интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

ГЕНЕРАТОРЫ СТАБИЛЬНОГО МИКРОТОКА НА КРЕМНИЕВЫХ БИПОЛЯРНЫХ ТРАНЗИСТОРАХ. Генератор тока схема на полевом транзисторе


Мощный генератор ВЧ на MOSFET-транзисторе — Gnativ.ru

Юным радиолюбителям посвящается…

Предисловие

Радиосигнал, однажды сгенерированный, уносится в глубь Вселенной со скоростью света… Эта фраза, прочитанная в журнале «Юный техник» в далеком детстве произвела на меня очень сильное впечатление и уже тогда я твердо решил, что обязательно пошлю свой сигнал нашим «братьям по разуму», чего бы мне это не стоило. Но путь, от желания до воплощения мечты долог и непредсказуем…

Когда я только начинал заниматься радиоделом,  мне очень хотелось построить  портативную радиостанцию. В то время я думал, что она состоит из динамика, антенны и батарейки. Стоит только соединить их в правильном порядке и можно будет разговаривать с друзьями где-бы они не находились… Я изрисовал не одну тетрадку возможными схемами, добавлял всевозможные лампочки, катушки и проводки. Сегодня эти воспоминания вызывают у меня лишь улыбку, но тогда мне казалось, что еще чуть-чуть и чудо-устройство будет у меня в руках…

Я помню свой первый радиопередатчик.  В 7 классе я ходил в кружок спортивной радиопеленгации (т.н. охоты на лис). В один из прекрасных  весенних  дней наша последняя «лиса» — приказала долго жить. Руководитель кружка, недолго думая, вручил мне её со словами — «… ну, ты там её почини…». Я наверное был страшно горд  и счастлив, что мне доверили столь почетную миссию, но мои знания электроники  на тот момент не дотягивали до «кандидатского минимума». Я умел отличать транзистор от диода и приблизительно представлял как они работают по отдельности, но как они работают вместе — для меня это было загадкой. Придя домой, я с благоговейным трепетом вскрыл небольшую металлическую коробочку. Внутри неё оказалась плата, состоящая  из мультивибратора и генератора РЧ на транзисторе П416. Для меня это была вершина схемотехники.  Самой загадочной деталью в данном устройстве была катушка задающего генератора (3,5МГц.), намотанная на броневом сердечнике. Детское любопытство пересилило здравый смысл и острая металлическая отвертка впилась в броневой кожух катушки. «Хрясь» — раздался хруст и кусок броневого корпуса катушки, со стуком упал на пол. Пока он падал, мое воображение уже нарисовало картину моего расстрела руководителем нашего кружка…

У этой истории был счастливый конец, правда случился он через месяц. «Лису» я все-таки починил, хотя точнее сказать — сделал её заново. Плата радиомаяка, сделанная из фольгированного гетинакса, не выдержала пыток моим 100 ваттным паяльником, дорожки отслоились от постоянной перепайки деталей… Пришлось плату делать заново. Спасибо моему папе, что принес  (достал где-то с большим трудом) фольгированный гетинакс, а маме — за дорогой французский красный лак для ногтей, который я использовал для рисования платы. Новый броневой сердечник мне достать не удалось, но зато удалось аккуратно склеить старый клеем БФ… Отремонтированный  радиомаяк радостно послал в эфир свое слабое «ПИ-ПИ-ПИ», но для меня это было сравни запуску первого искусственного спутника Земли, возвестившего человечеству о начале космической эры таким-же прерывистым сигналом на частоте 20 и 40 МГц. Вот такая история…

Схема устройства

В мире существует огромное количество схем генераторов, способных генерировать колебания различной частоты и мощности. Обычно, это достаточно сложные устройства на диодах, лампах, транзисторах или других активных элементах. Их сборка и настройка требует некоторого опыта и наличия дорогих приборов. И чем выше частота и мощность генератора, тем сложнее и дороже нужны приборы, тем опытнее должен быть радиолюбитель в данной теме.

Но сегодня, мне бы хотелось рассказать о достаточно мощном генераторе ВЧ, построенном всего на одном транзисторе. Причем работать этот генератор может на частотах до 2ГГц и выше и генерировать достаточно большую мощность — от единиц до десятков ватт, в зависимости от типа применяемого транзистора. Отличительной особенностью данного генератора, является использование симметричного дипольного резонатора, своеобразного открытого колебательного контура с индуктивной и емкостной связью.  Не стоит пугаться такого названия — резонатор представляет собой две параллельные металлические полоски, расположенные на небольшом расстоянии друг от друга.

Свои первые опыты с генераторами подобного вида я проводил ещё в начале 2000-х годов, когда для меня стали доступны  мощные ВЧ-транзисторы.  С тех пор я периодически возвращался к этой теме, пока в середине лета на сайте VRTP.ru  не возникла тема по использованию мощного однотранзисторного генератора в качестве источника ВЧ-излучения для глушения бытовой техники (музыкальных центров, магнитол, телевизоров) за счет наведения модулированных ВЧ-токов в электронных схемах этих устройств. Накопленный материал и лег в основу данной статьи.

Схема мощного генератора ВЧ, достаточно проста и состоит из двух основных блоков:

  1. Непосредственно сам автогенератор ВЧ на транзисторе;
  2. Модулятор — устройство для периодической манипуляции (запуска) генератора ВЧ сигналом звуковой (любой другой) частоты.

Схема мощного ВЧ-автогенератора на MOSFET транзисторе

Детали и конструкция

«Сердцем» нашего генератора является высокочастотный MOSFET-транзистор. Это достаточно дорогостоящий и мало распространенный элемент. Его можно купить за приемлемую цену в китайских интернет-магазинах или найти в высокочастотном радиооборудовании — усилителях/генераторах высокой частоты, а именно, в платах базовых станций сотовой связи различных стандартов. В своем большинстве эти транзисторы разрабатывались именно под данные устройства.Такие транзисторы, визуально и конструктивно отличаются от привычных с детства многим радиолюбителям КТ315 или МП38 и представляют собой «кирпичики» с плоскими выводами на мощной металлической подложке. Они бывают маленькие и большие в зависимости от выходной мощности. Иногда, в одном корпусе располагаются два транзистора на одной подложке (истоке). Вот как они выглядят:

MOSFET транзисторы разной мощности, MRF284, MRF19125, MRF6522-70, MRF9085, BLF1820E, MRF5P21180, PTFA211801EЛинейка внизу, поможет вам оценить их размеры. Для создания генератора могут быть использованы любые MOSFET-транзисторы. Я пробовал в генераторе следующие транзисторы: MRF284, MRF19125, MRF6522-70, MRF9085, BLF1820E, PTFA211801E — все они работают. Вот как данные транзисторы выглядят внутри:

Внутренняя структура мощного MOSFET транзистора PTFA211801E

Внутренняя структура мощного MOSFET транзистора PTFA211801E

Вторым, необходимым материалом для изготовления данного устройства является медь. Необходимы две полоски данного металла шириной 1-1,5см. и длинной 15-20см (для частоты 400-500 МГц). Можно сделать резонаторы любой длинны, в зависимости от желаемой частоты генератора. Ориентировочно, она равна 1/4 длинны волны.Я использовал медь, толщиной 0,4 и 1 мм. Менее тонкие полоски — будут плохо держать форму, но в принципе и они работоспособны. Вместо меди, можно использовать и латунь. Резонаторы из альпака (вид латуни) тоже успешно работают. В самом простом варианте, резонаторы можно сделать из двух кусочков проволоки, диаметром 0,8-1,5 мм.

Помимо ВЧ-транзистора и меди, для изготовления генератора понадобится микросхема 4093 — это 4 элемента 2И-НЕ с триггерами Шмитта на входе. Её можно заменить на микросхему 4011 (4 элемента 2И-НЕ) или её российский аналог — К561ЛА7. Также можно использовать другой генератор для модуляции, например, собранный на таймере 555. А можно вообще исключить из схемы модулирующую часть и получить просто ВЧ-генератор.

В качестве ключевого элемента применен составной p-n-p транзистор TIP126 (можно использовать TIP125 или TIP127, они отличаются только максимально допустимым напряжением). По паспорту он выдерживает 5А, но очень сильно греется. Поэтому необходим радиатор для его охлаждения. В дальнейшем, я использовал P-канальные полевые транзисторы типа IRF4095 или P80PF55.

Сборка устройства

Устройство может быть собрано как на печатной плате, так и навесным монтажом с соблюдением правил для ВЧ-монтажа. Топология и вид моей платы приведены ниже:Топология платы мощного ВЧ-автогенератора на MOSFET транзистореЭта плата рассчитана на транзистор типа MRF19125 или PTFA211801E. Для него прорезается отверстие в плате, соответствующее размеру истока (теплоотводящей пластины).Одним из важных моментов сборки устройства является обеспечение теплоотвода от истока транзистора. Я применил различные радиаторы, подходящие по размеру. Для кратковременных экспериментов — таких радиаторов достаточно. Для долговременной работы — необходим радиатор достаточно большой площади или применение схемы обдува вентилятором.Включение устройства без радиатора, чревато быстрым перегревом транзистора и выходом из строя этого дорогостоящего радиоэлемента.

Для экспериментов, мною были изготовлены несколько генераторов по разные транзисторы. Также я сделал фланцевые крепления полосковых резонаторов, чтобы можно было их менять без постоянного нагрева транзистора. Представленные ниже фотографии помогут вам разобраться в деталях монтажа.

Запуск устройства

Перед запуском генератора, необходимо еще раз проверить правильность его соединений, чтобы у вас не образовалась весьма не дешёвая кучка транзисторов с надписью «Сгорел».Сгоревшие MOSFET-транзисторыПервый запуск, желательно производить с контролем потребляемого тока. Этот ток, можно ограничить до безопасного уровня использовав резистор на 2-10 Ом в цепи питания генератора (коллектор или сток модулирующего транзистора).Работу генератора можно проверить различными приборами: поисковым приемником, сканером, частотомером или просто энергосберегающей лампой. ВЧ-излучение, мощностью более 3-5 Вт, заставляет её светиться.

ВЧ-токи легко нагревают некоторые материалы вступающие с ними в контакт в т. ч. и биологические ткани. Так, что будьте осторожны, можно получить термический ожог прикоснувшись к оголенным резонаторам (особенно при работе генераторов на мощных транзисторах). Даже небольшой генератор на транзисторе MRF284, при мощности всего около 2-х ватт — легко сжигает кожу рук, в чем вы можете убедиться на этом видео:

При некотором опыте и достаточной мощности генератора, на конце резонатора, можно зажечь т.н. «факел» — небольшой плазменный шарик, который будет подпитываться ВЧ-энергией генератора. Для этого достаточно просто поднести зажженную спичку к острию резонатора.

Т.н. "факел" на конце резонатора.

Т.н. «факел» на конце резонатора.

Помимо этого, можно зажечь ВЧ-разряд между резонаторами. В некоторых случаях, разряд напоминает крошечную шаровую молнию хаотично перемещающуюся по всей длине резонатора. Как это выглядит вы можете увидеть ниже. Несколько увеличивается потребляемый ток и во всем доме «гаснут» многие каналы эфирного телевидения))).

Плазменная дуга между резонаторами ВЧ-генератора на транзисторе MRF284

Плазменная дуга между резонаторами ВЧ-генератора на транзисторе MRF284

Применение устройства

Конечно, данный ВЧ-генератор — не отличается особой стабильностью частоты. Разница частот может достигать 100-200 МГц при использовании модулятора или без него. Но при желании, потратив время на настройку и подбор расстояния между резонаторами, можно добиться стабильности частоты +/- 2-10 МГц. Главная ценность данного генератора — получение достаточно высокой мощности ВЧ, при использовании минимума деталей. В зависимости от типа применяемого транзистора, устройство может генерировать достаточно значительную мощность. В команде TeslaCoilRu, подобное устройство применено для ионизации различных смесей газов в плазменных шарах. Это смотрится фантастично, посмотрите фотографии и видео на их сайте.

Помимо этого, наш генератор может быть применен для изучения воздействия ВЧ-излучения на различные устройства, бытовую аудио и радиоаппаратуру с целью изучения их помехоустойчивости. Ну и конечно, с помощью данного генератора можно послать сигнал в космос, но это уже другая история…

Все материалы по автогенератору ВЧ (схема, плата) вы можете взять здесь в формате Visio. Настоятельно рекомендую начинать эксперименты с небольшими транзисторами (типа MRF284 или MRF6522). Они легко возбуждаются на частотах до 1600-1800 МГц и не очень критичны к форме резонаторов. Большие транзисторы требуют значительной мощности на затворе для поддержания автогенерации, то есть резонатор должен быть достаточно крупным. Помните, что нельзя допускать КЗ резонаторов, это приведет к выходу транзистора из строя. В большей части случаев, подстроечный конденсатор можно не использовать — хватает паразитных емкостей на плате. Но при навесном монтаже этот конденсатор может понадобиться. Экспериментируйте и у вас все получится!

P.S. Не следует путать этот ВЧ-автогенератор с различными EMP-jammers. Там генерируются импульсы высокого напряжения, а наше устройство генерирует излучение высокой частоты.

P.P.S. Для тех экспериментаторов, у кого возникло желание создать подобное устройство и провести с ним опыты, но нет необходимых MOSFET транзисторов — обращайтесь на почту: [email protected]. У меня есть значительный запас, думаю по цене договоримся.

Часть 2. Небольшое дополнение, другие генераторы >>>Экспериментальный качер Бровина >>>

gnativ.ru

Примеры схем транзисторных автогенераторов

Отметим три варианта распространённых схем автогенераторов:

– с трансформаторной (или индуктивной) обратной связью;

– с автотрансформаторной обратной связью;

– с емкостной обратной связью.

Ниже представлены некоторые практические схемы транзисторных автогенераторов.

Рис. 3.7. Автогенератор на биполярном транзисторе с трансформаторной обратной связью

На рис. 3.7, 3.8, 3.9 потенциометр R1R2служит для подачи на базу небольшого смещения, которое обеспечивает достаточно высокую крутизну характеристики триода в исходном режиме и легкость возбуждения колебаний. Ток базыIб0, протекающий через сопротивлениеR3, создает положительное автоматическое смещение, обеспечивающее получение необходимого угла отсечки коллекторного тока в автоколебательном режиме АГ.

Рис. 3.8. Автогенератор с автотрансформаторной обратной связью на биполярном транзисторе

Рис. 3.9. Автогенератор с ёмкостной обратной связью на

Биполярном транзисторе

На рис. 3.10, 3.11, 3.12 напряжение смещения Еб=Iб0Rбна базу подается с сопротивленияRб.

На рис. 3.10 питание базы последовательное. На рис. 3.11, 3.12 питание цепи базы параллельное.

В схему автогенератора (рис. 3.13) входит активный элемент - полевой транзистор. Для того чтобы получить на выходе автогенератора незатухающие гармонические колебания, необходимо правильно выбрать режим работы полевого транзисто-

Рис. 3.10. Автогенератор с трансформаторной

обратной связью на биполярном транзисторе

Рис.3.11. Автогенератор с автотрансформаторной обратной связью на биполярном транзисторе

ра. При этом можно руководствоваться методикой компьютерного анализа резисторных каскадов усиления на полевых транзисторах (раздел 3.4). Автогенератор на полевом транзисторе (рис. 2.13) собран по схеме емкостной трехточки. Колебательный контур, образованный катушкой индуктивности lk и конденсатором Ск,включен в стоковую цепь транзистора.

Рис .3.12. Автогенератор с ёмкостной обратной связью на

биполярном транзисторе

На частоте генерации он эквивалентен индуктивности. Положительная обратная связь осуществлена через делитель, образованный конденсаторами С1иC2. Начальное смещение, обеспечивающее первоначальное положение рабочей точки, задается резисторамиR1,R2иR3. РезисторR1 позволяет осуществить истоковую стабилизацию рабочей точки полевого транзистора за счёт использования отрицательной обратной связи (ООС) по постоянному току истока. КонденсаторC2устраняет при этом ООС по переменной составляющей тока истока.

Конденсатор Сз необходим для того, чтобы напряжение положительной обратной связи без потерь было приложено ко входу транзистора.

Необходимым условием для получения гармонических незатухающих колебаний является обеспечение баланса амплитуд и баланс фаз.

Рис. 3.13. Автогенератор с ёмкостной обратной связью на

полевом транзисторе

Рис. 3.14. Автогенератор с автотрансформаторной обратной связью на полевом транзисторе

Автогенератор на полевом транзисторе (рис. 3.14) собран по схеме индуктивной трехточки (с автотрансформаторной обратной связью). Колебательный контур, образованный индуктивностями L1+L2 и конденсатором С3, включен в стоковую цепь транзистора. Автотрансформаторная обратная связь осуществлена с помощью обмотки катушки индуктивности L2, подключенной к затвору полевого транзистора через емкость блокировочного конденсатора источника питания (на схеме конденсатор не показан) и емкость конденсатора С2. Начальное смещение, обеспечивающее первоначальное положение рабочей точки, задается резисторами R1 и R2. Конденсатор С1 необходим для того, чтобы напряжение положительной обратной связи без потерь было приложено к входу каскада.

Рис.3.15. Автогенератор на полевом транзисторе

с трансформаторной обратной связью

Схема измерения LС-автогенера- с трансформаторной обратной свя зью представлена на рис. 3.15. Колебательный контур, образованный ин дуктивностью LKи конденсатором Ск, включен в стоковую цепь транзистора. Обратная связь трансформаторного типа, осуществлена с помощью обмотки L1, подключенной ко входу транзистора. Начальное смещение, обеспечивающее первоначальные положения рабочей точки, задается резисторами R1, R2 и R3. Резистор R3 обеспечивает истоковую стабилизацию рабочей точки транзистора. Конденсаторы C2и C3обеспечивают подведение напряжения положительной обратной связи на вход транзистора без потерь. Конденсатор Clявляется блокировочным для источника питания. Он предотвращает прохождение переменной составляющей выходного тока через источник питания.

Автогенераторы низкочастотных колебаний рассмотрены в разделе 4.

studfiles.net

Релаксационный генератор на транзисторах — Меандр — занимательная электроника

Читать все новости ➔

Каждому радиолюбителю желательно иметь определенное количество отработанных схемотехнически решений, которые могут использоваться при создании собственных устройств. Одно из таких решений приведено в этой статье. Основой описываемого генератора является, так называемый, эквивалент однопереходного транзистора на комплементарной паре биполярных транзисторов. Такое соединение транзисторов иногда называют триггером. Подобные триггерные ячейки часто можно встретить и в промышленной аппаратуре, например в телевизионных сенсорных устройствах УОУ-1-15.Многим радиолюбителям хорошо известен релаксационный генератор на аналоге однопереходного транзистора. Схема его показана на рис.1.1Работает он следующим образом: конденсатор С1 заряжается от источника питания через резистор R1. Напряжение на конденсаторе в процессе заряда возрастает. При достижении порога включения этого аналога в точке соединения резисторов R2 и R3 формируется отрицательный импульс. Этот генератор формирует очень короткий импульс. Однако путем некоторого усложнения схемы его можно удлинить. Схема доработанного генератора, имеющего возможность регулировать длительность импульса и длительность паузы между импульсами, показана на рис.2.2Рассмотрим работу этого генератора. В этом генераторе резистор, через который заряжается времязадающий конденсатор С1, заменен генератором (стабилизатором) тока на полевом транзисторе VT1. Описание этого генератора тока приведено в [1]. Преимущество этого источника тока перед известными заключается в том, что при простоте реализации он обладает высоким выходным сопротивлением, а его ток можно устанавливать в пределах от единиц микроампер до десятка миллиампер подбором резистора R1. При заряде конденсатора С1 от источника тока, напряжение на нем линейно возрастает. Порог включения аналога однопереходного транзистора, собранного на транзисторах VT2 и VT3, определяется делителем напряжения R2R3. При достижении порога включения, транзисторы VT2 и VT3 входят в насыщение, и конденсатор начинает разряжаться через них. При этом потенциал коллектора транзистора VT3 понизится практически до потенциала общей шины, формируя передний фронт отрицательного импульса. Этот фронт передастся через конденсатор С2 на базу транзистора VT4. Транзистор откроется, и на нагрузочном резисторе R7 появится перепад напряжения положительной полярности. Это напряжение через диод VD1 и ограничивающий резистор R6 поступает на базу транзистора VT3, поддерживая его в открытом состоянии.

При заряде конденсатора С2 ток через VT4 изменяется от максимального до минимального значения. На коллекторе этого транзистора формируется спадающий по экспоненте импульс напряжения. Это напряжение задает ток базы транзистора VT3 и, когда ток, протекающий через резистор R6, уменьшится настолько, что будет не в состоянии поддерживать транзистор VT3 в открытом состоянии, аналог однопереходного транзистора закроется. Вслед за ним закроется и транзистор VT4. Конденсатор С1 вновь начнет заряжаться от источника стабильного тока. Время включенного состояния транзистора VT4 определяется постоянной времени цепи R4C2. Как видно из описания, с помощью времязадающей цепи R4C2 можно удлинить формируемый импульс пропорционально постоянной времени этой цепи.Для подачи на выход схемы, в большинстве случаев, использовать импульс с коллектора транзистора VT4 нельзя, так как он имеет непрямоугольную форму. А вот на коллекторе транзистора VT3 формируется импульс отрицательной полярности прямоугольной формы. Из этой точки схемы через ключ на транзисторе VT5 импульс подается на выход. Для индикации включенного состояния ключа в коллекторную цепь транзистора VT5 включен светодиод HL1. При указанных на схеме номиналах элементов, светодиод будет зажжен 0,9 с, а погашен 0,4 с. При замене конденсатора С2 на 2,2 мкФ, длительность погашенного состояния светодиода увеличится до 0,85 с. Продолжительность зажженного состояния светодиода можно изменять с помощью регулировки величины тока генератора стабильного тока (изменяя величину резистора R1), так и величину конденсатора С1. Также можно изменять и порогом включения аналога однопереходного транзистора с помощью изменения соотношения величин резисторов R2 и R3. Время погашенного состояния светодиода можно изменять, как было отмечено раньше, изменяя величину резистора R4 и конденсатора С2. Светодиод HL1 не является обязательным элементом схемы. Его можно безболезненно заменить перемычкой. При этом для уменьшения потребляемого тока схемой, необходимо увеличить сопротивление R8. Если вместо транзистора VT5, указанного на схеме, использовать мощный составной транзистор и понизить напряжение питания до 12 В, то вместо светодиода HL1 можно включить автомобильную лампу. Тогда схему можно использовать как световой маяк. Схему можно использовать и для формирования микросекундных и миллисекундных импульсов. Для этого надо изменить величины ранее рассмотренных времязадающих радиоэлементов.Кроме транзисторов, приведенных на схеме, можно применить транзисторы: КТ3107 и КТ3102, ВС557 и ВС547, а также другие пары биполярных транзисторов. Импульсные диоды VD1 и VD2 КД522Б можно заменить импортными типа 1N4148. В схеме можно применить как пленочные, так и многослойные керамические конденсаторы.

Литература1. Ильин О. Стабилизатор тока на полевом транзисторе с двумя затворами // Радио. - 2011. - №7. - С.36.

Автор: Олег Белоусов, г. ЧеркассыИсточник: Радиоаматор №10, 2014

Возможно, Вам это будет интересно:

meandr.org

Генераторы стабильного микротока на кремниевых биполярных транзисторах

РАДИОЛЮБИТЕЛЮ-КОНСТРУКТОРУ

А. Аристов

ГЕНЕРАТОРЫ СТАБИЛЬНОГО МИКРОТОКА НА КРЕМНИЕВЫХ БИПОЛЯРНЫХ ТРАНЗИСТОРАХ

Генераторы стабильного постоянного тока все чаще при­меняются в радиолюбительских конструкциях. Разра­ботано немало подобных генераторов, но в режиме мик­ротоков (от сотен до долей микроампера) обычно исполь­зуют лишь известный генератор стабильного тока на полевом транзисторе. Его большая популярность объ­ясняется тем, что является двухполюсником и может быть без особых сложностей введен в любую цепь. Одна­ко параметры такого генератора не всегда удовлетво­ряют конструктора и, кроме того, полевые транзисторы стоят намного дороже биполярных.

Вот почему члены радиокружка клуба юных техни­ков Первоуральского новотрубного завода, которым ру­ководит автор, решили испытать в режиме микротоков некоторые генераторы на кремниевых биполярных мало­мощных транзисторах. Результаты первых опытов были настолько обнадеживающими, что было предпринято специальное исследование, в ходе которого пришлось испытать многие известные устройства на одном или двух транзисторах, а также их варианты. Испытанные генераторы надежно работали при токах до долей мик­роампера и обладали несколько лучшими параметрами по сравнению с генератором на полевом транзисторе. В настоящей статье описываются лишь некоторые из испытанных генераторов.

Рис. 1. Схема генератора ста­бильного микротока на полевом транзисторе

Рис. 2. Схема генератора ста­бильного микротока с двупо-лярным источником питания

Прежде всего были измерены параметры генератора стабильного тока на полевом транзисторе, собранном по схеме на рис. 1. На этой схеме, как и на последую­щих, указаны динамическое выходное сопротивление (Rд), а также минимальное напряжение (UMmH), при ко­тором генератор еще сохраняет работоспособность. Под этим напряжением следует понимать разность между напряжением питания и падением напряжения на на­грузке. Ток через нагрузку (RH) во всех генераторах ра­вен 5 мкА. Динамическое выходное сопротивление опре­делялось как частное от деления изменения (в неболь­ших пределах) напряжения питания на изменение тока нагрузки (в роли нагрузки использовался микроампер­метр М273 с током полного отклонения стрелки 6 мкА).

Полевой транзистор взят с начальным током стока 0,9 мА, напряжением отсечки 0,8 В и крутизной харак­теристики 1,1 мА/В. Биполярные транзисторы во всех последующих устройствах выбраны со статическим коэффициентом передачи тока, измеренным при фикси­рованном токе коллектора 1 мА, равным 100.

Рис. 3. Схема гене­ратора стабильно­го микротока с однополярным источником пита­ния

Рис. 4. Схема про­стого генератора стабильного мик­ротока

Рис. 5. Схема гене­ратора стабильно­го микротока на эмиттерном повто­рителе

Среди генераторов стабильного тока (как выясни­лось, и микротока тоже), собранных на биполярных транзисторах, наилучшие параметры оказались у гене­ратора, схема которого приведена на рис. 2. Стабиль­ность его выходного тока (через нагрузку RH) почти целиком зависит от стабильности напряжения питания U1 и может быть достаточно высокой. Небольшое влия­ние температурной нестабильности напряжения на эмит-терном переходе (Uбэ) уменьшается при увеличении указанного напряжения питания. Динамическое выход­ное сопротивление генератора настолько велико, что удалось определить только гарантированную нижнюю границу его, реальное значение может быть в десятки раз больше.

Двуполярное питание описанного генератора можно создать искусственно (рис. 3) с помощью делителя на­пряжения R1R2. Правда, при этом несколько увеличи­вается напряжение Uмин, приблизительно до значения падения напряжения на резисторе R2. В ряде случаев этот резистор выгодно заменить стабилитроном, напри­мер, при нестабильном напряжении питания.

Генератор, собранный по схеме на рис. 4, несколько проще, но обладает недостатками. Главный из них — значительная нестабильность выходного тока от темпе­ратуры. При ее увеличении на 1 °С ток через нагрузку возрастает примерно на 2 %. Однако этот недостаток превращается в достоинство, если генератор используют как датчик температуры или элемент термокомпенсации. Кроме того, на практике встречаются случаи, когда на первый план выдвигается требование простоты схемы и приемлема даже такая нестабильность. К недостаткам можно отнести и трудность приобретения резистора R1 с большим сопротивлением.

Генератором стабильного тока может стать эмиттер-ный повторитель на кремниевом транзисторе (рис. 5), причем транзистор одновременно способен выполнять функции повторителя напряжения, усилителя мощности, инвертора фазы и другие. Ток нагрузки здесь является – суммой двух составляющих: тока через резистор R2 и тока базы транзистора. Первая составляющая стабиль­на благодаря тому, что напряжение на резисторе R2 стабилизировано на уровне примерно 0,6 В подключен­ным параллельно ему эмиттерным переходом кремние­вого транзистора. Нестабильность создает значительно меньшая по значению вторая составляющая, поскольку базовый ток изменяется при изменении напряжения на нагрузке.

Рис. 6. Схема генератора ста­бильного микротока с термо­компенсацией

Рис. 7. Схема ждущего мульти­вибратора с генератором ста­бильного микротока

Измерения температурной нестабильности тока на­грузки показали, что увеличение температуры на 1°С уменьшает ток нагрузки примерно на 0,3 %. Именно такое значение имеет температурная нестабильность на­пряжения на эмиттерном переходе транзистора.

Генератор стабильного микротока, построенный по схеме рис. 6, отличается от предыдущего тем, что вместо резистора R1 установлен дополнительный генератор стабильного тока на транзисторе VT1. Очевидным след­ствием такой замены является, во-первых, резкое воз­растание выходного динамического сопротивления. Кро­ме того, генератор позволяет добиться высокой темпе­ратурной стабильности тока нагрузки благодаря тому, что нагрев транзистора VT2 приводит к уменьшению этого тока, а нагрев VT1 — к увеличению. Подбором ре­зистора R2 можно добиться почти полной термокомпен­сации тока нагрузки.

Для иллюстрации возможностей генератора стабиль­ного микротока на основе эмиттерного повторителя слу­жит ждущий мультивибратор (одновибратор), собран­ный по схеме на рис. 7. В нем генератор выполняет роли усилителя, инвертора и элемента зарядки времязадаю-щего конденсатора С2. Благодаря генератору удалось получить заданную длительность выходного импульса (1 мс) при относительно небольшой емкости конденса­тора С2. Длительность импульса прямо пропорциональ­на номиналам деталей R2, С2 и напряжению источника питания.

Разработан ждущий мультивибратор для того, чтобы удовлетворить потребность нашего радиокружка в эко­номичном импульсном устройстве, не потребляющем энергию в паузах между импульсами, надежном и ста­бильном в работе, чувствительном, простом по схеме, допускающем плавную регулировку (изменением сопротивления резистора R2) длительности выходного им­пульса в широком диапазоне, способном работать на мощную нагрузку или при низком напряжении питания.

Мощность входного импульса может быть неболь­шой, но достаточной для приоткрывания транзистора VT2 настолько, чтобы приоткрылся транзистор VTL Тогда последует лавинообразный процесс насыщения транзистора VT2, и напряжение на. выходе мультивибра­тора упадет практически до нуля. Конденсатор С2 нач­нет линейно заряжаться, а ток коллектора транзистора VT1 линейно уменьшаться, пока не станет настолько ма­лым, что транзистор VT2 начнет закрываться. В этот момент произойдет лавинообразный процесс закрывания обоих транзисторов, а затем разрядка конденсатора С2 через резисторы Rl, R2, R4. Время восстановления со­ставляет не более половины длительности выходного импульса, передний фронт которого весьма крутой, а задний немного затянут (около 2 мкс).

Ждущий мультивибратор способен работать, напри­мер, на лампу накаливания, но для этого нужно умень­шить сопротивление резистора R1 пропорционально уменьшению сопротивления нагрузки.

Научно-популярное издание
ББК 32.884.19

В80

Составитель Б. С. Иванов

Рецензент — кандидат технических наук В. Т. Поляков

В помощь радиолюбителю: Сборник. Вып. 96/ В80 Сост. Б. С. Иванов. — М. : ДОСААФ, 1987. — 80 с., ил.

30 к.

Приведены описания конструкций, принципиальные схемы и мето­дика расчета их некоторых узлов. Учтены интересы начинающих и квалифицированных радиолюбителей.

Для широкого круга радиолюбителей.

2402020000 — 018

В—————-14 — 87

072(02) — 87

© Издательство ДОСААФ СССР, 1987.

В ПОМОЩЬ РАДИОЛЮБИТЕЛЮ

Выпуск 96

Составитель Борис Сергеевич Иванов

Заведующий редакцией А. В. Куценко

Редактор М. Е. Орехова

Художник В. А. Клочков

Художественный редактор Т. А. Хитроаа

Технический редактор Е. В. Дмитриева

Корректор И. С. Судзиловская

ИБ № 2084 i

Сдано в набор 27.02.86. Подписано в печать 15.10.86. Г 94070. Формат 84Х108 1/32. Бумага типографская № 3. Гарнитура литературная. Печать высокая. Усл. п. л. 4,2. Усл. кр.-отт. 4,51. Уч.-изд. л. 3,94. Тираж 1 200000-экз. Заказ № 6 — 2116. Цена 30 к. Изд. № 2/г — 398.

Ордена «Знак Почета» Издательство ДОСААФ СССР. 129110, Москва, Олимпийский просп., 22

Головное предприятие республиканского производственного объединения «Полиграфкнига», 252057, Киев, ул, Довженко, 3.

OCR Pirat

pandia.ru

Зарядное устройство на полевом инверторе

Обратноходовые преобразователи тока – инверторы состоят из мощного коммутатора импульсов с периодом, равным сумме открытого и закрытого состояния [1]. В отличие от двухтактного преобразователя в них меньше радиокомпонентов, стабилизация режима работы выполняется оптоэлектронными обратными связями с цепей выходного напряжения на вход управления генератором, с изменением скважности импульса - широтноимпульсного преобразования сигнала управления.

ХарактеристикаНапряжение питания сети, В__180-240 Выходная мощность, Вт______ 100 Выходное напряжение, В______13,8 Выходной ток макс, А ________10 Частота генератора, кГц_____36 Вес, г_______________________360 Размеры, мм___________120x70x60 Емкость аккумулятора, А*ч__25-100

Регулировка выходного напряжения преобразователя - ручная или автоматическая. Высокочастотные трансформаторы преобразователя реализованы на ферритовых сердечниках.Мощность преобразователей зависит от напряжения питания, частоты преобразования и магнитных свойств трансформатора.Использование в качестве ключа полевого транзистора позволяет снизить потери сигнала на управление.Ток, потребляемый первичной обмоткой трансформатора Т1, содержит прямоугольную составляющую, вызванную передачей энергии в нагрузку, и треугольную составляющую, связанную с намагничиванием материала магнито-провода.Процессы накопления энергии и передачи ее в нагрузку в обратно-ходовых преобразователях четко разделены [2]. В цепи стабилизации напряжения заряда аккумуляторов используется частотно-импульсное преобразование сигнала ошибки в изменение выходного напряжения на нагрузке. Схема сравнения представляет вход внешнего воздействия (модификации) на точку контрольного напряжения генератора инвертора. Использование данного вывода позволяет менять его уровень для получения модификаций схемы. С увеличением напряжения длительность импульсов на затворе силового ключа уменьшается, а, следовательно, снижается время пребывания ключевого транзистора в открытом состоянии. Напряжение на вторичных обмотках трансформатора также уменьшается и происходит стабилизация вторичного напряжения инвертора. Регулирование тока заряда выполняется широтно-импульсным изменением длительности импульса генератора при неизменной частоте. Диапазон регулировки скважности импульсов зависит от соотношения сопротивления резисторов регулятора тока заряда. В инверторе происходит тройное преобразование напряжения. Переменное напряжение электросети выпрямляется мощным диодным мостом и преобразуется инвертором в высокочастотное напряжение, которое через трансформатор подается, после выпрямления, в нагрузку.Накопление энергии и ее передача в нагрузку разнесены во времени, максимальный ток коллектора ключевого транзистора не зависит от тока нагрузки.

Структура принципиальной схемыВ схему однотактного широтно-импульсного преобразователя (рис. 1) входит: генератор импульсов на аналоговом таймере DA1 с широтно-импульсным регулятором тока нагрузки R1, силовой ключ на полевом транзисторе VT1 с внешними цепями защиты от коммутационных помех, цепи защиты от повышения напряжения на нагрузке с гальваническим разделением цепей высокого и низкого напряжения оптопарой DA3, цепи защиты полевого транзистора от превышения токов коммутации на аналоговом стабилизаторе напряжения параллельного типа DA2, сетевого выпрямителя с ограничением пусковых токов заряда конденсатора фильтра и ограничением импульсных помех.

Описание работы элементов схемыГенератор прямоугольных импульсов выполнен на аналоговом таймере DA1. В состав микросхемы входят: два компаратора, внутренний триггер, выходной усилитель для повышения нагрузочной способности, ключевой разрядный транзистор с открытым коллектором. Частота генерации задается внешней RC-цепью. Схемой предусмотрен вариант регулировки скважности импульсов при неизменной частоте.Компараторы переключают внутренний триггер при достижении уровня порогового напряжения на конденсаторе С2 в 1/3 и 2/3 Un.Вывод таймера 4 DA1 - вход сброса, используется для возвращения выхода 3 DA1 в нулевое состояние, независимо от состояния других входов, в данной схеме не используется.Вывод 5 DA1 - вывод контрольного напряжения, позволяет получить прямой доступ к точке делителя верхнего компаратора. В схеме используется для получения модификаций режима генерации прямоугольных импульсов, с целью стабилизации выходного напряжения.Вывод 7 DA1 соединен с внутренним разрядным транзистором аналогового таймера и используется для разряда внутренней емкости Сз-и полевого транзистора VT1. влияющую на скорость запирания.Инвертор напряжения состоит из мощного ключевого транзистора VT1 и трансформатора Т1. Для защиты транзистора от пробоя импульсными токами и напряжениями, возникающими во время процесса преобразования, транзистор и трансформатор "обвязаны" диодно-резисторно-конденсаторными цепями.Превышение уровня напряжения на резисторе R10 цепи истока дополнительно приводит к открытию параллельного стабилизатора DA2 и шунтирование затвора транзистора при перегрузках.Трансформатор в инверторе заводского исполнения, от устаревших блоков питания компьютера. Трансформатор выбирается исходя из необходимой габаритной мощности, которая равна сумме мощности всех нагрузок.Формулы по расчету сечения стержня и количества витков обмоток можно взять из [3]. Сложность не в расчете, а в отсутствии соответствующего феррита и размеров, разобрать и перемотать заводской трансформатор без поломки феррита не удалось. Количество витков и их сечение практически подходит под расчеты. При токе нагрузки в 10 А и напряжении вторичной обмотки на холостом ходу не менее 18 В подходят трансформаторы на 250 Вт с площадью окна 15 мм2 и сердечником около 10 мм2. Зазор в таких трансформаторах состоит из тонкого слоя клея, то есть практически отсутствует, да и его введение, из-за снижения магнитной проницаемости, потребует увеличения витков обмоток почти вдвое.Однотактные преобразователи применяются в маломощных источниках тока, когда нагрузка носит изменяющийся характер, что вполне подходит в данной ситуации.Большую роль в максимальной мощности устройства играет частота преобразования инвертора, при росте ее в десять раз мощность трансформатора, без изменения феррита и обмоток, возрастает почти в четыре раза.При конструировании зарядного устройства следует придерживаться рабочей частоты трансформатора с учетом характеристики транзисторного ключа. Заводское исполнение трансформаторов имеет расположение первичных и вторичных обмоток слоями, для обеспечения хорошей магнитной связи и снижения индуктивности рассеивания, дополнительно между секциями обмоток проложены электростатические экраны из бронзовой меди.Обмотки высокочастотных трансформаторов выполняются многожильным проводом для снижения "поверхностного" эффекта.Разбирать единственный трансформатор для уточнения расположения и количества витков не следует, потому как собрать грамотно в обратное состояние не удастся. Лучше поэкспериментировать без разборки, а обкатка схемы даст немалый опыт. Перед включением любой наспех собранной схемы, оденьте бронебойные очки или включите последовательно в сеть лампочку 220 В, предохранители в фильтрах питания при случайном коротком замыкании в любой схеме взрываются с выбросом всего, из чего они состоят. Даже заводская сборка схем преобразователей часто приводит к пробою рабочего транзистора и возможному возгоранию устройств.Причины адекватны: занижены параметры транзистора или импульсные помехи от бытовых электроприборов превышают возможности фильтров.Цепи снижения помех преобразователя. Неприятности в работе полевого транзистора возникают от действия межэлектродных проходных емкостей, при запирании транзистора они затягивают переходные процессы. Включение транзистора происходит подачей прямоугольного импульса с выхода 3 генератора таймера DA1 через резистор R5 на затвор, отключение -низким уровнем на выводе7 DA1. Прямое подключение затвора к таймеру, без резистора R5, приведет к критическому импульсу входного тока, который может перегрузить не только микросхему таймера, но и пробить электростатический переход между затвором и цепью сток-исток (в литературе рекомендуется пайку полевых транзисторов выполнять отключенным паяльником и при закороченных выводах транзистора, от возможного пробоя статическим электричеством).Отсутствие резистора R7 в схеме также нежелательно, он снижает входное напряжение на затворе и разряжает входную емкость транзистора с небольшим запирающим потенциалом на резисторе R10.Для ускорения разряда внутренней емкости полевого транзистора в обход резистора затвора устанавливают диод обратным включением, в данной схеме аналогового таймера вместо внешнего разрядного диода используется разрядный транзистор таймера, открытие которого происходит с переключением состояния внутреннего триггера, при нулевом напряжении на выходе 3 DA1.Транзистор крепится на радиатор размерами 50*50*10 мм.Дроссель Т2 представляет собой обмотку из десяти витков медного провода ПЭВ сечением 4x0,5 мм с ферритовым стержнем диаметром 4 мм.Трансформатор Т1 использован от блоков питания АТ/АТХ типа R320. АР-420Х, первичная обмотка содержит 38-42 витка провода диаметром 0,8 мм, вторичная -2x7,5 витков сечением 4x0,31 мм -установленной мощности 250 Вт.Цепи питания инвертора выполнены на импульсном диодном мосте VD8 с повышенными нагрузочными характеристиками и конденсаторе фильтра С5.Питание инвертора происходит непосредственно от сети, без гальванической развязки.Колебания напряжения сети компенсируются цепями отрицательной обратной связи с гальваническим разделением вторичного и первичного, опасного для жизни, напряжения.Заряд конденсатора фильтра ограничен резистором RT1, это защищает диодный мост VD8 от повреждения критическими токами. Импульсный ток через полевой транзистор инвертора ограничен резистором R14.Цепи заряда аккумулятора. К ним относится выпрямитель на высокочастотной диодной сборке VD7. Для выравнивания тока заряда в фильтр входят конденсаторы С9, С11 и дроссель на трансформаторе Т2. В отсутствии выпрямленного напряжения на вторичной обмотке трансформатора Т1, при прямом ходе тока инвертора, напряжение на нагрузке поддерживается за счет энергии, накопленной в дросселе трансформатора Т2 и конденсаторе фильтра. При закрытии ключа энергия, накопленная в трансформаторе Т1, передается во вторичную обмотку и накапливается в конденсаторах фильтра и дросселе для последующей передачи в нагрузку.Контроль тока нагрузки выполнен на гальванометре РА1 с внутренним шунтом на 10 А.Возможные помехи, сопровождающие переключение диода VD7, устраняются конденсатором С11.Цепи стабилизации по напряжению. Постоянное выходное напряжение преобразователя необходимо сравнивать с образцовым напряжением и вырабатывать напряжение ошибки рассогласования. Цепь стабилизации по напряжению состоит из моста на резисторах RK1, R9 и диода оптопары DA3. Повышение напряжения на выходе выпрямителя приводит к проводящему состоянию диода оптопары, который открывает транзистор оптопары с коэффициентом усиления, зависящем от примененного элемента.Изменение (уменьшение) напряжения на выводе 5 таймера DA1 приводит к изменению частоты выходных импульсов в сторону увеличения, при этом скважность импульсов не изменяется.Длительность выходного импульса сокращается. Это приведет к уменьшению среднего тока зарядки.С понижением выходного напряжения происходит обратный процесс.Конденсатор СЗ устраняет влияние импульсных помех преобразователя на работу генератора. Терморезистор RK1 в цепи стабилизации выходного напряжения при нагреве позволяет воздействовать на выходное напряжение в сторону снижения, терморезистор типа ММТ-1 крепится через изоляционную прокладку на радиатор транзистора.Цепи стабилизации по току. Стабилизация по току выполнена на аналоге параллельного стабилизатора-таймере DA2. Повышение тока в цепи сток-исток полевого транзистора приводит к падению напряжения на резисторе R10 в цепи истока VT1, которое через резистор R8 поступает на управляющий электрод 1 DA2 аналогового стабилизатора. При пороге напряжения на входе стабилизатора выше 2,5 В таймер DA2 открывается и шунтирует затвор полевого транзистора подачей отрицательного, относительно затвора, напряжения, процесс накопления энергии в трансформаторе прервется. Значение ограниченного тока будет меньше максимально допустимого, что не приведет к повреждению ключевого транзистора. Транзистор закрывается независимо от состояния выхода генератора, ток в цепи истока прекращается.

Порядок сборкиПлата инвертора размером 110x65 мм (рис. 2) в сборе крепится в подходящем по размерам корпусе типа БП-1, на внешней стороне которого крепятся гальванометр, выключатель, предохранитель. Соединение устройства с аккумулятором выполнено многожильным проводом сечением 2 мм. Технологии зарядки и восстановления аккумуляторов см. подробно в [4, 5].

 

pecatka

Регулировка схемыПодключение устройства к сети следует выполнить через ограничитель в виде сетевой лампочки. Налаживание начинают с проверки напряжений питания микросхемы генератора и транзистора инвертора. Наличие прямоугольных импульсов на выходе 3 DA1 укажет светодиодный индикатор HL1. Вместо нагрузки следует подключить лампочку 12/24 В от автомобиля, свечение лампочки укажет на процесс преобразования тока в инверторе, слабый накал сетевой лампочки подтверждает нормальную работу преобразователя, при слабой нагрузке ток в первичной обмотке не должен превышать 200 мА.Уровень вторичного напряжения предварительно устанавливается подстроечным резистором R9 при среднем положении движка резистора R1.Ток заряда зависит от скважности импульса генератора, состояние которого зависит от положения движка резистора R1.В правом положении движка время заряда конденсатора С2 минимальное, а разряда - максимальное, импульс, поступающий на ключевой транзистор VT1, очень короткий, и средний ток в нагрузке минимальный. В правом положении движка длительность импульса максимальная, как и ток заряда аккумулятора.Через непродолжительное время включения необходимо проверить тепловой режим радиокомпонентов.Ввиду невозможности изменения параметров трансформатора, требуемые параметры источника питания можно отрегулировать только изменением частоты генератора (конденсатор С2), скважности импульсов R1, выводов вторичной обмотки трансформатора или полной заменой трансформатора.По окончанию регулировочных работ и прогонке схемы по времени сетевую и нагрузочную лампочки удаляют, схему восстанавливают и включают под зарядку аккумуляторов.Следует обратить внимание на режим работы цепей обратных связей по току и напряжению.

Плата в lay

Downland

shemu.ru

ГЕНЕРАТОРЫ СТАБИЛЬНОГО МИКРОТОКА НА КРЕМНИЕВЫХ БИПОЛЯРНЫХ ТРАНЗИСТОРАХ

А.Аристов

Генераторы стабильного постоянного тока все чаще при­меняются в радиолюбительских конструкциях. Разра­ботано немало подобных генераторов, но в режиме мик­ротоков (от сотен до долей микроампера) обычно исполь­зуют лишь известный генератор стабильного тока на полевом транзисторе. Его большая популярность объ­ясняется тем, что является двухполюсником и может быть без особых сложностей введен в любую цепь. Одна­ко параметры такого генератора не всегда удовлетво­ряют конструктора и, кроме того, полевые транзисторы стоят намного дороже биполярных.

Вот почему члены радиокружка клуба юных техни­ков Первоуральского новотрубного завода, которым ру­ководит автор, решили испытать в режиме микротоков некоторые генераторы на кремниевых биполярных мало­мощных транзисторах. Результаты первых опытов были настолько обнадеживающими, что было предпринято специальное исследование, в ходе которого пришлось испытать многие известные устройства на одном или двух транзисторах, а также их варианты. Испытанные генераторы надежно работали при токах до долей мик­роампера и обладали несколько лучшими параметрами по сравнению с генератором на полевом транзисторе. В настоящей статье описываются лишь некоторые из испытанных генераторов.

clip_image002 

Рис. 1. Схема генератора ста­бильного микротока на полевом транзисторе

clip_image004

Рис. 2. Схема генератора ста­бильного микротока с двупо-лярным источником питания

Прежде всего были измерены параметры генератора стабильного тока на полевом транзисторе, собранном по схеме на рис. 1. На этой схеме, как и на последую­щих, указаны динамическое выходное сопротивление (Rд), а также минимальное напряжение (UMmH), при ко­тором генератор еще сохраняет работоспособность. Под этим напряжением следует понимать разность между напряжением питания и падением напряжения на на­грузке. Ток через нагрузку (RH) во всех генераторах ра­вен 5 мкА. Динамическое выходное сопротивление опре­делялось как частное от деления изменения (в неболь­ших пределах) напряжения питания на изменение тока нагрузки (в роли нагрузки использовался микроампер­метр М273 с током полного отклонения стрелки 6 мкА).

Полевой транзистор взят с начальным током стока 0,9 мА, напряжением отсечки 0,8 В и крутизной харак­теристики 1,1 мА/В. Биполярные транзисторы во всех последующих устройствах выбраны со статическим коэффициентом передачи тока, измеренным при фикси­рованном токе коллектора 1 мА, равным 100.

clip_image006 

Рис. 3. Схема гене­ратора стабильно­го микротока с однополярным источником пита­ния

clip_image008

Рис. 4. Схема про­стого генератора стабильного мик­ротока

clip_image010

Рис. 5. Схема гене­ратора стабильно­го микротока на эмиттерном повто­рителе

Среди генераторов стабильного тока (как выясни­лось, и микротока тоже), собранных на биполярных транзисторах, наилучшие параметры оказались у гене­ратора, схема которого приведена на рис. 2. Стабиль­ность его выходного тока (через нагрузку RH) почти целиком зависит от стабильности напряжения питания U1 и может быть достаточно высокой. Небольшое влия­ние температурной нестабильности напряжения на эмит-терном переходе (Uбэ) уменьшается при увеличении указанного напряжения питания. Динамическое выход­ное сопротивление генератора настолько велико, что удалось определить только гарантированную нижнюю границу его, реальное значение может быть в десятки раз больше.

Двуполярное питание описанного генератора можно создать искусственно (рис. 3) с помощью делителя на­пряжения R1R2. Правда, при этом несколько увеличи­вается напряжение Uмин, приблизительно до значения падения напряжения на резисторе R2. В ряде случаев этот резистор выгодно заменить стабилитроном, напри­мер, при нестабильном напряжении питания.

Генератор, собранный по схеме на рис. 4, несколько проще, но обладает недостатками. Главный из них — значительная нестабильность выходного тока от темпе­ратуры. При ее увеличении на 1 °С ток через нагрузку возрастает примерно на 2 %. Однако этот недостаток превращается в достоинство, если генератор используют как датчик температуры или элемент термокомпенсации. Кроме того, на практике встречаются случаи, когда на первый план выдвигается требование простоты схемы и приемлема даже такая нестабильность. К недостаткам можно отнести и трудность приобретения резистора R1 с большим сопротивлением.

Генератором стабильного тока может стать эмиттер-ный повторитель на кремниевом транзисторе (рис. 5), причем транзистор одновременно способен выполнять функции повторителя напряжения, усилителя мощности, инвертора фазы и другие. Ток нагрузки здесь является -суммой двух составляющих: тока через резистор R2 и тока базы транзистора. Первая составляющая стабиль­на благодаря тому, что напряжение на резисторе R2 стабилизировано на уровне примерно 0,6 В подключен­ным параллельно ему эмиттерным переходом кремние­вого транзистора. Нестабильность создает значительно меньшая по значению вторая составляющая, поскольку базовый ток изменяется при изменении напряжения на нагрузке.

clip_image012 

Рис. 6. Схема генератора ста­бильного микротока с термо­компенсацией

clip_image014

Рис. 7. Схема ждущего мульти­вибратора с генератором ста­бильного микротока

Измерения температурной нестабильности тока на­грузки показали, что увеличение температуры на 1°С уменьшает ток нагрузки примерно на 0,3 %. Именно такое значение имеет температурная нестабильность на­пряжения на эмиттерном переходе транзистора.

Генератор стабильного микротока, построенный по схеме рис. 6, отличается от предыдущего тем, что вместо резистора R1 установлен дополнительный генератор стабильного тока на транзисторе VT1. Очевидным след­ствием такой замены является, во-первых, резкое воз­растание выходного динамического сопротивления. Кро­ме того, генератор позволяет добиться высокой темпе­ратурной стабильности тока нагрузки благодаря тому, что нагрев транзистора VT2 приводит к уменьшению этого тока, а нагрев VT1 — к увеличению. Подбором ре­зистора R2 можно добиться почти полной термокомпен­сации тока нагрузки.

Для иллюстрации возможностей генератора стабиль­ного микротока на основе эмиттерного повторителя слу­жит ждущий мультивибратор (одновибратор), собран­ный по схеме на рис. 7. В нем генератор выполняет роли усилителя, инвертора и элемента зарядки времязадаю-щего конденсатора С2. Благодаря генератору удалось получить заданную длительность выходного импульса (1 мс) при относительно небольшой емкости конденса­тора С2. Длительность импульса прямо пропорциональ­на номиналам деталей R2, С2 и напряжению источника питания.

Разработан ждущий мультивибратор для того, чтобы удовлетворить потребность нашего радиокружка в эко­номичном импульсном устройстве, не потребляющем энергию в паузах между импульсами, надежном и ста­бильном в работе, чувствительном, простом по схеме, допускающем плавную регулировку (изменением сопротивления резистора R2) длительности выходного им­пульса в широком диапазоне, способном работать на мощную нагрузку или при низком напряжении питания.

Мощность входного импульса может быть неболь­шой, но достаточной для приоткрывания транзистора VT2 настолько, чтобы приоткрылся транзистор VTL Тогда последует лавинообразный процесс насыщения транзистора VT2, и напряжение на. выходе мультивибра­тора упадет практически до нуля. Конденсатор С2 нач­нет линейно заряжаться, а ток коллектора транзистора VT1 линейно уменьшаться, пока не станет настолько ма­лым, что транзистор VT2 начнет закрываться. В этот момент произойдет лавинообразный процесс закрывания обоих транзисторов, а затем разрядка конденсатора С2 через резисторы Rl, R2, R4. Время восстановления со­ставляет не более половины длительности выходного импульса, передний фронт которого весьма крутой, а задний немного затянут (около 2 мкс).

Ждущий мультивибратор способен работать, напри­мер, на лампу накаливания, но для этого нужно умень­шить сопротивление резистора R1 пропорционально уменьшению сопротивления нагрузки.

nauchebe.net

СХЕМА ДВУХТАКТНОГО ПРЕОБРАЗОВАТЕЛЯ

   Пожалуй одна из самых простых схем преобразователей напряжения из себя представляет простой двухтактный преобразователь на полевых транзисторах, которые включены по схеме мультивибратора. Стабилитроны из схемы можно исключить, если конечно схема предназначена для питания от напряжения не более 12 вольт. Резисторы в схеме не критичны их номинал может быть в районах от 220 ом до 1 килоома, они ограничивают ток затвора полевых транзисторов, следовательно подбором их номинала можно регулировать частоту преобразователя. Резисторы желательно применить с мощностью 0,5-1 ватт, возможен перегрев этих резисторов, но это не страшно.

СХЕМА ДВУХТАКТНОГО ПРЕОБРАЗОВАТЕЛЯ

   Работа двухтактного преобразователя достаточно проста, транзисторы поочередно открываясь и закрываясь создают в первичной обмотке трансформатора переменное напряжение высокой частоты. Трансформатор мотается на желтом ферритовом кольце из компьютерного блока питания, хотя можно использовать и кольца марки 2000НМ.

СБОРКА ДВУХТАКТНОГО ПРЕОБРАЗОВАТЕЛЯ

   Для питания ЛДС трансформатор в первичной обмотке содержит 6 витков с отводом от середины, провод 0,6-1 мм, вторичная обмотка содержит 90 витков и растянута по всему кольцу, провод 0,2-0,4 мм, изоляции можно не ставить, если для первички применить многожильный провод в резиновой изоляции. 

СХЕМА ДВУХТАКТНОГО ПРЕОБРАЗОВАТЕЛЯ НАПРЯЖЕНИЯ

   Преобразователь способен развивать мощность до 20 ватт при использовании полевых транзисторов серии IRFЗ44 и до 30 ватт если применить транзисторы типа IRF3205. Область применения такого рода двухтактных преобразователей достаточно широка, поскольку преобразователь способен развивать неплохую выходную мощность и имеет очень компактные размеры, целесообразно использовать его в Гаусс-пушке для зарядки конденсаторов или же для питания ЛДС в походных условиях, где нет бытовой сети 220 вольт, питать таким преобразователем активные устройства - приемники, маломощные зарядные устройства нельзя, поскольку частота преобразователя достаточно высокая.

Поделитесь полезными схемами
РАБОТА ТРИГГЕРА

     Триггер определяется, как бистабильный элемент, то есть логическое устройство с обработанными связями, которое может находиться в одном из двух устойчивых состояний, обеспечиваемых этими связями. Входами триггера R, T и S служат кнопки SB1 – SB3, нажатием которых подается напряжение высокого уровня. Индикаторами выходов Q и Q– являются лампы HL1 и HL2. При включении питания триггера загорается одна из ламп, например HL2. Если теперь на вход R подать 1, нажав кнопку SB1, триггер перейдет в другое устойчивое состояние – загорится лампа HL1, а лампа HL2 погаснет.   

ПАЯЛЬНЫЕ ПРИНАДЛЕЖНОСТИ ДЛЯ ПАЙКИ    Как показывает практика, паяльные компоненты времен нерушимого союза были самыми хорошими и со мной согласятся все радиолюбители. Радиолюбительский паяльник должен иметь оптимальную мощность 20-35 ватт.

samodelnie.ru


Каталог товаров
    .