Вас интересует, зачем нужен электронный модуль ЭПРА для люминесцентных ламп и как его следует подключить? Правильный монтаж энергосберегающих светильников позволит многократно продлить их срок эксплуатации, ведь верно? Но вы не знаете, как подключить ЭПРА и нужно ли это делать? Мы расскажем вам о назначении электронного модуля и его подключении – в статье рассмотрены конструкционные особенности этого аппарата, благодаря которому формируется так называемое стартерное напряжение, а также поддерживается оптимальный рабочий режим светильников. Приведены принципиальные схемы подключения люминесцентных лампочек с применением электронного пускорегулятора, а также видеорекомендации по применению подобных аппаратов. Которые являются неотъемлемой частью схемы газоразрядных ламп, несмотря на то что конструктивное исполнение таких источников света может значительно отличаться. Содержание статьи: Конструкции промышленных и бытовых люминесцентных осветительных приборов, как правило, оснащаются модулями ЭПРА. Аббревиатура читается вполне доходчиво – электронный пускорегулирующий аппарат. Рассматривая конструкцию этого устройства из серии электромагнитной классики, сразу можно отметить явный недостаток – громоздкость модуля. Правда, конструкторы всегда стремились минимизировать габаритные размеры ЭМПРА. В какой-то степени это удалось, судя по современным модификациям уже в виде ЭПРА. Набор функциональных элементов электромагнитного пускорегулирующего устройства. Его составными частями, как видно, являются всего два компонента – дроссель (так называемый балласт) и стартер (схема формирования разряда) Громоздкость электромагнитной конструкции обусловлена внедрением в схему крупногабаритного дросселя – обязательного элемента, предназначенного сглаживать сетевое напряжение и выступать в качестве балласта. Помимо дросселя, в состав схемы ЭМПРА входят стартеры (один или два). Очевидна зависимость качества их работы и долговечности лампы, т. к. дефект стартера вызывает фальшивый старт, что означает перегрузку по току на нитях накала. Так выглядит один из конструктивных вариантов стартера пускорегулирующего электромагнитного модуля люминесцентных ламп. Существует масса других конструкций, где отмечается разница в размерах, материалах корпуса Наряду с ненадежностью стартерного пуска, люминесцентные лампы страдают от эффекта стробирования. Проявляется он в виде мерцания с определенной частотой, близкой к 50 Гц. Наконец, пускорегулирующий аппарат обеспечивает значительные энергетические потери, то есть в целом снижает КПД ламп люминесцентного типа. Начиная с 1990 годов, схемы люминесцентных ламп все чаще стали дополнять усовершенствованной конструкцией пускорегулирующего модуля. Основу модернизированного модуля составили полупроводниковые электронные элементы. Соответственно, уменьшились габариты устройства, а качество работы отмечается на более высоком уровне. Результат модификации электромагнитных регуляторов – электронные полупроводниковые устройства запуска и регулировки свечения люминесцентных ламп. С технической точки зрения, отличаются более высокими эксплуатационными показателями Внедрение полупроводниковых ЭПРА привело практически к полному исключению недостатков, какие присутствовали в схемах аппаратов устаревшего формата. Электронные модули показывают качественную стабильную работу и увеличивают долговечность люминесцентных светильников. Более высокий КПД, плавное регулирование яркости, повышенный коэффициент мощности – все это преимущественные показатели новых модулей ЭПРА. Главными составляющими элементами схемы электронного модуля являются: Схемное построение предусматривает одну из двух вариаций – мостовая либо полумостовая. Конструкции, где используется мостовая схема, как правило, поддерживают работу с лампами высокой мощности. Примерно на такие приборы света (мощностью от 100 ватт) рассчитаны пускорегулирующие модули, выполненные по мостовой схеме. Которая, кроме поддержки мощности, оказывает положительное влияние на характеристики питающего напряжения Между тем, преимущественно в составе люминесцентных светильников эксплуатируются модули, построенные на базе полумостовой схемы. Такие приборы на рынке встречаются чаще по сравнению с мостовыми, т. к. для традиционного применения достаточно светильников мощностью до 50 Вт. Условно функционирование электроники можно разделить на три рабочих этапа. Первым делом включается функция предварительного прогрева нитей накала, что является важным моментом в плане долговечности газовых приборов света. Особенно необходимой эта функция видится в условиях низкотемпературной окружающей среды. Вид рабочей электронной платы одной из моделей пускорегулирующего модуля на полупроводниковых элементах. Эта небольшая легкая плата полностью заменяет функционал массивного дросселя и добавляет ряд улучшенных свойств Затем схемой модуля запускается функция генерации импульса высоковольтного импеданса – уровень напряжения около 1,5 кВ. Присутствие напряжения такой величины между электродами неизбежно сопровождается пробоем газовой среды баллона люминесцентной лампы – зажиганием лампы. Наконец, подключается третий этап работы схемы модуля, основная функция которого заключается в создании стабилизированного напряжения горения газа внутри баллона. Уровень напряжения в этом случае относительно невысок, чем обеспечивается малое потребление энергии. Как уже отмечалось, часто используемой конструкцией является модуль ЭПРА, собранный по двухтактной полумостовой схеме. Принципиальная схема полумостового устройства запуска и регулировки параметров люминесцентных светильников. Однако это далеко не единственное схемное решение, какие применяются для изготовления ЭПРА Работает такая схема в следующей последовательности: Ключи управления, установленные в цепи двух секций первичной и на вторичной обмотке, регулируют требуемую мощность. Поэтому на вторичной обмотке формируется свой потенциал для каждого этапа работы лампы. Например, при разогреве нитей накала один, в режиме текущей работы другой. Рассмотрим принципиальную схему полумостового ЭПРА для ламп мощностью до 30 Вт. Здесь сетевое напряжение выпрямляется сборкой из четырех диодов. Выпрямленное напряжение от диодного моста попадает на конденсатор, где сглаживается по амплитуде, фильтруется от гармоник. На качество работы схемы оказывает влияние правильный подбор электронных элементов. Нормальная работа характеризуется параметром тока на плюсовом выводе конденсатора С1. Длительность импульса розжига светильника определяется конденсатором С4 Далее посредством инвертирующей части схемы, собранной на двух ключевых транзисторах (полумост), напряжение, поступившее из сети с частотой 50 Гц, преобразуется в потенциал с более высокой частотой – от 20 кГц. Он подается уже на клеммы люминесцентной лампы для обеспечения рабочего режима. Примерно по такому же принципу действует мостовая схема. Разница состоит лишь в том, что в ней используются не два инвертора, а четыре ключевых транзистора. Соответственно, схема несколько усложняется, добавляются дополнительные элементы. Узел схемы инвертора, собранный по мостовой схеме. Здесь в работе узла участвуют не два, а четыре ключевых транзистора. Причем зачастую предпочтение отдается полупроводниковым элементам полевой структуры. На схеме: VT1…VT4 — транзисторы; Tp — трансформатор тока; Uп, Uн — преобразователи Между тем именно мостовой вариант сборки обеспечивает подключение большого количества ламп (более двух) на одном балласте. Как правило, устройства, собранные по мостовой схеме, рассчитаны на мощность нагрузки от 100 Вт и выше. В зависимости от схемных решений, используемых в конструкции пускорегулирующих аппаратов, варианты подключения могут быть самые разные. Если одна модель устройства поддерживает, к примеру, подключение одного светильника, другая модель может поддерживать уже одновременную работу четырех ламп. Простейший вариант питания светильника через электромагнитный пускорегулирующий элемент: 1 – нить накала; 2 – стартер; 3 – стеклянная колба; 4 – дроссель; L – фазная линия питания; N – нулевая линия Самым простым подключением видится вариант с электромагнитным устройством, где основными элементами схемы являются лишь дроссель и стартер. Здесь от сетевого интерфейса фазная линия соединяется к одной из двух клемм дросселя, а нулевой провод подводится на одну клемму люминесцентной лампы. Фаза, сглаженная на дросселе, отводится от его второй клеммы и соединяется на вторую (противоположную) клемму. Остающиеся свободными еще две клеммы лампы подключаются к розетке стартера. Вот, собственно, и вся схема, которая до появления электронных полупроводниковых моделей ЭПРА использовалась повсеместно. Вариант подключения двух люминесцентных светильников через один дроссель: 1 – фильтрующий конденсатор; 2 – дроссель, по мощности равный мощности двух приборов света; 3, 4 – лампы; 5,6 – стартеры запуска; L – фазная линия питания; N – нулевая линия На базе этой же схематики реализуется решение с подключением двух люминесцентных ламп, одного дросселя и двух стартеров. Правда в этом случае требуется подбирать дроссель по мощности, исходя из суммарной мощности газовых светильников. Дроссельный схемный вариант можно доработать с целью устранения дефекта стробирования. Он довольно часто возникает именно на светильниках с электромагнитным ЭПРА. Доработка сопровождается дополнением схемы диодным мостом, который включается после дросселя. Варианты подключения люминесцентных ламп на электронных модулях несколько отличаются. Каждый электронный пускорегулирующий аппарат имеет входные клеммы для подачи сетевого напряжения и выходные клеммы под нагрузку. В зависимости от конфигурации ЭПРА, подключается одна или несколько ламп. Как правило, на корпусе прибора любой мощности, рассчитанного на подключение соответствующего количества светильников, имеется принципиальная схема включения. Порядок подключения люминесцентных светильников к устройству пуска и регулирования, действующего на полупроводниковых элементах: 1 – интерфейс для сети и заземления; 2 – интерфейс для светильников; 3,4 — светильники; L – фазная линия питания; N – нулевая линия; 1…6 — контакты интерфейса На схеме выше, к примеру, предусматривается питание максимум двух люминесцентных ламп, так как в схеме используется модель двухлампового балласта. Два интерфейса прибора рассчитаны так: один для подключения сетевого напряжения и заземляющего провода, второй для подключения ламп. Этот вариант тоже из серии простых решений. Аналогичный прибор, но рассчитанный уже для работы с четырьмя лампами, отличается наличием увеличенного числа клемм на интерфейсе подключения нагрузки. Сетевой интерфейс и линия подключения заземления остаются без изменений. Разводка подключения по четырехламповому варианту. В качестве устройства запуска и регулирования также используется электронный полупроводниковый ЭПРА. На схеме 1…10 — контакты интерфейса устройства пуска и регулирования Однако наряду с простыми устройствами, – одно-, двух-, четырехламповыми – встречаются пускорегулирующие конструкции, схематика которых предусматривает использование функции регулировки свечения люминесцентных ламп. Это так называемые управляемые модели регуляторов. Чем отличаются подобные приборы от уже рассмотренных устройств? Тем, что в дополнение к сетевому и нагрузочному оснащаются еще интерфейсом для подключения управляющего напряжения, уровень которого обычно составляет 1-10 вольт постоянного тока. Четырехламповая конфигурация с возможностью плавной регулировки яркости свечения: 1 – переключатель режима; 2 – контакты подвода управляющего напряжения; 3 – заземляющий контакт; 4, 5, 6, 7 – люминесцентные лампы; L – фазная линия питания; N – нулевая линия; 1…20 — контакты интерфейса устройства пуска и регулирования Таким образом, разнообразие конфигурации электронных пускорегулирующих модулей позволяет организовать системы осветительных приборов разного уровня. Имеется в виду не только уровень мощности и охвата площадей, но также уровень управления. Видеоматериал, сделанный на основе практики электромонтера, рассказывает и показывает — какой прибор из двух должен быть признан конечным пользователем более качественным и практичным. Этот сюжет лишний раз подтверждает, что простые решения выглядят надёжными и долговечными: Между тем ЭПРА продолжают совершенствоваться. На рынке периодически появляются новые модели таких приборов. Электронные конструкции тоже не лишены недостатков, но по сравнению с электромагнитными вариантами, явно показывают лучшие технические и эксплуатационные качества. sovet-ingenera.com Для работы люминесцентных, энергосберегающих, светодиодных ламп и панелей необходимо наличие в цепи элементов, обеспечивающих на их входных контактах определенную заданную величину тока и напряжения. Это достигается применением пускорегулирующей аппаратуры. В случае работы люминесцентной лампы эта аппаратура обеспечивает предварительный прогрев электродов, после чего ртуть, содержащаяся в трубке, постепенно начинает переходить в парообразное состояние. Для возникновения стабильного тлеющего разряда внутри лампы необходимо, чтобы на ее электроды поступил кратковременный импульс напряжения большой величины. Устройство ЭПРА обеспечивает возникновение этого импульса, включение лампы после полного испарения ртути и в процессе работы понижает ток и напряжение на лампе. В самой простой модификации такой режим обеспечивает электромагнитный дроссель совместно со стартером. Но в случае применения электромагнитного дросселя работу лампы сопровождает гудение, мерцание и мигание при включении. Электронные пускорегулирующие аппараты в итоге решают те же задачи, что и электромагнитные. Они обязаны обеспечивать зажигание и стабильную работу светильников. Электронный балласт – это прибор для понижения тока на элементах электрической цепи. Балласты применяются, если сопротивление нагрузки не в состоянии результативно снизить потребляемый ток. Это возникает в случаях, когда устройство имеет отрицательное переменное сопротивление по отношению к элементу питания. Если такая нагрузка будет подключена к источнику постоянного напряжения, то через нее будет протекать ток, увеличивающийся до тех пор, пока она или источник тока не выйдут из строя. Для предотвращения этого используется балласт, обеспечивающий активное или реактивное сопротивление, понижающее величину тока до расчетного значения. Одним из устройств с отрицательным сопротивлением является газоразрядная лампа. В настоящее время для пуска и обеспечения работы ламп наиболее часто стали использоваться электронные балласты ЭПРА, которые имеют целый ряд преимуществ по сравнению со схемой включения при помощи электромагнитного дросселя. Внешний вид ЭПРА для ламп Т8 Существуют такие модификации ЭПРА, которые встраиваются в корпус люминесцентных ламп цокольной модификации. Они устанавливаются в кожухе лампы, находящемся между цоколем и излучающей трубкой. Для светодиодных ламп, панелей и лент, принцип работы которых основан не на использовании электрического разряда между электродами лампы, а на свечении кристаллических светодиодов, вместо ЭПРА применяются электронные блоки питания. Они могут быть встроены в корпус лампы или же установлены в светильник как отдельный элемент цепи. Ниже показано устройство светодиодной лампы со встроенным драйвером. Компактная лампа с встроенным ЭПРА Электронные балласты не требуют для зажигания лампы наличия стартера как самостоятельного элемента цепи. Схема электронного пускорегулирующего аппарата создает заданное напряжение и ток в последовательности, требующейся для корректной работы. Электронная схема ЭПРА на нужном уровне стабилизирует рабочий ток и преобразует переменное синусоидальное напряжение питающей сети частотой 50 герц в ток более высокой частоты, от 20 кГц до 60 кГц. Поэтому при работе люминесцентной лампы достигается отсутствие мерцания, пульсаций при запуске и гудения светильника. Существуют различные варианты зажигания ламп, которые можно реализовать с помощью ЭПРА. Это может быть плавный пуск с постепенным увеличением яркости свечения до номинальной за несколько секунд. Можно установить моментальный запуск. Так же как и электромагнитный дроссель, ЭПРА первоначально разогревают электроды лампы, затем создают высоковольтный импульс и после возникновения тлеющего разряда поддерживают ее работу в оптимальном режиме. Применение этих приборов ведет к увеличению энергоэффективности лампы и сохранению ее работоспособности на весь установленный срок службы. Ниже приводится электрическая схема электронного преобразующего аппарата, применяемого для включения и регулирования работы люминесцентной лампы мощностью 30 ватт. На мостик, состоящий из четырех диодов D1, D2, D3, D4 типа 1N4007 подается напряжение сети 220 вольт, частотой 50 герц. На нем происходит выпрямление входного напряжения, то есть нижний полупериод синусоидального тока переходит в верхнюю часть графика. После этого ток, который был условно преобразован в постоянный, необходимо сгладить, уменьшив его амплитуду. Это выполняет конденсатор С1. Для того чтобы полученное выпрямленное напряжение преобразовать в напряжение высокой частоты, используется инвертор на транзисторах Т1 и Т2. В схеме используется трансформатор TU3802, имеющий две управляющие обмотки и одну рабочую, с которой напряжение частотой 20 кГц подается на электроды лампы. Ток, подающийся на лампу, разогревает электроды, и ртуть в колбе начинает испаряться, а импульс напряжения величиной 1 200 вольт зажигает тлеющий разряд в лампе, и она начинает работать в стабильном режиме. Возможно подключение нескольких ламп через один электронный пускорегулирующий аппарат. Ниже показаны схемы включения двух и четырех ламп через один балласт. Две лампы на один ЭПРА Четыре лампы с общим ЭПРА Для люстры можно использовать ЭПРА, если в ней установлены компактные люминесцентные лампы. Для этого нужно выбрать прибор, рассчитанный на суммарную мощность всех ламп, установленных в люстре, с двукратным запасом по величине. Если в люстре установлены светодиодные лампы без встроенного драйвера, то в схеме желательно предусмотреть электронный блок питания. В случае применения электронных балластов устраняются такие негативные явления, как мигание ламп во время включения, мерцание и гудение, сопровождающие работу светильников с электромагнитными ПРА. Устраняется стробоскопический эффект, который имеет место при работе ламп на переменном токе частотой пятьдесят герц. При использовании электронного балласта возникновение этого эффекта невозможно, поскольку на лампу подается ток высокой частоты в несколько десятков килогерц. По цене ЭПРА довольно дорогие, но их стоимость быстро окупается в результате создания ими экономичного режима работы ламп в люстре. Можно устанавливать в люстры лампы с встроенными драйверами. При помощи электронных ПРА можно создать режим включения ламп с постепенным нарастанием мощности, отрегулировать поочередную работу различных групп ламп в люстре и применить другие интересные решения. Электронные блоки питания и контроллеры применяются и в цепях со светодиодными лентами. С применением ЭПРА мощность, расходуемая светильником, становится меньше на тридцать процентов по сравнению с потребляемой при использовании ЭмПРА. Продолжительность пригодности лампы возрастает на пятьдесят процентов в связи с обеспечением ее работы в щадящем режиме. Сокращаются расходы на ремонт и замену комплектующих в светильниках, оборудованных ЭПРА. Эти приборы незаменимы в цепях, обеспечивающих работу аварийного освещения. lampagid.ru Лампы дневного света (ЛДС) в виде длинной трубки давно применяются как в быту, так и в офисах. Главное их преимущество, по сравнению с лампами накаливания, – большая светоотдача, долговечность и экономия электроэнергии. В старых светильниках применяли тяжелые дроссели и стартеры, они долго и с миганием зажигали лампы, работали ненадежно, гудели, а лампы мигали. На смену им пришли электронные балласты. Они легче по весу, мгновенно зажигают лампу, не гудят, работают в широком диапазоне питающих напряжений, не мигают, так как работают на больших частотах, и по стоимости приблизились к светильникам с тяжелыми дросселями. Фото. Внешний вид светильника Внешний вид такого светильника китайского производства типа DL-3011 для ЛДС мощностью 36 Вт показан на фото. Его номинальное питающее напряжение 220…240 В/50 Гц, но при испытаниях показал работоспособность и в диапазоне напряжений 100…240 B. Сам электронный блок питания (балласт) помещается внутри светильника в пластмассовой коробке. Он смонтирован на монтажной плате размерами 107х27 мм (рис.1 ). Рис 1. Электронный ПРА Принципиальная схема ЭПРА нарисована по монтажной плате и показана на рис.2 Все элементы на ней обозначены так же, как и на монтажной плате. Рис 2. Принципиальная схема ЭПРА Вначале вспомним принцип зажигания люминесцентных ламп, в том числе и при применении электронных балластов. Для этого необходимо выполнить два условия: первое – разогреть обе ее нити накала, второе – приложить большое (около 600 В) напряжение. Величина напряжения зажигания прямо пропорциональна длине стеклянной люминесцентной лампы, т.е. для коротких (18 Вт) ламп оно меньше, а для длинных (36…40 Вт) ламп – больше. Работа электронного балласта Вначале сетевое напряжение выпрямляется до постоянного напряжения 260…270 В (измерено на работающем преобразователе при напряжении сети 220 В) и сглаживается электролитическим конденсатором С1 (15 мкФ/400 В). Далее двухтактный полумостовой преобразователь, активными элементами которого являются два биполярных высоковольтных транзистора структуры n-p-n (MJE13005), называемыми ключами (рис.2 ), преобразует постоянное напряжение 260…270 В в высокочастотное напряжение частотой 38 кГц, что позволяет значительно уменьшить габариты и вес балласта. Нагрузкой и одновременно управляющим элементом преобразователя является трансформатор (обозначен на схеме как TU38Q2) со своими тремя обмотками, из них две – управляющие обмотки (каждая по 4 витка) и одна – рабочая, состоящая из двух витков (рис.2 см. прикрепленные данные). Цепь с рабочей обмоткой создает нагрузку на преобразователь. Первоначальный запуск преобразователя обеспечивает симметричный динистор, обозначенный в схеме DB3. Он открывается, когда после включения электросети напряжение в точках его подключения превысит порог срабатывания. При открытии динистор подает импульс на базу транзистора, после чего преобразователь запускается. Транзисторные ключи открываются противофазно от импульсов с управляющих обмоток. Для этого обмотки включены в базы транзисторов противофазно (на рис.2 начало обмоток обозначены точками). Открытие каждого ключа вызывает наводку импульсов в двух противоположных обмотках, в том числе и в рабочей обмотке (2 витка). Переменное напряжение с рабочей обмотки L1 подается на люминесцентную лампу через последовательную цепь, состоящую из обмотки L1, первой нити накала лампы, С5 (4700 пФ/1200 В), второй нити накала лампы, С4 (100 нФ/400 В). Величины индуктивностей и емкостей в этой цепи подобраны так, что в ней возникает резонанс напряжений при неизменной частоте преобразователя. На конденсаторе С5 (470 пФ/1200 В), включенном в резонансную цепь (к лампе), происходит самое большее падение напряжение (так как у С5 самое большое реактивное сопротивление из всех элементов контура), оно зажигает лампу. Следовательно, максимальный ток в резонансной цепи разогревает обе ее нити накала, а большое резонансное напряжение на конденсаторе С5 зажигает лампу. Зажженная лампа хотя и уменьшает свое сопротивление, но, как показали измерения, переменное напряжение на ней (и на конденсаторе С5) составляет около 295 В, а на дросселе L1 – около 325 В. Т.е. резонанс напряжений в цепи продолжается, из-за чего уже зажженная лампа и продолжает гореть. Дроссель L1 своей индуктивностью ограничивает ток в зажженной лампе, так как ее сопротивление после зажигания уменьшается. После зажигания лампы преобразователь продолжает работать в автоматическом режиме, не меняя свою частоту с момента запуска. Весь этот процесс зажигания длится менее 1 с. При испытаниях светильник сохранял работоспособность в диапазоне питающего напряжения переменного тока от 220 В до 100 B, при этом частота преобразования увеличивалась с 38 кГц до 56 кГц, но яркость свечения лампы при напряжении 100 B заметно уменьшилась. Следует отметить, что на люминесцентную лампу все время подается переменное напряжение, так как это обеспечивает равномерный износ эмиссионных способностей нитей накаливания и этим увеличивает срок службы лампы. При питании лампы постоянным током срок ее службы уменьшается на 50%. Детали электронного балласта Типы радиоэлементов указаны в принципиальной схеме (рис.2 см. прикрепленные данные). В состав устройства входят: При ремонте платы под напряжением будьте осторожны, так как ее радиоэлементы находятся под фазным напряжением. Перегорание (обрыв) накальных спиралей люминесцентной лампы, при этом блок питания остается исправным. Это типичная неисправность. Устраняется она простой заменой стеклянной лампы, которая продается в любом магазине электротоваров и стоит около 1,5 USD. Применять можно лампы мощностью 36 и 40 Вт. Трещины в пайке монтажной платы Причины их появления: периодическое нагревание и последующее, после выключения, остывание места пайки, а также низкокачественная пайка платы изготовителем. Нагреваются места пайки от элементов, которые греются, – это транзисторные ключи. Такие трещины могут проявиться после нескольких лет эксплуатации, т.е. после многократного нагревания и остывания места пайки. Устраняется неисправность повторной пайкой трещины. Иногда необходимо предварительно зачистить место пайки. Повреждение отдельных радиоэлементов Отдельные радиоэлементы могут повредиться от скачков напряжения в электросети. В первую очередь, это транзисторы MJE13005. Производители не предусмотрели защиты схемы от всплесков напряжений, например, варисторами. Скачки напряжений часто имеют место в сельских электросетях во время сильных ветров и молний, поэтому во время таких атмосферных явлений светильник лучше не включать. Имеющийся в схеме предохранитель (1А) не защитит радиоэлементы от скачков напряжений, а лишь при пробое радиоэлементов. Несмотря на то, что долговечные и надёжные люминесцентные лампы прочно вошли в нашу жизнь, усовершенствованный пускорегулирующий механизм к ним ещё не оценён потребителями по достоинству. Основная причина этого – высокая цена на электронные пускорегулирующие аппараты. Главное преимущество схемы балласта для люминесцентных ламп заключается в экономии энергии, потребляемой источником света (до 20%) и увеличении срока её службы. Потратив деньги на покупку ЭПРА, мы экономим на электроэнергии и приобретении новых ламп в будущем. К преимуществам также можно отнести бесшумность, мягкость пуска и простоту установки. Воспользовавшись прилагаемой к устройству инструкцией, компактную микросхему электронного балласта удастся без проблем установить в светильник. Заменив ею традиционный дроссель, стартер и конденсатор, мы позволим лампе стать более экономной. Схемы электронных балластов для люминесцентных ламп выглядят следующим образом:На плате ЭПРА находится: Как известно, выпрямитель идеально выпрямить ток не в состоянии. На выходе из него пульсация может составлять от 50 до 100 Гц, что неблагоприятно сказывается на работе лампы. Перед тем, как выбрать энергосберегающую лампочку. рекомендуется изучить технические характеристики её разновидностей, их преимущества и недостатки. Особое внимание следует уделить месту установки компактной люминесцентной лампы. Очень частое включение-выключение или морозная погода на улице значительно сокращают продолжительность работы КЛЛ. Подключение LED лент в сеть 220 Вольт осуществляется с учетом всех параметров осветительных устройств — длина, количество, монохромность или многоцветность. Подробнее об этих особенностях — здесь. Схему включения люминесцентной лампы вместе с балластом можно разделить на четыре основные фазы. Из выпрямителя ток поступает на буфер конденсатора, где сглаживается частота пульсации. Затем высокое постоянное напряжение попадает на полумостовой инвертор. Конденсаторы низкого напряжения электрода лампы и микросхемы заряжаются. Как только напряжение достигает 5,5 В, микросхема сбрасывается. Транзисторы регулируют зарядку конденсатора компенсационной обратной связи. Напряжение растёт. И когда оно достигает 12 В микросхема начинает генерировать колебания – система входит в фазу предварительного нагрева. Если лампы нет, цепь разрывается на этапе зарядки конденсаторов низкого напряжения. После генерирования колебаний ток течёт через центральную часть полумоста и электроды лампы. Частота колебаний постепенно снижается, а напряжение тока растёт. Весь процесс нагрева в среднем занимает до 1,8 секунды с момента включения. При этом напряжение довольно низкое, что не позволяет лампе включиться раньше положенного срока. Лампа за это время успевает прогреться. Так называемый холодный поджиг портит лампы – их концы темнеют. ЭПРА создан, чтобы надёжно защитить лампу от такого неправильного пуска. Частота полумоста снижается до минимума и приближается к показателям резонансной частоты контура, образованного электродами лампы. Минимальное значение напряжения зажигания лампы 600 Вольт. Дроссель способствует преодолению током этого значения – повышает напряжение и лампа зажигается. Поджиг происходит в среднем за 1,7 секунды. Чтобы оценить уровень эффективности применения диммера для ламп накаливания. необходимо проанализировать все плюсы и минусы использования такой схемы управления освещением. При покупке любых ламп, будет не лишним обратить внимание, могут ли они быть подвергнуты диммированию Установка блока защиты может продлить срок службы лампочек накаливания путем их плавного включения. Для бытовых галогенок в этих же целях используют электронный понижающий трансформатор. Частота тока падает до номинальной рабочей частоты. В процессе работы конденсаторы низкого напряжения постоянно заряжаются. Активируется упреждающее управление, которое регулирует частоту переключения полумоста. Мощность лампы поддерживается в достаточно стабильном положении, даже если происходят перепады напряжения в сети. Люминесцентные лампы напрямую от сети в 220 вольт не работают. Им необходим специальный переходник, который будет стабилизировать напряжение и сглаживать пульсацию тока. Этот прибор носит название пускорегулирующая аппаратура (ПРА), состоящая из дросселя, с помощью которого сглаживается пульсация, стартер, используемый как пускатель, и конденсатор для стабилизации напряжения. Правда, ПРА в этом виде – это старый блок, который постепенно выводится из оборота. Все дело в том, что ему на смену пришла новая модель – ЭПРА, то есть, тот же пускорегулирующий аппарат, только электронного типа. Итак, давайте разберемся в ЭПРА – что это такое, его схема и основные составляющие. По сути, ЭПРА – это электронное плато, небольшого размера, в состав которого входит несколько специальных электронных элемента. Компактность конструкции дает возможность установить плато в светильник вместо дросселя, стартера и конденсатора, которые все вместе занимают больше места, чем ЭПРА. При этом схема подключения достаточно проста. О ней чуть ниже. Внутреннее устройство ЭПРА Внимание! Современные правила охраны труда предписывают использовать в рабочих помещениях люминесцентные лампы, снабженные именно этой новой аппаратурой. Начнем с того, что люминесцентные лампы – это газоразрядные источники света, которые работают по следующей технологии. В стеклянной колбе находятся пары ртути, в которые подается электрический разряд. Он-то и образует ультрафиолетовое свечение. На саму колбу изнутри нанесен слой люминофора, который преобразует ультрафиолетовые лучи в видимый глазами свет. Внутри лампы всегда находится отрицательное сопротивление, вот почему они не могут работать от сети в 220 вольт. Но тут необходимо выполнить два основных условия: Внимание! Величина напряжения прямо пропорциональна длине люминесцентной лампы. То есть, для коротких светильников мощностью 18 Вт оно меньше, для длинных мощностью выше 36 Вт больше. Теперь сама схема ЭПРА. Начнем с того, что люминесцентные лампы, к примеру, ЛВО 4×18, со старым блоком всегда мерцали и издавали неприятный шум. Чтобы этого избежать, необходимо подать на нее ток частотой колебания более 20 кГц. Для этого придется повысить коэффициент мощности источника света. Поэтому реактивный ток должен возвращаться в специальный накопитель промежуточного типа, а не в сеть. Кстати, накопитель с сетью никак не связан, но именно он питает лампу, если случиться сетевой переход напряжения через ноль. Итак, сетевое напряжение в 220 вольт (оно переменное) преобразуется в постоянное с показателем 260-270 вольт. Сглаживание производится с помощью электролитического конденсатора С1. После чего постоянное напряжение необходимо перевести в высокочастотное напряжение до 38 кГц. За это отвечает полумостовой преобразователь двухтактного типа. В состав последнего входят два активных элемента, которые собой представляют два высоковольтных транзистора (биполярных). Их обычно называют ключами. Именно возможность перевода постоянного напряжения в высокочастотное дает возможность уменьшить габариты ЭПРА. Электронный пускорегулирующий аппарат В схеме устройства (балласта) также присутствует трансформатор. Он является одновременно и управляющим элементом преобразователя, и нагрузкой для него. Этот трансформатор имеет три обмотки: Особую роль во всей этой электрической схеме играет динистор симметричного типа. В схеме он обозначен, как DB3. Так вот этот элемент отвечает за запуск преобразователя. Как только напряжение в соединениях его подключения превышает допустимый порог, он открывается и подает импульс на транзистор. После чего происходит запуск преобразователя в целом. Далее происходит следующее: Внимание! Емкость и индуктивность в электрической цепи подбираются таким образом, чтобы в ней возникал резонанс напряжений. Но при этом частота преобразователя должна быть неизменной. Обратите внимание, что на конденсаторе С5 будет происходить самое большое падение напряжения. Именно этот элемент и зажигает люминесцентную лампу. То есть, получается так, что максимальная сила тока разогревает две нити накала, а напряжение на конденсаторе С5 (оно большое) зажигает источник света. По сути, светящаяся лампа должна снизить свое сопротивление. Так оно и есть, но снижение происходит незначительно, поэтому резонансное напряжение все еще присутствует в цепи. Это и есть причина, по которой лампа продолжает светиться. Хотя дроссель L1 создает ограничения тока на показатель разницы сопротивлений. Преобразователь продолжает после запуска работать в автоматическом режиме. При этом его частота не меняется, то есть, идентична частоте запуска. Кстати, сам запуск длится меньше одной секунды. Перед тем как запустить ЭПРА в производство проводились всевозможные тесты, которые показатели, что встроенный люминесцентный светильник может работать в достаточно широком диапазоне подаваемых на него напряжений. Диапазон составил 100-220 вольт. При этом оказалось, что частота преобразователя изменяется в следующей последовательности: Но необходимо отметить, что при снижении напряжения до 100 вольт яркость свечения источника света явно уменьшилась. И еще один момент. На люминесцентный светильник всегда подается ток переменного типа. Это создает условия его равномерного износа. А точнее сказать, износа его нитей накаливания. То есть, увеличивается срок эксплуатации самой лампы. При тестировании лампы постоянным током, срок ее службы снизился в два раза. Итак, по каким причинам люминесцентная лампа может не гореть? В настоящее время ЭПРА устанавливаются не только с газоразрядными источниками света, но и с галогенными и светодиодными лампами. При этом нельзя использовать один аппарат, предназначенный для одного вида ламп, к другой лампе. Во-первых, не подойдут по параметрам. Во-вторых, у них разные схемы. При выборе ЭПРА необходимо учитывать мощность лампы, в которую он будет устанавливаться. Оптимальный вариант модели – это аппараты с защитой от нестандартных режимов работы источника света и от деактивации их. Обязательно обратите внимание на позицию в паспорте или инструкции, где указано, в каких погодных климатических условиях электронный ПРА может работать. Это влияет и на качество эксплуатации, и на срок службы. И последнее – это схема подключения. В принципе, ничего сложного. Обычно производитель прямо на коробке указывает эту самую схему подключения, где точно по клеммам указаны и номера, и контур подключения. Обычно для вводного контура – три клеммы: ноль, фаза и заземление. Для выходного на лампы – по две клеммы, то есть попарно, на каждую лампу. Для чего нужна пускорегулирующая аппаратура для люминесцентных ламп Как работает электронный балласт и его схема Как работает стартер для ламп дневного света Источники: http://www.ascerdfg2.narod.ru/electronics/epra.html, http://elektrik24.net/osvetitelnye-pribory/lampy/energosberegayushhie/lyuminescentnye/elektronnyj-ballast.html, http://onlineelektrik.ru/osveshhenie/sdiod/epra-chto-eto-takoe-i-kak-rabotaet.html electricremont.ru Лампы дневного света (ЛДС) в виде длинной трубки давно применяются как в быту, так и в офисах. Главное их преимущество, по сравнению с лампами накаливания, – большая светоотдача, долговечность и экономия электроэнергии. В старых светильниках применяли тяжелые дроссели и стартеры, они долго и с миганием зажигали лампы, работали ненадежно, гудели, а лампы мигали. На смену им пришли электронные балласты. Они легче по весу, мгновенно зажигают лампу, не гудят, работают в широком диапазоне питающих напряжений, не мигают, так как работают на больших частотах, и по стоимости приблизились к светильникам с тяжелыми дросселями. Фото. Внешний вид светильника Внешний вид такого светильника китайского производства типа DL-3011 для ЛДС мощностью 36 Вт показан на фото. Его номинальное питающее напряжение 220…240 В/50 Гц, но при испытаниях показал работоспособность и в диапазоне напряжений 100…240 B. Сам электронный блок питания (балласт) помещается внутри светильника в пластмассовой коробке. Он смонтирован на монтажной плате размерами 107х27 мм (рис.1). Рис 1. Электронный ПРА Принципиальная схема ЭПРА нарисована по монтажной плате и показана на рис.2 Все элементы на ней обозначены так же, как и на монтажной плате. Рис 2. Принципиальная схема ЭПРА Вначале вспомним принцип зажигания люминесцентных ламп, в том числе и при применении электронных балластов. Для этого необходимо выполнить два условия: первое – разогреть обе ее нити накала, второе – приложить большое (около 600 В) напряжение. Величина напряжения зажигания прямо пропорциональна длине стеклянной люминесцентной лампы, т.е. для коротких (18 Вт) ламп оно меньше, а для длинных (36…40 Вт) ламп – больше. Работа электронного балласта Вначале сетевое напряжение выпрямляется до постоянного напряжения 260…270 В (измерено на работающем преобразователе при напряжении сети ~220 В) и сглаживается электролитическим конденсатором С1 (15 мкФ/400 В). Далее двухтактный полумостовой преобразователь, активными элементами которого являются два биполярных высоковольтных транзистора структуры n-p-n (MJE13005), называемыми ключами (рис.2), преобразует постоянное напряжение 260…270 В в высокочастотное напряжение частотой 38 кГц, что позволяет значительно уменьшить габариты и вес балласта. Нагрузкой и одновременно управляющим элементом преобразователя является трансформатор (обозначен на схеме как TU38Q2) со своими тремя обмотками, из них две – управляющие обмотки (каждая по 4 витка) и одна – рабочая, состоящая из двух витков (рис.2 см. прикрепленные данные). Цепь с рабочей обмоткой создает нагрузку на преобразователь. Первоначальный запуск преобразователя обеспечивает симметричный динистор, обозначенный в схеме DB3. Он открывается, когда после включения электросети напряжение в точках его подключения превысит порог срабатывания. При открытии динистор подает импульс на базу транзистора, после чего преобразователь запускается. Транзисторные ключи открываются противофазно от импульсов с управляющих обмоток. Для этого обмотки включены в базы транзисторов противофазно (на рис.2 начало обмоток обозначены точками). Открытие каждого ключа вызывает наводку импульсов в двух противоположных обмотках, в том числе и в рабочей обмотке (2 витка). Переменное напряжение с рабочей обмотки L1 подается на люминесцентную лампу через последовательную цепь, состоящую из обмотки L1, первой нити накала лампы, С5 (4700 пФ/1200 В), второй нити накала лампы, С4 (100 нФ/400 В). Величины индуктивностей и емкостей в этой цепи подобраны так, что в ней возникает резонанс напряжений при неизменной частоте преобразователя. На конденсаторе С5 (470 пФ/1200 В), включенном в резонансную цепь (к лампе), происходит самое большее падение напряжение (так как у С5 самое большое реактивное сопротивление из всех элементов контура), оно зажигает лампу. Следовательно, максимальный ток в резонансной цепи разогревает обе ее нити накала, а большое резонансное напряжение на конденсаторе С5 зажигает лампу. Зажженная лампа хотя и уменьшает свое сопротивление, но, как показали измерения, переменное напряжение на ней (и на конденсаторе С5) составляет около 295 В, а на дросселе L1 – около 325 В. Т.е. резонанс напряжений в цепи продолжается, из-за чего уже зажженная лампа и продолжает гореть. Дроссель L1 своей индуктивностью ограничивает ток в зажженной лампе, так как ее сопротивление после зажигания уменьшается. После зажигания лампы преобразователь продолжает работать в автоматическом режиме, не меняя свою частоту с момента запуска. Весь этот процесс зажигания длится менее 1 с. При испытаниях светильник сохранял работоспособность в диапазоне питающего напряжения переменного тока от 220 В до 100 B, при этом частота преобразования увеличивалась с 38 кГц до 56 кГц, но яркость свечения лампы при напряжении 100 B заметно уменьшилась. Следует отметить, что на люминесцентную лампу все время подается переменное напряжение, так как это обеспечивает равномерный износ эмиссионных способностей нитей накаливания и этим увеличивает срок службы лампы. При питании лампы постоянным током срок ее службы уменьшается на 50%. Детали электронного балласта Типы радиоэлементов указаны в принципиальной схеме (рис.2 см. прикрепленные данные). В состав устройства входят: Ремонт При ремонте платы под напряжением будьте осторожны, так как ее радиоэлементы находятся под фазным напряжением. Перегорание (обрыв) накальных спиралей люминесцентной лампы, при этом блок питания остается исправным. Это типичная неисправность. Устраняется она простой заменой стеклянной лампы, которая продается в любом магазине электротоваров и стоит около 1,5 USD. Применять можно лампы мощностью 36 и 40 Вт. Трещины в пайке монтажной платы Причины их появления: периодическое нагревание и последующее, после выключения, остывание места пайки, а также низкокачественная пайка платы изготовителем. Нагреваются места пайки от элементов, которые греются, – это транзисторные ключи. Такие трещины могут проявиться после нескольких лет эксплуатации, т.е. после многократного нагревания и остывания места пайки. Устраняется неисправность повторной пайкой трещины. Иногда необходимо предварительно зачистить место пайки. Повреждение отдельных радиоэлементов Отдельные радиоэлементы могут повредиться от скачков напряжения в электросети. В первую очередь, это транзисторы MJE13005. Производители не предусмотрели защиты схемы от всплесков напряжений, например, варисторами. Скачки напряжений часто имеют место в сельских электросетях во время сильных ветров и молний, поэтому во время таких атмосферных явлений светильник лучше не включать. Имеющийся в схеме предохранитель (1А) не защитит радиоэлементы от скачков напряжений, а лишь при пробое радиоэлементов. www.ascerdfg2.narod.ru Читать все новости ➔ В статье предложен простой электронный пускорегулирующий аппарат для люминесцентных ламп T8, собранный на дискретных элементах. Люминесцентные лампы на протяжении многих десятилетий являются самым популярным источником света после ламп накаливания. Как известно, для их работы необходим пускорегулирующий аппарат (ПРА) — устройство, обеспечивающее стабильный розжиг и поддерживающее необходимый рабочий ток в лампе. Электронным пускорегулирующим аппаратам (ЭПРА), или электронным балластам, посвящено множество книг и публикаций, например [1, 2]. Универсальный ЭПРА, описанный в [1], обеспечивает "тёплый" старт для ламп и очень низкий коэффициент пульсаций светового потока (около 1 %). Но подобные устройства довольно сложны для повторения в радиолюбительских условиях, требуют редких компонентов и "чувствительны" к трассировке печатной платы, особенно к разводке общего провода. В предлагаемой статье рассмотрен более простой вариант электронного балласта, собранный из распространённых радиодеталей. Схема ЭПРА приведена на рис. 1. Он рассчитан на работу с четырьмя лампами T8 мощностью 18 Вт либо с двумя лампами по 36 Вт (рис. 2). Рис. 1 Рис. 2 Основные технические характеристики За основу взят полумостовой автогенератор "электронного трансформатора" для галогенных ламп, описанный в [3]. Отличия заключаются в выходном каскаде, в наличии пассивного корректора мощности (в "электронном трансформаторе" для галогенных ламп [3] он не нужен) и изменённой цепи запуска. В остальном принцип его работы аналогичен. Выходной каскад — это два последовательных LC-контура, включённых параллельно: Т2 (обмотка I), С11 и ТЗ (обмотка I), С12. Каждый контур рассчитан на нагрузку 36 Вт, т. е. две лампы по 18 Вт либо одна лампа мощностью 36 Вт. Резонансная частота контуров — около 60 кГц. Пассивный корректор мощности собран на диодах VD5—VD8 и конденсаторах С5, Сб. Он служит для корректировки формы потребляемого устройством тока. Это обеспечивает коэффициент потребляемой мощности близким к единице. При желании корректор можно исключить, но в этом случае коэффициент мощности не будет превышать 0,5...0,6. Запуск автогенератора осуществляется без "привычного" в подобных устройствах динистора. Это позволило упростить устройство и избежать главного недостатка динисторного запуска, связанного, по мнению автора, с разбросом параметров самого динистора, который может приводить к нестабильному запуску автогенератора при пониженном напряжении сети. Запуск осуществляется подачей напряжения смещения "напрямую" на базу транзистора VT2 через резисторы R3, R4, а также на колебательный контур, образованный элементами С9, L2, обмоткой II трансформатора Т1. Возникающие в нём колебания в сумме с приложенным напряжением смещения и приводят к открыванию транзистора VT2. Сопротивление резисторов R3, R4 подобрано так, что протекающий через них ток недостаточен для удержания в открытом состоянии VT2 в момент возникновения в обмотке II трансформатора Т1 напряжения обратной полярности, т. е. в момент, когда откроется транзистор VT1. Изменение цепи запуска и увеличение рабочей частоты преобразователя с 35 кГц (в "электронном трансформаторе" для галогенных ламп) до 65 кГц позволило добиться устойчивого пуска балласта при понижении напряжения в сети до 145...155 В, а также несколько уменьшить габариты выходных трансформаторов Т2 и Т3. Рис. 3 Рис. 4 Балласт собран на печатной плате размерами 116x42 мм из фольгированного с одной стороны стеклотекстолита. Чертёж проводников показан на рис. 3, расположение элементов — на рис. 4. Все элементы для поверхностного монтажа (VD1—VD4, R2—R5) расположены со стороны печатных проводников, выводные — на противоположной стороне платы. Конденсаторы С2—С4, С7, С10, С13 — любые плёночные, подходящих габаритов на номинальное напряжение не менее 400 В (постоянного тока — VDC), С11, С12 — на 1600 В (VDC), С1 — керамический на напряжение 1500 В (VDC), но лучше применить помехоподавляющий конденсатор Y-класса на номинальное напряжение не менее 275 В (переменного тока — VAC). Диоды FR107 (VD5—VD12) можно заменить любыми быстродействующими выпрямительными с обратным напряжением не менее 600 В и прямым током не менее 300 мА. Трансформатор Т1 намотан на кольцевом магнитопроводе (магнитная проницаемость — 2300) с внешним диаметром 9, внутренним — 5 и высотой кольца — 3,5 мм. Обмотки I и II содержат по четыре витка, обмотка III имеет два витка одножильного провода диаметром 0,3 мм. Направление всех обмоток должно быть одинаковым. Обмотки I и II должны иметь индуктивность 16 ±15 % мкГн, обмотка III — 4 мкГн. Выходные трансформаторы Т2 и ТЗ намотаны на магнитопроводах Е20/10/6 из материала N27 (Epcos) или аналогичных с немагнитным зазором около 1 мм. Первичные обмотки содержат по 130 витков жгута из шести проводов диаметром 0,1...0,15 мм. При отсутствии шестижильного жгута можно использовать одножильный провод диаметром 0,25... 0,35 мм, однако при этом нагрев трансформаторов увеличится на 10...15°С. Вторичные обмотки имеют по 13 витков одножильного провода диаметром 0,3 мм. Индуктивность первичных обмоток должна быть 1±15 % мГн. Дроссели L1, L2 — стандартные, например ЕС24. Рис. 5 Рис. 6 Фотографии печатной платы собранного устройства приведены на рис. 5, рис. 6. Фотографии работающего балласта с лампами — на рис. 7 и рис. 8. Правильно собранное устройство начинает работать сразу и налаживания не требует. Рис. 7 Рис. 8 ЛИТЕРАТУРА Автор: В. ЛАЗАРЕВ, г. Вязьма Смоленской обл.Источник: Радио №1, 2016 meandr.org Экономные люминесцентные лампы способны работать только с электронными балластами. Предназначены данные устройства для выпрямления тока. Информации про электронный балласт (схема, ремонт и подключение) имеется очень много. Однако в первую очередь важно изучить устройство прибора. Стандартная модель включает в себя трансформатор, динистор и транзистор. Довольно часто для защиты системы устанавливается предохранитель. Для подключения ламп предусмотрены специальные каналы. Также в устройстве имеются выходы, на которые подается электроэнергия. Принцип работы электронного балласта построен на преобразовании тока. Весь процесс начинается после подачи электроэнергии на канал. Далее в работу вступает дроссель. На этом этапе предельная частота устройства значительно снижается. При этом отрицательное сопротивление в цепи, наоборот, возрастает. Далее ток проходит через динистор и попадает на транзистор. В результате осуществляется преобразование тока. В конечном счете через трансформатор проходит напряжение нужного диапазона для люминесцентной лампы. Модели диодного типа на сегодняшний день считаются бюджетными. В данном случае трансформаторы используются лишь понижающего типа. Некоторые производители транзисторы устанавливают открытого типа. За счет этого процесс понижения частоты в цепи происходит не очень резко. Для стабилизации выходного напряжения применяются два конденсатора. Если рассматривать современные модели балластов, то там имеются динисторы операционного типа. Ранее их заменяли обычными преобразователями. Данного типа схема электронного балласта для люминесцентной лампы отличается от прочих моделей тем, что в ней используется регулятор. Таким образом, пользователь способен настраивать параметр выходного напряжения. Трансформаторы используются в устройствах самые различные. Если рассматривать распространенные модели, то там установлены понижающие аналоги. Однако однофазовые конфигурации не уступают им по параметрам. Всего конденсаторов в цепи у моделей предусмотрено два. Также двухконтактные схемы электронных балластов энергосберегающих ламп включают в себя дроссель, который устанавливается за выходными каналами. Транзисторы для моделей подходят лишь емкостные. На рынке они представлены как постоянного, так и переменного типа. Предохранители в устройствах используются редко. Однако если в цепи установлен тиристор для выпрямления тока, то без него не обойтись. Данная схема электронного балласта для люминесцентной лампы включает в себя понижающий трансформатор, а также две пары конденсаторов. Транзистор для модели предусмотрен лишь один. Отрицательное сопротивление он максимум способен выдерживать на уровне 33 Ом. Для устройств данного типа это считается нормальным. Также схема электронного балласта 18 Вт включает в себя дроссель, который расположен над трансформатором. Динистор для преобразования тока применяется модульного типа. Понижение тактовой частоты происходит при помощи тетрода. Находится данный элемент возле дросселя. Указанный электронный балласт 2х18 (схема показана ниже) состоит из выходных триодов, а также понижающего трансформатора. Если говорить про транзистор, то он в данном случае предусмотрен открытого типа. Всего конденсаторов в цепи имеется два. Еще у схемы электронных балластов "Эпра" 18 Вт есть дроссель, который располагается под трансформатором. Конденсаторы при этом стандартно устанавливаются возле каналов. Процесс преобразования осуществляется через понижение тактовой частоты устройства. Стабильность напряжения в данном случае обеспечивается благодаря качественному динистору. Всего каналов у модели имеется два. Этот электронный балласт 4х18 (схема показана ниже) включает в себя конденсаторы инвертирующего типа. Емкость их составляет ровно 5 пФ. В данном случае параметр отрицательного сопротивления в электронных балластах доходит до 40 Ом. Также важно упомянуть о том, что дроссель в представленной конфигурации расположен под динистором. Транзистор у этой модели имеется один. Трансформатор для выпрямления тока применяется понижающего типа. Перегрузки он способен от сети выдерживать большие. Однако предохранитель в цепи все-таки установлен. Электронный балласт Navigator (схема показана ниже) включает в себя однопереходный транзистор. Также отличие этой модели кроется в наличии специального регулятора. С его помощью пользователь сможет настраивать параметр выходного напряжения. Если говорить про трансформатор, то он в цепи предусмотрен понижающего типа. Расположен он возле дросселя и фиксируется на пластине. Резистор для этой модели подобран емкостного типа. В данном случае конденсаторов имеется два. Первый из них расположен возле трансформатора. Предельная емкость его равняется 5 пФ. Второй конденсатор в цепи располагается под транзистором. Емкость его равняется целых 7 пФ, а отрицательное сопротивление максимум он может выдерживать на уровне 40 Ом. Предохранитель в данных электронных балластах не используется. Схема электронного балласта для люминесцентной лампы с транзисторами EN13003A является на сегодняшний день довольно сильно распространенной. Выпускаются модели, как правило, без регуляторов и относятся к классу бюджетных приборов. Однако прослужить устройства способны долго, и предохранители у них имеются. Если говорить про трансформаторы, то они подходят только понижающего типа. Устанавливается транзистор в цепи возле дросселя. Система защиты у таких моделей в основном используется стандартная. Контакты приборов защищены динисторами. Также схема электронного балласта на 13003 включает в себя конденсаторы, которые часто устанавливаются с емкостью около 5 пФ. Схема электронного балласта для люминесцентной лампы с понижающими трансформаторами часто включает в себя регуляторы напряжения. В данном случае транзисторы используются, как правило, открытого типа. Многими специалистами они ценятся за высокую проводимость тока. Однако для нормальной работы устройства очень важен качественный динистор. Для понижающих трансформаторов часто используют операционные аналоги. В первую очередь они ценятся за свою компактность, а для электронных балластов это является существенным преимуществом. Дополнительно они отличаются пониженной чувствительностью, и небольшие сбои в сети для них нестрашны. Векторные транзисторы в электронных балластах применяются очень редко. Однако в современных моделях они все-таки встречаются. Если говорить про характеристики компонентов, то важно отметить, что отрицательное сопротивление они способы держать на уровне 40 Ом. Однако с перегрузками они справляются довольно плохо. В данном случае большую роль играет параметр выходного напряжения. Если говорить про транзисторы, то для указанных трансформаторов они подходят больше ортогонального типа. Стоят они на рынке довольно дорого, однако расход электроэнергии у моделей крайне низок. В данном случае модели с векторными трансформаторами по компактности значительно проигрывают конкурентам с понижающими конфигурациями. Электронный балласт для люминесцентных ламп с интегральным контроллером довольно прост. В данном случае трансформаторы применяются понижающего типа. Непосредственно конденсаторов в системе имеется два. Для понижения предельной частоты у модели имеется динистор. Транзистор используется в электронном балласте операционного типа. Отрицательное сопротивление он способен выдерживать не менее 40 Ом. Выходные триоды в моделях данного типа практически никогда не используются. Однако предохранители устанавливаются, и при сбоях в сети они помогают сильно. Триггер на электронный балласт для люминесцентных ламп устанавливается в том случае, когда отрицательное сопротивление в цепи превышает 60 Ом. Нагрузку с трансформатора он снимает очень хорошо. Предохранители при этом устанавливаются очень редко. Трансформаторы для моделей этого типа используются лишь векторные. В данном случае понижающие аналоги неспособны справляться с резкими скачками предельной тактовой частоты. Непосредственно динисторы в моделях устанавливаются возле дросселей. По компактности электронные балласты довольно сильно отличаются. В данном случае многое зависит от используемых компонентов устройства. Если говорить про модели с регуляторами, то места они требуют очень много. Также они способны работать в электронных балластах только на два конденсатора. Модели без регуляторов очень компактны, однако транзисторы для них могут использоваться лишь ортогонального типа. Отличаются они хорошей проводимостью. Однако следует учитывать, что данные электронные балласты на рынке покупателю обойдутся недешево. fb.ru Светотехника Главная Радиолюбителю Светотехника В статье предложен простой электронный пускорегулирующий аппарат для люминесцентных ламп Т8, собранный на дискретных элементах. Люминесцентные лампы на протяжении многих десятилетий являются самым популярным источником света после ламп накаливания. Как известно, для их работы необходим пускорегулирующий аппарат (ПРА) - устройство, обеспечивающее стабильный розжиг и поддерживающее необходимый рабочий ток в лампе. Электронным пускорегулирующим аппаратам (ЭПРА), или электронным балластам, посвящено множество книг и публикаций, например [1, 2]. Универсальный ЭПРА, описанный в [1], обеспечивает "тёплый" старт для ламп и очень низкий коэффициент пульсаций светового потока (около 1 %). Но подобные устройства довольно сложны для повторения в радиолюбительских условиях, требуют редких компонентов и "чувствительны" к трассировке печатной платы, особенно к разводке общего провода. В предлагаемой статье рассмотрен более простой вариант электронного балласта, собранный из распространённых радиодеталей. Схема ЭПРА приведена на рис. 1. Он рассчитан на работу с четырьмя лампами Т8 мощностью 18 Вт либо с двумя лампами по 36 Вт (рис. 2). Рис. 1. Схема ЭПРА Рис. 2. Схема расположения ламп Основные технические характеристики Напряжение питания, В .....155...240 Максимальный потребляемый ток (4 лампы по 18 Вт), мА..........................330 Коэффициент мощности (4 лампы по 18 Вт), не менее.........................0,96 Коэффициент пульсаций светового потока, %, не более ........................18 КПД, не менее...................0,9 Частота преобразователя, кГц...........................65 За основу взят полумостовой автогенератор "электронного трансформатора" для галогенных ламп, описанный в [3]. Отличия заключаются в выходном каскаде, в наличии пассивного корректора мощности (в "электронном трансформаторе" для галогенных ламп [3] он не нужен) и изменённой цепи запуска. В остальном принцип его работы аналогичен. Выходной каскад - это два последовательных LC-контура, включённых параллельно: Т2 (обмотка I), С11 и Т3 (обмотка I), С12. Каждый контур рассчитан на нагрузку 36 Вт, т. е. две лампы по 18 Вт либо одна лампа мощностью 36 Вт. Резонансная частота контуров - около 60 кГц. Пассивный корректор мощности собран на диодах VD5-VD8 и конденсаторах C5, C6. Он служит для корректировки формы потребляемого устройством тока. Это обеспечивает коэффициент потребляемой мощности близким к единице. При желании корректор можно исключить, но в этом случае коэффициент мощности не будет превышать 0,5...0,6. Запуск автогенератора осуществляется без "привычного" в подобных устройствах динистора. Это позволило упростить устройство и избежать главного недостатка динисторного запуска, связанного, по мнению автора, с разбросом параметров самого динистора, который может приводить к нестабильному запуску автогенератора при пониженном напряжении сети. Запуск осуществляется подачей напряжения смещения "напрямую" на базу транзистора VT2 через резисторы R3, R4, а также на колебательный контур, образованный элементами С9, L2, обмоткой II трансформатора T1. Возникающие в нём колебания в сумме с приложенным напряжением смещения и приводят к открыванию транзистора VT2. Сопротивление резисторов R3, R4 подобрано так, что протекающий через них ток недостаточен для удержания в открытом состоянии VT2 в момент возникновения в обмотке II трансформатора T1 напряжения обратной полярности, т. е. в момент, когда откроется транзистор VT1. Изменение цепи запуска и увеличение рабочей частоты преобразователя с 35 кГц (в "электронном трансформаторе" для галогенных ламп) до 65 кГц позволило добиться устойчивого пуска балласта при понижении напряжения в сети до 145...155 В, а также несколько уменьшить габариты выходных трансформаторов Т2 и Т3. Балласт собран на печатной плате размерами 116x42 мм из фольгированного с одной стороны стеклотекстолита. Чертёж проводников показан на рис. 3, расположение элементов - на рис. 4. Все элементы для поверхностного монтажа (VD1-VD4, R2-R5) расположены со стороны печатных проводников, выводные - на противоположной стороне платы. Конденсаторы С2-С4, С7, С10, С13 - любые плёночные, подходящих габаритов на номинальное напряжение не менее 400 В (постоянного тока - VDC), С11, С12 - на 1600 В (VDC), С1 - керамический на напряжение 1500 В (VDC), но лучше применить помехопо-давляющий конденсатор Y-класса на номинальное напряжение не менее 275 В (переменноготока - VAC). Диоды FR107 (VD5-VD12) можно заменить любыми быстродействующими выпрямительными с обратным напряжением не менее 600 В и прямым током не менее 300 мА. Трансформатор T1 намотан на кольцевом магнитопроводе (магнитная проницаемость - 2300) с внешним диаметром 9, внутренним - 5 и высотой кольца - 3,5 мм. Обмотки I и II содержат по четыре витка, обмотка III имеет два витка одножильного провода диаметром 0,3 мм. Направление всех обмоток должно быть одинаковым. Обмотки I и II должны иметь индуктивность 16 ±15 % мкГн, обмотка III - 4 мкГн. Выходные трансформаторы Т2 и Т3 намотаны на магнитопроводах Е20/10/6 из материала N27 (Epcos) или аналогичных с немагнитным зазором около 1 мм. Первичные обмотки содержат по 130 витков жгута из шести проводов диаметром 0,1...0,15 мм. При отсутствии шестижильного жгута можно использовать одножильный провод диаметром 0,25...0,35 мм, однако при этом нагрев трансформаторов увеличится на 10...15 оС. Вторичные обмотки имеют по 13 витков одножильного провода диаметром 0,3 мм. Индуктивность первичных обмоток должна быть 1±15 % мГн. Дроссели L1, L2 - стандартные, например ЕС24. Рис. 3. Чертёж проводников Рис. 4. Расположение элементов Фотографии печатной платы собранного устройства приведены на рис. 5, рис. 6. Фотографии работающего балласта с лампами - на рис. 7 и рис. 8. Правильно собранное устройство начинает работать сразу и налаживания не требует. Рис. 5. Печатная плата устройства в сборе Рис. 6. Печатная плата устройства в сборе Рис. 7. Работающий балласт с лампами Рис. 8. Работающий балласт с лампами Литература 1. Лазарев В. Универсальный ЭПРА с "тёплым" стартом для люминесцентных ламп Т8. - Радио, 2015, № 9, с. 31-35. 2. Давиденко Ю. Н. Настольная книга домашнего электрика: люминесцентные лампы. - СПб.: Наука и Техника, 2005. 3. Лазарев В. "Электронные трансформаторы" для галогенных ламп 12 В. - Радио, 2015, №8, с. 32-36. Автор: В. Лазарев, г. Вязьма Смоленской обл. Дата публикации: 27.02.2016 Нет комментариев. Ваш комментарий будет первый. Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу: www.radioradar.netЭПРА для люминесцентных ламп: что это такое, как работает, схемы подключения ламп с ЭПРА. Эпра схема
как работает + схемы подключения
Конструкции пускорегулирующих модулей
Электромагнитное устройство старого образца
Усовершенствование конструкции до ЭПРА
Из чего состоит приспособление?
Особенности работы аппарата
Принципиальная схема пускорегулятора
Варианты подключения люминесцентных ламп
Подключение к электронным модулям
Полезное видео по теме
ЭПРА – что это и схемы подключения для различных светильников
Схема эпра для люминесцентных ламп
Электронный балласт: современное решение для качественной и экономной работы люминесцентных ламп
Устройство ЭПРА для люминесцентных ламп
Принцип действия устройства
Видео с примером работы люминесцентной лампы от ЭПРА
ЭПРА – что это такое, и как работает
Конструкция и принцип работы ЭПРА
Преимущества
Схема устройства
Как работает
Тестирование
Причины неисправностей
Это интересно
Подключение
Схема ЭПРА для ЛБ-40
на главную
ЭПРА на дискретных элементах для ламп T8 — Меандр — занимательная электроника
Возможно, Вам это будет интересно:
Схема электронного балласта для люминесцентной лампы. Принцип работы люминесцентных ламп
Принцип работы
Модели диодного типа
Двухконтактные модели
Балласт "Эпра" 2х18 Вт
Схема балласта "Эпра" 4х18 Вт
Балласт Navigator
Схема электронного балласта на транзисторах EN13003A
Использование понижающих трансформаторов
Применение векторных транзисторов
Схема с интегральным котроллером
Применение низкочастотных триггеров
ЭПРА на дискретных элементах для ламп Т8
Поделиться с друзьями: