмотки этих реакторов располагаются на составном магнитопроводе с чередующимися воздушными зазорами и имеют отпайки для регулирования тока компенсации. Реакторы имеют масляное охлаждение. Более точно, плавно и автоматически можно производить настройку компенсации в реакторах РЗДПОМ, индуктивность которых изменяется с изменением немагнитного зазора в сердечнике (рис.4,б) или путем подмагничивания стали магнитопровода от источника постоянного тока. Дугогасящие реакторы должны устанавливаться на узловых питающих подстанциях, связанных с компенсируемой сетью не менее чем тремя линиями. При компенсации сетей генераторного напряжения реакторы располагают обычно вблизи генераторов. Наиболее характерные способы присоединения дугогасящих реакторов показаны на рис.5. Рис.5. Размещение дугогасящих реакторов в сети На рис.5,а показаны два дугогасящих реактора, подключенных в нейтрали трансформаторов подстанции, на рис.5.б - реактор, подключенный к нейтрали генератора, работающего в блоке с трансформатором. В схеме на рис.5, в показано подключение дугогасящего реактора к нейтрали одного из двух генераторов, работающих на общие сборные шины. Следует отметить, что при этом цепь подключения реактора должна проходить через окно сердечника трансформатора тока нулевой последовательности (ТНП), что необходимо для обеспечения правильной работы защиты генератора от замыканий на землю. При подключении дугогасящих реакторов через специальные трансформаторы и трансформаторы собственных нужд, по мощности соизмеримые с мощностью реакторов, необходимо учитывать их взаимное влияние. В первую очередь это влияние сказывается в уменьшении действительного тока компенсации по сравнению с номинальным из-за наличия последовательно включенного с реактором сопротивления обмоток трансформатора (7) где Iном,р - номинальный ток дугогасящего реактора; Uк% - напряжение КЗ трансформатора; Sном,т - номинальная мощность трансформатора. Особенно резко ограничивающее действие обмоток трансформатора сказывается при использовании схемы соединения обмоток звезда-звезда, так как при однофазных замыканиях на землю индуктивное сопротивление у них примерно в 10 раз больше, чем при междуфазных КЗ. По этой причине для подключения реакторов предпочтительнее трансформаторы со схемой соединения обмоток звезда-треугольник. В свою очередь наличие дугогасящего реактора в нейтрали трансформатора обусловливает при однофазных замыканиях на землю дополнительную нагрузку на его обмотки, что приводит к повышенному нагреву. Это особенно важно учитывать при использовании для подключения реактора трансформаторов, имеющих нагрузку на стороне низшего напряжения, например трансформаторов собственных нужд электростанций и подстанций. Допустимая мощность реактора, подключаемого к нагруженному трансформатору, определяется из выражения (8) где Sном,т - номинальная мощность трансформатора; Smax - максимальная мощность нагрузки. Выражение (8) справедливо с учетом того, что значение cosφ нагрузки обычно близко к единице, а активное сопротивление реактора мало. С учетом перегрузки трансформатора, допустимой на время работы сети с заземленной фазой и определяемой коэффициентом перегрузочной способности kпер, допустимая мощность реактора, подключаемого к данному трансформатору, равна (9) При подключении реактора к специальному ненагруженному трансформатору необходимо выдержать условие (если перегрузка трансформатора допустима). В сетях с резонансно-заземленной (компенсированной) нейтралью, так же как и в сетях с незаземленными нейтралями, допускается временная работа с замкнутой на землю фазой до тех пор, пока не представится возможность произвести необходимые переключения для отделения поврежденного участка. При этом следует учитывать также допустимое время продолжительной работы реактора 6ч. Наличие дугогасящих реакторов особенно ценно при кратковременных замыканиях на землю, так как при этом дуга в месте замыкания гаснет и линия не отключается. В сетях с нейтралями, заземленными через дугогасящий реактор, при однофазных замыканиях на землю напряжения двух неповрежденных фаз относительно земли увеличиваются в √3 раз, т.е. до междуфазного напряжения. Следовательно, по своим основным свойствам эти сети аналогичны сетям с незаземленными (изолированными) нейтралями. В сетях 110 кВ и выше определяющим в выборе способа заземления нейтралей является фактор стоимости изоляции. Здесь применяется эффективное заземление нейтралей, при котором во время однофазных замыканий напряжение на неповрежденных фазах относительно земли равно примерно 0,8 междуфазного напряжения в нормальном режиме работы. Это основное достоинство такого способа заземления нейтрали. Рис.6. Трехфазная сеть с эффективно-заземленной нейтралью Однако рассматриваемый режим нейтрали имеет и ряд недостатков. Так, при замыкании одной фазы на землю образуется короткозамкнутый контур через землю и нейтраль источника с малым сопротивлением, к которому приложена ЭДС фазы (рис.6). Возникает режим КЗ, сопровождающийся протеканием больших токов. Во избежание повреждения оборудования длительное протекание больших токов недопустимо, поэтому КЗ быстро отключаются релейной защитой. Правда, значительная часть однофазных повреждений в электрических сетях напряжением 110 кВ и выше относится к самоустраняющимся, т.е. исчезающим после снятия напряжения. В таких случаях эффективны устройства автоматического повторного включения (АПВ), которые, действуя после работы устройств релейной защиты, восстанавливают питание потребителей за минимальное время. Второй недостаток - значительное удорожание выполняемого в распределительных устройствах контура заземления, который должен отвести на землю большие токи КЗ и поэтому представляет собой в данном случае сложное инженерное сооружение. Третий недостаток - значительный ток однофазного КЗ, который при большом количестве заземленных нейтралей трансформаторов, а также в сетях с автотрансформаторами может превышать токи трехфазного КЗ. Для уменьшения токов однофазного КЗ применяют, если это возможно и эффективно, частичное разземление нейтралей (в основном в сетях 110-220 кВ). Возможно применение для тех же целей токоограничивающих сопротивлений, включаемых в нейтрали трансформаторов. Такие сети применяются на напряжение до 1 кВ для одновременного питания трехфазных и однофазных нагрузок, включаемых на фазные напряжения (рис.7). В них нейтраль трансформатора или генератора присоединяется к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформатор тока). Для фиксации фазного напряжения при наличии однофазных нагрузок применяют нулевой проводник, связанный с нейтралью трансформатора (генератора). Этот проводник служит для выполнения также и функции зануления, т.е. к нему преднамеренно присоединяют металлические части электроустановок, нормально не находящиеся под напряжением. При наличии зануления пробой изоляции на корпус вызовет однофазное КЗ и срабатывание защиты с отключением установки от сети. При отсутствии зануления корпуса (второй двигатель на рис.7) повреждение изоляции вызовет опасный потенциал на корпусе. Целость нулевого проводника нужно контролировать, так как его случайный разрыв может вызвать перекос напряжений по фазам (снижение его на загруженных фазах и повышение на незагруженных). Может быть принято при необходимости раздельное выполнение нулевого защитного и нулевого рабочего проводников. Рис.7. Трехфазная сеть с глухозаземленной нейтралью www.gigavat.com Чаще всего в электроустановках для защиты людей от удара током используется глухозаземленная нейтраль. В результате при аварийной ситуации потенциалы быстро уравниваются, а защитное оборудование работает более эффективно. Для грамотного использования этого механизма необходимо хорошо знать и уметь применять на практике нормы ПУЭ. Сегодня в электроустановках используется два защитных механизма — изолированная и глухозаземленная нейтраль. Главное преимущество заключается в отсутствии необходимости экстренного отключения первого однофазного замыкания на землю. Также следует помнить, что в области повреждения электросети создается небольшой ток, но это справедливо только при низкой токовой емкости на землю. Однако есть несколько недостатков, из-за которых изолированная нейтраль используется сравнительно редко: Все эти недостатки полностью нивелируют преимущества такого способа заземления нейтрали. В то же время этот метод защиты в некоторых ситуациях продолжает оставаться эффективным и не противоречит нормам ПУЭ. Например, изолированная нейтраль может стать хорошим решением для защиты высоковольтных линий, так как позволяет избежать аварийного отключения. В свою очередь, требованиям защиты сетей конченого потребителя электроэнергии он не удовлетворяет. Сначала необходимо понять, что является определением понятия глухозаземленная нейтраль. Согласно ПУЭ этот способ предполагает прямое соединение нейтрали трансформатора с заземляющим элементом. В электротехнике такой способ заземления принято называть рабочим. Также необходимо помнить, что в электроустановках, рассчитанных на напряжение 220−380 вольт, сопротивление заземляющих элементов не должно превышать показатель в 4 Ом. Принцип действия глухозаземленной нейтрали можно продемонстрировать на примере трехпроводной электроцепи, соединяющей источник энергии с жилым домом. При ее создании нейтраль просто распределяется по щитку, и к ней подключаются все заземляющие контуры потребителей. Такая цепь не предполагает наличия различных устройств, которые могут нарушить ее единство. Если предположить, что по причине частых вибраций в холодильнике от места крепления отсоединился фазный проводник и вступил в контакт с корпусом, то такая ситуация является аварийной. Все это приводит к появлению короткого замыкания и стремительному увеличению силы тока. Однако автоматический выключатель быстро справляется с поставленной задачей и размыкает цепь. Если человек случайно дотронется до провода, то поражения током не произойдет, ведь сопротивление R0 будет меньше в сравнении с возникающим при прохождении через человеческое тело. Глухозаземленная нейтраль имеет больше преимуществ и меньше недостатков в сравнении с изолированной. Среди преимуществ можно отметить: Однако это неидеальный способ и ему присущи некоторые недостатки. Начать стоит с того, что риски получения повреждений от удара электротоком сохраняются, хотя их и можно считать незначительными. Кроме этого, из-за большого замыкания тока на землю могут появиться помехи и даже повреждения сети. Сегодня в электротехнике достаточно активно используются оба способа — глухозаземленная и изолированная нейтраль. Различия между ними в первую очередь заключаются в способе подключения трансформатора к заземляющему элементу. Вся необходимая информация по выбору способа защиты изложена в ПУЭ. Если говорить о бытовой сети на 220 вольт, то место заземления можно расположить около трансформатора, и для решения поставленной задачи применяется отдельный проводник. Это позволит уменьшить путь прохождения тока и одновременно сократить расходы. В загородном доме допускается соединение с металлическим каркасом строения, расположенным в глубине земли. Если же заземляющим элементом является фундамент, то к его арматуре необходимо выполнить подключение минимум в двух точках. 220v.guru В настоящее время на территории Российской Федерации сетевыми организациями эксплуатируются электрические сети среднего и низкого напряжения со следующими режимами работы нейтрали: Примеры схем сетей с глухозаземленной, изолированной и резистивной нейтралью Примеры схем сетей с глухозаземленной, изолированной и резистивной нейтралью Дополнительная информация. При определении способа заземления нейтрали в распределительных сетях высокого напряжения обычно применяют метод, называющийся эффективно заземленная нейтраль. Рядовые потребители электрической энергии редко понимают, что источником тока в розетке являются силовые трансформаторы. При соединении трёхфазных обмоток трансформатора в «звезду» появляется совместная точка. Нейтраль – так она называется. При соединении нейтрали с контуром заземления непосредственно у источника появляется глухозаземленная нейтраль. Наибольшая область применения систем с глухозаземленной нейтралью – напряжение до 1000 Вольт (так называемое низкое напряжение). Электрические сети городов и посёлков, дачные домики и элитные коттеджи – все они запитываются от силовых трансформаторов с заземлѐнной нейтралью. Конструктивной особенностью глухозаземленной нейтрали является наличие фазного и линейного напряжения. Источники электрической энергии, используемые в рассматриваемых электроустановках, обладают тремя силовыми: фазными концами и одним нейтральным – нулевым. Разность потенциалов, появляющаяся между фазными проводами, называется линейным напряжением, а между одним из фазных и нулевым – фазным. По величине показателя линейного напряжения говорят о напряжении всей электросети. В нашей стране оно зафиксировано на значениях, равных 220В, 380В и 660В. √3 раз – такова разница между фазным и линейным напряжением. Соответственно, фазное напряжение будет принимать вид 127 В, 220 В и 380 В. Самое распространённая величина номинального напряжения – 380 В. При линейном напряжении 380 В фазное равно 220 В. Электрическую сеть с нейтралью, заземлённой непосредственно рядом с источником, можно использовать для электроснабжения трехфазных нагрузок на напряжение 380 В и однофазных на напряжение 220 В. Для последних подключение производится между «фазой» и «нулём». Распределение однофазных потребителей производят равномерно по фазам А, В и С во избежание перекоса. Контур заземления ТП Любая трансформаторная подстанция с действующим трансформатором обязана быть окружена контуром заземления. Контур заземления трансформаторной подстанции – это таким образом соединённые между собой металлические заземлители, заглублённые в грунт, чтобы сопротивление их не превышало 4-х Ом при номинальном напряжении 380 В. Это значение закреплено в главном нормативном документе электротехники – ПУЭ. От контура заземления подстанции делаются выводы для присоединения в распределительном устройстве к специальной металлической полосе – нулевой шине. К ней же подключается нулевой вывод трансформатора. У отходящих кабельных линий соответствующие жилы так же заводятся на эту шину. Фазные жилы «сажаются» на коммутационные аппараты. Кабели, выходящие из кабельного полуэтажа подстанции, должны быть четырёхжильными. В давно введённых в эксплуатацию электроустановках встречаются кабели с тремя жилами и оболочкой из алюминия. В этом случае она используется как нулевой проводник. Для принятия напряжения от сетевой организации каждый потребитель обязан организовать у себя на объекте вводное распределительное устройство 0,4 кВ (ВРУ). В нем необходимо предусмотреть нулевую шину соответствующего сечения. К ней присоединяются все нулевые жилы подходящих и отходящих кабелей. Повторное заземление ВРУ тоже заводится на нулевую шину. Теперь разберём, для чего выполняется заземление нейтрали трансформатора, и физику работы такой электрической сети. В теоретической физике потенциал нулевого проводника по отношению к земле не должен превышать нулевого значения. Повторное заземление у принимающего устройства потребителя помогает добиться этого значения с ещё более высокой степенью вероятности, особенно, если до ТП есть достаточное расстояние. Поражение током возможно в следующих ситуациях: К включенному в сеть проводу, лежащему на влажном полу, подходить не рекомендуется. В этой ситуации появляется потенциал, опасный для человека. При попытке сделать шаг ноги оказываются под действием различных величин потенциала. Удар током обеспечен. Для избегания подобного развития событий перед заливкой бетона укладывается металлический каркас, соединённый с контуром заземления минимум в 2-х точках. За счёт этого при возникновении на полу потенциала ноги идущего человека будут зашунтированы, поражения электрическим током удастся избежать. Для недопущения появления напряжения на нетоковедущих частях электрической системы ПУЭ обязывает заземлить абсолютно все металлические детали, находящиеся в распредустройствах трансформаторных подстанций и потребителя, а также корпуса электроприборов. В промышленных цехах, где присутствует электрическое оборудование (станки, производственные линии), по периметру пускается стальная полоса для присоединения всех без исключения металлсодержащих частей. Таким образом, выравниваются потенциалы земли и металлических частей, расположенных в помещении. При возникновении пробоя на заземлённый корпус электрический ток пойдёт по пути наименьшего сопротивления, т.е. по заземляющим проводникам до контура заземления, а не через обладающее большим сопротивлением человеческое тело, даже при не сработавшей защите. Меры предосторожности при работе в сети с глухозаземленной нейтралью По этой причине ток через контур заземления направится в сторону нейтрали силового трансформатора. Это приводит к короткому замыканию с большой величиной электрического тока. На превышение заданного параметра должен будет среагировать защитный коммутационный аппарат: плавкая вставка или автоматический выключатель. За счёт этого повреждённый участок цепи будет выведен из работы. Таким образом, организуется быстрая локализация аварийного режима. Существует несколько видов таких систем: Важно! Зануление – это электрическое соединение незаземленных корпусов, в нормальном состоянии не под напряжением, и нулевым проводом трансформатора. Разновидности схем TN Данный режим работы заземленной нейтрали защищает от поражения электрическим током. При аварии потенциал выравнивается, поэтому прикосновение к металлическим конструкциям перестает быть опасным. amperof.ru Глухозаземленной нейтралью называется общая точка соединения типа «звезда» выходных обмоток трехфазного трансформатора или генератора, если она имеет непосредственное (или через сопротивление малой величины) соединение с физической землей. В нашей стране она используется только в электрических линиях напряжением 0,4 кВ. Подключение общей точки выходных обмоток силовых трансформаторов с физической землей осуществляется с тремя целями: В нашей стране все электрические сети напряжением 0,4 кВ делаются четырехпроводными и с глухозаземленной нейтралью, причем дублирование соединения нейтрального проводника (он тянется от общей точки соединения трех обмоток трансформатора силовой подстанции) с физической землей, осуществляется на каждой третьей опоре. Это делается с той целью, чтобы сопротивление заземления всегда было не более единиц Ом. При надежном соединении нейтрали с землей случайное прикосновение к одной фазе не приведет к поражению электрическим током человека, если на нем обувь с подошвой, имеющей диэлектрические свойства. По той причине, что общее сопротивление линии рука – нога равно не менее 1 кОм, а это в десятки раз больше, чем у проводника, соединяющегося с заземлителем. Ток через человека просто не пойдет. Если нейтральный проводник заземлен, то однофазное замыкание на физическую землю сопровождается лавинообразным ростом силы тока, что сопровождается возникновением электрической дуги и выделением большого количества тепла, в результате чего аварийный проводник плавится и его контакт с землей прекращается. Чтобы ускорить процесс отключения, в линии устанавливаются автоматические электромагнитные выключатели, которые обесточивают ее при возникновении сверхтоков (КЗ). Это снижает время действия электрического тока на людей или электроустановки. Что дает шанс на то, что первые останутся живы и относительно невредимы, а вторые – работоспособными. В общем для трех обмоток трансформатора проводнике сила тока равна нулю и нет напряжения электрического поля. Это является результатом сложения трех векторов сил тока, угол (фазный сдвиг) между которыми равен 1200. Но так происходит только в том случае, если все три фазы симметричны друг другу по электрическим параметрам. В реальности они могут отличаться, что приведет к тому, что в нейтрали возникнет ток, а потребителю будет подано, например, не 380, а 320 или 450 вольт. Заземление нейтрали в трехфазной сети принудительно выравнивает фазы, благодаря тому, что паразитный ток стекает на землю. Это особенно актуально в том случае, если электроэнергия подается для питания однофазных потребителей. Оно осуществляется прокладыванием трехфазной линии с общей нейтралью (четыре провода) и подключением групп потребителей к разным фазам. Поскольку уровень энергопотребления в квартирах существенно отличается – в одной, например, включен только телевизор, а в другой еще и стиральная машина, перекос фаз может достигать критического уровня. Если соединение с заземлителем недостаточно надежно и имеет большое сопротивление, нейтральный провод, который обычно делают меньшего сечения, чем фазный, может отгореть. Это приводит к тому, что у кого-то напряжение на вводах будет почти 380 вольт, а у других около 110. Оба режима опасны для бытовых приборов и могут привести к электротравме людей или животных. Бытовое напряжение 220 вольт снимается между фазной линией и нейтралью, от линейного (между фазами) оно отличается в 1,7 раза. Для обеспечения стабильности его значения нейтраль заземляется. Существует несколько схем глухозаземленной нейтрали. Подробнее с системами заземления можно ознакомиться здесь. Из-за того, что технологическая нейтраль обмоток трансформатора заземляется, существует путаница в применение проводников N и PE. Правила устройства электроустановок четко определяют, что технологическую нейтраль – провод N – можно подключать к корпусам электроприборов только в трехфазной сети. Именно в этом случае по нему не течет ток и потому он называется нулевым проводником, а способ его подключения занулением. При питании однофазных потребителей по проводу N течет ток. Поэтому его категорически нельзя подключать к корпусу электроприбора. Во-первых, это опасно из-за возможности поражения людей электрическим током. Во-вторых, питание на потребителя не будет подано, поскольку между его схемой и корпусом нет электрической связи. ВНИМАНИЕ! Корпус однофазного бытового электроприбора можно только заземлять, подключая к проводнику PE! Аналогичной ошибкой является подключение к клемме N АВДТ или УЗО защитного проводника PE. Если PE подключен к входу и выходу, то защита не будет срабатывать. А при разноименной коммутации, например, провод N на входе, а PE на выходе, будет, наоборот, происходить постоянное отключение. Глухозаземленная нейтраль не является гарантированной защитой от поражения людей электрическим током. Она только снижает тяжесть последствий. Поэтому соблюдение правил электробезопасности в любом случае обязательно. electriktop.ru Трехфазная электросеть, которая широко применяется для электроснабжения, использует два основных варианта соединения: треугольник и звезда. В соединении звезда получается потенциал, общий для всех фаз. Это соединение фаз источника электроэнергии тем или иным способом связывается с потребителем этой энергии. В результате нагрузки симметрируются, а состояние электросети стабилизируется. Но это нормальное состояние рано или поздно нарушается какой-либо аварией. Например, ударом молнии в провода одной фазы или их обрывом по той или иной причине. На страже всегда система защиты от подобных неприятностей. Для минимальных потерь времени и средств от простоя электроснабжения ее работа должна быть максимально эффективной. Способ соединения нейтральных потенциалов в электросети в значительной степени влияет на работу защиты и не только. Далее более подробно остановимся на таком соединении нулевых потенциалов источника и потребителя электроэнергии, как глухозаземленная нейтраль. Самый понятный способ соединения точек нулевого потенциала источника и потребителя электроэнергии – это проводник, присоединенный к ним. При отсутствии точки соединения с заземляющим устройством этот провод получается гальванически не связанным с землей. Таким образом, выходит так называемая изолированная нейтраль. Этот проводник способен пропустить самые большие токи, которые только могут появиться в электросети, и остановить это может лишь его перегорание от нагревания. Изолированная нейтраль не связана гальванически с заземлением провода, и кабели, передающие электроэнергию на большие расстояния, фактически являются обкладками конденсаторов. По этой причине на землю все равно происходит утечка в виде емкостного тока. А если произойдет авария, в результате которой одна из фаз, по сути, заземлится (короткое замыкание на землю), величина емкостного тока получится максимальной. Не будем вдаваться в детали этого, поскольку наша задача – это подробности относительно глухозаземленной нейтрали. Для справки упомянем то, что для ограничения емкостных токов ПУЭ предписывает использование дросселей (иначе реакторов) с теми или иными значениями токов и напряжений. Токи при замыкании на землю в электросети с изолированной нейтралью сравнительно невелики. Они не наносят какого-либо значительного ущерба, и по этой причине снижается требование к быстродействию защиты, а значит, и расходы на нее получаются меньше. Однако эта простота ситуации с коротким замыканием на землю дает много, так сказать, побочных эффектов. Вот они: Перечисленные недостатки обуславливают более широкое распространение глухозаземленной нейтрали. Поскольку молния ударяет в землю, очевидно, что ее можно эффективно использовать в качестве эквивалента провода. Что и делается в источнике и потребителе электроэнергии. В них точка нулевого потенциала соединяется с заземляющим устройством, которое именуется рабочим заземлением. Для возможности контроля силы тока в глухозаземленной нейтрали между точкой нулевого потенциала и заземляющим устройством присоединяется трансформатор тока. Короткое замыкание на землю в электрической цепи с глухозаземленной нейтралью носит явный характер и сопровождается током большой силы. При возникновении электрической дуги выделяется много энергии, которая разрушительно действует вблизи места замыкания. По этой причине защита должна максимально быстро отключить источник питания от места повреждения. Для снятия потенциала с корпусов электрооборудования при коротком замыкании на землю их соединяют с защитным заземлением. В электрических сетях до 1000 В источниками электропитания являются вторичные обмотки трансформаторов. Для наиболее эффективного соединения точек нулевого потенциала источника питания и нагрузки применяются дополнительные проводники PEN, PE и N, соединенные так, как показано далее на изображении: В составе этих проводников применение каких-либо иных элементов недопустимо. Если связь между источником питания до 1000 В с нагрузкой выполнена в виде ЛЭП, глухозаземленная нейтраль выполнена четвертым проводом, который через каждые двести метров соединяется с рабочим заземлением. Внутри помещений большой протяженности используются аналогичные расстояния между местами с рабочими заземлениями глухозаземленной нейтрали. Соединяемые с ней корпуса электрооборудования надежно защищают персонал от удара электрическим током. domelectrik.ru Система заземления «IT», больше известная в России как «электроустановка с изолированной нейтралью», предназначена для защиты человека, электрооборудования и линий электропередач от воздействия межфазного замыкания во время работы с большими токами. В системе заземления «IT» нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены. Ток утечки на металлические корпуса или на землю в этой системе будет низким и не повлияет на условия работы присоединенного электрооборудования. Поэтому, такой вид заземления получил наибольшее распространение в предприятиях энергоснабжения, а также в газовой, нефтяной и химической промышленности, где есть угроза воспламенения горючих веществ от используемого электрооборудования. Иначе говоря, система заземления «IT» исключает немедленное отключение при пробое на «землю» и возникновение дуги при непредвиденном соприкосновении токоведущих проводников между собой, а также предохраняет от появления шагового напряжения очень большой силы, даже на короткий промежуток времени. Чтобы как-то разобраться в этом, рассмотрим каждый нулевой проводник по-отдельности. Роль защитного нулевого проводника «РЕ» исполняет обычный заземленный контур, замкнутый на токопроводящие корпуса, кожухи и другие внешние металлические части электрических установок. При этом надо помнить, что совокупное заземление нескольких видов электрооборудования допускается, если они принадлежат одному классу эксплуатации. Например, категорически воспрещается занулять в один заземляющий контур электрооборудование, которое работает с напряжением до 1 киловольта и оборудование, которое работает с напряжением свыше 3 киловольт и так далее, в этом случае применяется раздельное заземление. Это особенно актуально для повышающих и понижающих подстанций. Что касается нулевого рабочего проводника «N», то он абсолютно отсутствует в системе энергопитания, поэтому данный вид заземления, используется только при трехфазных вводах. А в источниках питания или преобразования электричества он полностью отсутствует или изолируется от земли тремя основными способами: полным изолированием нейтрали, изолированием нейтрали через дугогосящую схему или изолированием нейтрали через низкоомное или высокоомное сопротивление. В первом случае, обмотки генератора или трансформатора в распределительных, преобразующих или питающих подстанциях, соединяются по схеме «треугольник», поэтому нейтральная точка для соединения нулевого проводника «N» отсутствует. Но такая схема электромонтажа, является малоэффективной и работает только при малых токах в местах замыканий. Дугогасящая схема, тоже не идеальна и сопряжена с угрозами поражения персонала электрическим током, со сложностью настройки компенсации сил напряжения, а также с невозможностью обнаружения повреждений в кабеле при первом замыкании, но намного лучше, чем первая. Поэтому, на сегодняшний день она широко используется в странах Европы, только в системах воздушного электроснабжения предприятий и населенных пунктов и только с высокоточным саморегулирующим оборудованием, В кабельных разветвлениях, ее эффективность стремится к нулю. Здесь схема соединения такая же, как в первом случае, но обязательно создается нейтральная точка для подключения нулевого проводника «N», с помощью токосъемного трансформатора с последующим заземлением через рассматриваемую схему Заземление с помощью низкоомного или высокоомного сопротивления, несмотря на то, что она мало применяется в России и ее можно встретить только на предприятиях с высокой взрывоопасностью, на ГЭС и на высоковольтных передающих станциях, самая надежная и эффективная по сравнению с двумя предыдущими. Достаточно привести главные преимущества перед остальными: Притом, что схема подключения возможна двумя способами, и «треугольником», и «звездочкой». Условные обозначения систем заземления : Первая буква - состояние нейтрали источника относительно земли . Т - заземлённая нейтраль .I - изолированная нейтраль . Вторая буква - состояние открытых проводящих частей относительно земли . Т - открытые проводящие части заземлены независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети .N - открытые проводящие части присоединены к глухозаземлённой нейтрали источника питания . Буквы после N - совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников . S - нулевой рабочий (N) и нулевой защитный (PE) проводники разделены .С - функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (РЕN-проводник) . Система заземления «TN-S» Система заземления «ТТ» Система заземления «TN-С» malahit-irk.ru Источниками питания потребителей являются генераторы или силовые трансформаторы. Обычно трехфазные обмотки соединяются в звезду. Общая точка этого соединения называется нейтралью. Если она напрямую или через небольшое сопротивление (трансформатор тока) соединяется с контуром заземления непосредственно у источника электроснабжения, то это – глухозаземленная нейтраль. Работа нейтрали с заземлением – лишь один из возможных режимов ее работы. В зависимости от условий работы сети при однофазных замыканиях на землю, требуемых способов защиты людей от поражения электрическим током, способов ограничения перенапряжений используются и другие режимы: Эти режимы характерны для электроустановок с напряжением 6 кВ и выше. Система с изолированной нейтралью применяется и при напряжении до 1000 В, но не столь широко, как заземленная. Она обеспечивает высокую безопасность при эксплуатации передвижных электроустановок, горных предприятий, где использование контура заземления для обеспечения электробезопасности ненадежно или неэффективно. Установка в нейтральном проводнике компенсационных установок позволяет уменьшить емкостной ток замыкания на землю электроустановок выше 1000 В. Компенсация осуществляется за счет плавно или ступенчато изменяемой индуктивности катушки. В точке замыкания на землю ток при полной компенсации становится равным нулю. Дополнительно для эффективного срабатывания защиты используется резистивное заземление нейтрали. Она создает активную составляющую тока, на который реагирует реле ячейки, питающей поврежденную линию. Эффективное заземление нейтрали применяется на линиях электропередач напряжением 110 кВ и выше. Все бытовые, сельские, дачные электросети питаются от трансформаторных подстанций с глухозаземленной нейтралью. Поэтому рассмотрим особенности ее работы поподробнее. Трансформаторы и генераторы, применяемые для этих электроустановок, имеют три фазных силовых вывода и один нейтральный (нулевой). Напряжение между фазными выводами называют линейным, а между любым фазным и нулевым выводом – фазным. Линейное напряжение определяет номинальное напряжение всей электроустановки. Оно может принимать стандартные значения 220 В, 380 В и 660 В. Линейное напряжение в бытовых сетях – 380 В. Фазное напряжение меньше линейного в √3 раз, что соответствует 127, 220 и 380 В. При линейном 380 В фазное равно 220 В. Таким образом, сеть 380 В с заземленной нейтралью пригодна для питания трехфазных потребителей на напряжение 380 В и однофазных на напряжение 220 В. Однофазные нагрузки подключаются между фазными и нулевыми проводниками и равномерно распределяются по фазам. Подстанция, на которой установлен силовой трансформатор, имеет контур заземления: определенным образом соединенные между собой стальные или медные детали, заглубленные в грунт. Геометрические размеры контура заземления рассчитывают так, чтобы они эффективно способствовали растеканию по земле тока однофазного замыкания. Способность заземляющего устройства проводить этот ток количественно оценивается его сопротивлением растеканию. Допустимые значения этого параметра регламентированы ПУЭ. Для трансформаторных подстанций сопротивление контура заземления не должно превышать 4 Ом при номинальном напряжении 380 В. Выводы от контура заземления на подстанции присоединяются к нулевой шине – металлической полосе распределительного устройства, к которой подключается и проводник от нулевого вывода трансформатора. К этой же шине подключаются соответствующие жилы отходящих кабелей. Фазные жилы подключаются к выводам коммутационных аппаратов: рубильников, автоматических выключателей, контактным площадкам держателей предохранителей. Кабельные линии, отходящие от подстанции, выполняются четырехжильными кабелями. В электроустановках, построенных ранее, встречаются трехжильные кабели с алюминиевой оболочкой, которая используется в качестве нулевого проводника. Электроустановки потребителя для ввода питающего напряжения имеют вводное распределительное устройство (ВРУ). Оно также содержит нулевую шину, как и подстанция. К ней подключаются нулевые жилы питающих и отходящих кабельных линий. ВРУ имеет контур повторного заземления, который тоже подключается к нулевой шине. Теперь переходим к непосредственному объяснению того, зачем делается заземление нейтрали трансформатора и как это работает. Теоретически для любой точки электросети потенциал нулевого проводника относительно земли равен нулю. Контур повторного заземления у потребителя делает это равенство еще более прочным, особенно, если до питающей подстанции далеко. Поражение людей электрическим током возможно при случаях: levevg.ruПонятие глухозаземленная нейтраль и отличия от изолированной. Глухозаземленная нейтраль схема
Режимы работы нейтралей в электроустановках
Трехфазные сети с незаземленными (изолированными) нейтралями
Трехфазные сети с резонансно-заземленными (компенсированными) нейтралями
Трехфазные сети с эффективно-заземленными нейтралями
Сети с глухозаземленными нейтралями
отличия, заземление, понятие и принцип действия
Преимущества и недостатки изолированной нейтрали
Принцип работы глухозаземленной нейтрали
Плюсы и минусы способа
Требования ПУЭ
О глухозаземленной нейтрали: определение изолированного глухого заземления
Сеть с глухозаземленной нейтралью
Особенности конструктива
Меры предосторожности
Разновидности систем TN
Видео
Глухозаземлённая нейтраль - ElectrikTop.ru
Зачем заземлять нейтраль
Обеспечение безопасности людей
Поддержание качества подаваемой электроэнергии
Бытовой номинал напряжения
Схемы подключения заземленной нейтрали
Заземление и зануление
устройство, применение и отличие от изолированного варианта
Вариант для сравнения – изолированная нейтраль
Что лучше в глухозаземленной нейтрали
Система заземления «IT»
принцип действия и особенности эксплуатации. Установки с изолированной и глухозаземленной нейтралью
Конструкция сетей с глухозаземленной нейтралью
Защита людей от поражения током в сети с глухозаземленной нейтралью
Поделиться с друзьями: